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Josephson Parametric Amplifiers (JPA) are nonlinear devices that are used for quantum sensing
and qubit readout in the microwave regime. While JPAs regularly operate near the quantum limit,
their gain saturates for very small (few photon) input power. In a previous work, we showed that
the saturation power of JPAs is not limited by pump depletion, but instead by the fourth-order non-
linearity of Josephson junctions, the nonlinear circuit elements that enables amplification in JPAs.
Here, we present a systematic study of the nonlinearities in JPAs, we show which nonlinearities limit
the saturation power, and present a strategy for optimizing the circuit parameters for achieving the
best possible JPA. For concreteness, we focus on JPAs that are constructed around a Josephson
Ring Modulator (JRM). We show that by tuning the external and shunt inductors, we should be
able to take the best experimentally available JPAs and improve their saturation power by ∼ 15 dB.
Finally, we argue that our methods and qualitative results are applicable to a broad range of cavity
based JPAs.

I. INTRODUCTION

Amplification is a key element in quantum sensing and
quantum information processing. For example, readout
of superconducting qubits requires a microwave ampli-
fier that adds as little noise to the signal as possible [1],
ideally approaching the quantum limit [2–4]. Recently,
low-noise parametric amplifiers powered by the nonlin-
earity of Josephson junctions have been realized and are
in regular use in superconducting quantum information
experiments [5–14].

To evaluate the performance of a practical parametric
amplifier there are three aspects that are equally impor-
tant: (1) added noise at the quantum limit [4, 8–11, 15],
(2) broad-band amplification [15–19], and (3) high sat-
uration power [9, 20–26], i.e. the ability to maintain
desired gain for a large input signal power [27]. The
last requirement has been especially hard to achieve in
Josephson parametric amplifiers and will be the focus of
this paper.

In previous works on Josephson parametric amplifiers,
it was assumed that saturation power is limited by pump
depletion [9, 20–22, 26]. This is a natural explanation, as
the amplifier gain is a very sensitive function of the flux
of the applied pump photons. Thus, as the input power
is increased, and more pump photons are converted to
signal photons, the gain falls. However, in Refs. [23–
25, 28] it was pointed out that the fourth order nonlinear
couplings (i.e. the Kerr terms), inherent in Josephson-
junction based amplifiers, can also limit the saturation
power. These terms induce a shift in the mode frequen-
cies of the amplifier as a function of signal power, which
can cause the amplifier to either decrease or increase its
gain. Thus, we adopt the definition of saturation power
as the lowest input power that causes the amplifier’s gain
to either increase or decrease by 1dB, which we abbrevi-
ate as P±1dB.

In this paper, we address the question: for a given de-

vice, does pump depletion, Kerr terms, or higher-order
nonlinearities limit the saturation power P±1dB? Yet how
do we tame these limitations to optimize the device by
maximizing P±1dB? Our analysis and results are gener-
ally applicable for all amplifiers based on third-order cou-
plings, including JPAs based on Superconducting Nonlin-
ear Asymmetric Inductive eLements (SNAILs) [25, 29–
31]), flux pumped Superconducting QUantum Interfer-
ence Devices (SQUIDs) [7, 32–35], and the Josephson
Parametric Converters (JPCs) [8, 9, 21, 24, 36]). These
techniques we develop may also be of use in the simula-
tion of non-cavity based amplifiers, such as the traveling
wave parametric amplifier (TWPA) [37–39].

In the JPC, three microwave modes (a,b,c) are cou-
pled via a ring of four Josephson Junctions [the so-called
Josephson Ring Modulator (JRM), see Fig. 2(b) shaded
part, for example]. A third-order coupling (g3ϕaϕbϕc)
between the fluxes (ϕi) of three microwave modes is ob-
tained by applying a static magnetic flux to the JRM
ring. Phase-preserving gain is obtained by pumping one
mode (typically c) far off resonance at the sum frequency
of the other two (a and b), with the gain amplitude being
controlled by the strength of the pump drive.

We now discuss the main results of our investigation,
which are summarized in Fig. 1. Previously, descriptions
of JPC’s relied on expanding the nonlinear couplings be-
tween the three microwave modes in a power series of
cross- and self- couplings. The power series was truncated
at the lowest possible order, typically fourth (i.e. corre-
sponding to the cross- and self-Kerr terms) [9, 11, 17, 24].
In the present paper, we compare these power series ex-
pansions with the exact numerical solutions in the frame-
work of semi-classic input-output theory. Our first main
finding is that there is indeed a sweet spot for operating
a JPA, see Fig. 1(a), at which P±1dB is maximized. The
sweet spot appears for moderate values of the two cir-
cuit parameters: participation ratios p ∼ 1/7 and shunt
inductance (β = LJ/Lin ∼ 3.5, where Lin is the shunt
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FIG. 1. (Color online.) The saturation power for the JRM-based Josephson parametric amplifier with various JRM inductance
ratio β and participation ratio p is shown in (a). The amplifier has a sweet spot, in which saturation power is maximal, in the
low β and intermediate p regime regime; Optimizing β and p, we find saturation power of P±1 dB ∼ −104.8 dBm at β ≈ 3.5,
1/p ≈ 7.0. For small p and large β, the amplifier is not able to reach the desired reflection gain (of 20 dB); this region is labeled
in white. In the intermediate p regime (1/p ∼ 4 to 10), as we lower β, the saturation power first increases, hits the sweet spot,
and then abruptly drops. To understand this behavior we refer to Fig. 9a, which shows that the gain at large signal powers
tends to increase as β decreases. This trend is at first beneficial to the amplifier, as the gain vs. signal power curve flattens
out. However, at even lower β the gain tends to increase with signal power (a feature that we call the “shark-fin”) resulting in
the amplifier saturating to 21 dB (see Fig. 9a, β = 3 curve) and hence the saturation power abruptly decreasing. The sweet
spot of the saturation power is located at the edge of the this “reflection gain boost” regime. In (b), we show the minimum
truncation order needed to converge small-signal reflection gain of the amplifier to 20± 0.3 dB. In our main text, we show that
the convergence order of small-signal reflection gain gives a good prediction on the convergence order of the saturation power
(see Fig. 9b & c). In the small-β, large-p corner, the third order truncation is enough to make the time-solver convergence
to the desired 20 dB reflection gain. While as we decrease the participation ratio, the higher and higher order is needed to
converge the truncated theory, which shows that the full-order simulation is needed to predict the performance of the amplifier
near the sweet spot.

inductance, LJ = ϕ0/I0 is the Josephson inductance,
ϕ0 = ~/2e is the reduced flux quantum, and I0 is the
Josephson junction critical current). Our second main
finding is that in the vicinity of the sweet spot nonlinear
terms up to at least 7th order are comparable in magni-
tude and hence truncating the power series description
at fourth order is invalid, see Fig. 1(b). The second main
result can be interpreted from two complementary per-
spectives. First, the sweet spot corresponds to high pump
powers and hence the energy of Josephson junctions can-
not be modeled by a harmonic potential anymore. Sec-
ond, different orders of the power series expansion have
either a positive or a negative effect on the gain as a
function of signal power; when the magnitudes of terms
at different orders are comparable the terms cancel each
other resulting in a boost of P±1dB. We hypothesize that
the second main finding is a generic feature for Josephson
junction based parametric amplifiers.

Before moving to a detailed development of our theory,
we provide a summary of the key steps of our investiga-
tion and outline the structure of our paper.

We begin by noting that in addition to the above-

mentioned parameters p and β, the magnetic flux
through the JRM ϕext = (2π/ϕ0)Φext is another impor-
tant control parameter. For conventional JRMs [8, 9], at
non-zero values of applied flux there are non-zero cross-
and self-coupling at all orders (4th, 5th, etc.). However,
we have recently realized that a linearly-shunted variant
of the JRM [11, 17] can null all even-order couplings at
a special flux bias point (ϕext = 2π), which we call the
Kerr nulling point. The same nulling is also observed
in SNAIL-based devices [29]. In the context of a JPC
with participation ratio p < 1, even couplings come back
but remain much smaller than at generic values of ϕext.
Therefore throughout this paper, we focus on ϕext at or
in the vicinity of the Kerr nulling point.

We calculate the saturation power using semi-classical
equations of motion for the microwave modes, which are
derived using input-output theory from the Lagrangian
for a lumped-circuit model of the JPA. When we con-
sider higher than third-order couplings, these equations
are not generally analytically solvable. To analyze the
saturation power for a given set of parameters, we com-
pare numerical integration of the full nonlinear equations
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to solutions of various, artificially truncated versions of
the equations obtained using both numerical integration
and perturbation theory. We begin by investigating the
effects of pump depletion. To do so, we analyze the dy-
namics of all the modes with interactions truncated at
third order. Using classical perturbation theory to elim-
inate the dynamics of the pump mode (c), we find, in
contradiction with the basic understanding of pump ‘de-
pletion’, that the first corrections are a complex fourth
order cross-Kerr coupling between modes a and b, and
an associated two-photon loss process in which pairs of
a and b photons decay into the c mode, that effectively
increase the pump strength. The dynamically generate
Kerr terms act similarly to the intrinsic Kerr terms, in-
cluding giving rise to saturation to higher gain when the
pump mode frequency is positively detuned from the sum
frequency. Further, in the shunted JRM, we can partially
cancel the real part of the dynamically generated Kerr by
tuning the applied flux near the Kerr nulling-point so as
to generate an opposite sign intrinsic Kerr. Thus, the
presence of judicious intrinsic Kerr can be a virtue, and
the ultimate pump ‘depletion’ limit is set by the imag-
inary Kerr and two-photon loss. Increasing the β value
of the JRM reduces these effects and increase the JPCs
saturation power. Away from the nulling point, these
depletion effects are overwhelmed by the intrinsic Kerr
effects, and the device is Kerr-limited in agreement with
our previous results.

Next, we perform calculations with full nonlinearity,
and find that saturation power stops increasing at high
β. We find that this is primarily due to certain 5th order
terms of the form

(
ϕ2
a + ϕ2

b

)
ϕaϕbϕc. These terms modu-

late the effective parametric coupling strength as a func-
tion of the input signal power thus shifting the amplifier
away from the desired gain by increasing the effective
parametric coupling (in fact, throughout this work we
failed to identify a scenario in which the amplifier ‘runs
out of pump power’).

To suppress the strength of these terms relative to
the desired third order coupling, we introduce an ad-
ditional control knob by adding outer linear inductors
Lout in series with the JRM. The participation ratio
p = LJRM/(2Lout + LJRM), where LJRM is the effec-
tive inductance of the JRM, controls what fraction of
the mode power is carried by the JRM. Decreasing p re-
sults in the suppression of all coupling terms; however,
the higher-order coupling terms decrease faster than the
lower order ones. Thus, if the saturation power is limited
by intrinsic 5th order terms, we can increase the satura-
tion power by decreasing the participation ratio p. We
remark that as the pump power is increased, the cross-
coupling terms result in a shift of the JPA frequencies
that must be compensated, which we do for each value
of p and β. Tuning both p and β we can find a sweet
spot for the operation of the JPC, as discussed above.

In general, the mode frequencies shift with applied
pump power. This, combined with the fact that JPAs can
function with pump detunings comparable to the band-

width of the resonators on which they are based, makes
comparing theory and experiment very complicated. For
concreteness, our simulations vary the applied pump and
signal frequencies to identify the bias condition which re-
quires minimum applied pump power to achieve 20 dB
of gain. These points can be readily identified in experi-
ment [24]. However, there has been a recent observation
in SNAIL-based JPAs that deliberate pump detuning can
additionally enhance device performance [30], and serve
as an in situ control to complement the Hamiltonian en-
gineering we discuss in this work.

This paper is organized as follows. In Sec. II, we fo-
cus on the closed model of JPA circuit (without input-
output ports). We start by reviewing the basic theory of
circuits with inductors, capacitors and Josephson junc-
tions in subsection II A. In subsection II B, we include
the external shunted capacitors with JRM, and present
the normal modes of the JPA circuit model using La-
grangian dynamics. In Section III, we further include
the input-output ports into the circuit model of the JPA,
and construct the equations of motion to describe the dy-
namics of the circuit. In Section IV, we investigate the
limitation on the saturation power of the JPA without ex-
ternal series inductors. Specifically, we analyze the 3rd
order theory using both numerical and perturbative ap-
proaches in Sec. IV C. We compare these results with the
effect of Kerr nonlinearities in Sec. IV D and identify the
dynamically generated Kerr terms and the two-photon
loss processes. Intrinsic fifth- and higher-order nonlinear
couplings are investigated in Sec. IV E. We put these re-
sults together in Sec. IV A and identify which effect is
responsible for limiting the saturation power in different
parametric regimes. In Sec. V we consider the conse-
quence of the series inductors outside of it. We show
that the series inductors, which suppress the participa-
tion ratio of the JRM, can be used to improve the dy-
namic range of the JRM. We discuss how to optimize the
saturation power of the JPA, taking into account both
series inductors and full nonlinearities in Section VI. In
Sec. VII, we further explore how the saturation power is
affected by the magnetic field bias, the modes’ decay rates
and stray inductors in series of the Josephson junction in
JRM loop. We provide an outlook on the performance of
Josephson junction based amplifiers in Section VIII.

II. EQUATIONS OF MOTION FOR CIRCUITS
MADE OF INDUCTORS, CAPACITORS, AND

JOSEPHSON JUNCTIONS

In this section, we review the theory of lumped cir-
cuits elements. We start from the Lagrangian treatment
of single circuit elements in subsection II A. Then in sub-
section II B, we work on the JRM and the closed JPA
circuit model and solved the normal mode profiles of the
JRM.
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FIG. 2. (Color online.) In (a) we show the typical circuit elements that we will focus on in this paper, a linear inductor
with inductance L, a capacitor with capacitance C and a Josephson junction with critical current ic. The node phase and the
convention for the current is labeled on each element drawings. The circuit model for the JRM-based JPA circuit is shown in
(b). The circuit model for a linear inductance shunted Josephson Ring Modulator (JRM) is shaded in red. We connected the
linear inductance shunted JRM with the capacitors and the input-output ports. We assume the normal modes are symmetrically
driven by the ports. For the port corresponds to mode ϕa, we use the green arrows to show the input and output (reflected)
current flow direction. For b-mode, we only use the green arrow to show the flow direction of the input current. The connection
of the c-port is not shown in the plot. The c-port also drives the corresponding mode profile symmetrically. The corresponding
normal modes, including three nontrivial modes ϕa, ϕb and ϕc and one trivial mode ϕm, are shown in (c).

A. Lagrangian description of linear inductance,
Josephson junctions and capacitors

The equations of motion (EOM) that describe the dy-
namics of a circuit with Josephson junctions, inductors,
and capacitors can be derived using the formalism of La-
grangian dynamics, which naturally leads to Kirchhoff’s
law. We use the dimensionless flux on each node of the
circuit, ϕj(t) = 1

φ0

∫ t
−∞ Vj(t

′)dt′, as the set of generalized

coordinates. The Lagrangian L[{ϕj , ϕ̇j}] is defined as

L = T [{ϕ̇j}]− U [{ϕj}], (1)

where T is the kinetic energy associated with the capac-
itors and U is the potential energy associated with the
inductors and the Josephson junctions. Using Fig. 2(a)
to define the nodes and current direction for each type
of circuit element, we observe that each capacitor con-
tributes

EC =
C

2
φ2

0 (ϕ̇1 − ϕ̇2)
2

(2)

to T [{ϕ̇j}], while each inductor and each Josephson junc-
tion contributes

EL =
φ2

0

2L
(ϕ2 − ϕ1)2, (3)

EJ = −φ0ic cos (ϕ2 − ϕ1) , (4)

to U [{ϕj}], where ic is the critical current of the
Josephson junctions. The current across a capacitor is
− 1
φ0

(δEC/δϕ1) = 1
φ0

(δEC/δϕ2), while the current across

an inductor is 1
φ0

(δEL/δϕ1) = − 1
φ0

(δEL/δϕ2) and across

a Josephson junction 1
φ0

(δEJ/δϕ1) = − 1
φ0

(δEJ/δϕ2).

Using the Lagriangian L of the circuit elements, the
current that flows out of each node of the circuit is
Jj = − 1

φ0
(δL/δϕj). To obtain the equations of motion

(EOMs) we extremize the action by setting Jj = 0, which
corresponds to enforcing Kirchhoff’s law.

Next, we apply the Lagrangian formalism to derive
the potential energy of the linear-inductor-shunted JRM,
the key component at the heart of the JPA, shown in
Fig. 2(b), which is shaded in red. The potential energy
of the JRM circuit [40] is

EJRM =
φ2

0

2Lin

4∑
j=1

(ϕj − ϕE)
2

− φ0ic

4∑
i=1

cos
[
ϕi+1 − ϕi −

ϕext

4

]
, (5)

where ϕj ’s are the phases of the superconductors on the
nodes [see Fig. 2(b)] and we adapt the convention that
ϕ5 = ϕ1 for the summation. The external magnetic
flux though the JRM circuit Φext controls the parame-
ter ϕext = Φext/φ0. Applying Kirchhoff’s law to node E,
we obtain ϕE = 1

4 (ϕ1 + ϕ2 + ϕ3 + ϕ4).

B. Normal modes of the Josephson Parametric
Amplifier

In this sebsection, we focus on the equations of motion
of the closed circuit model of the JPA (i.e. ignore the
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input-output ports) and analyze the normal mode pro-
file of the JPA circuit (see Fig. 2(b), but without input
ports).

The potential energy of the shunted JRM was derived
in the previous subsection, see Eq. (5). The kinetic en-
ergy associated with the capacitors [Fig. 2(b)], Eq. (2),
is

Ec = φ2
0

(
Caϕ̇1

2 + Cbϕ̇2
2 + Caϕ̇3

2 + Cbϕ̇4
2
)
, (6)

Which gives the Lagrangian L = Ec −EJRM. The EOM
of this closed circuit can be constructed using Lagrange’s
equation, e.g. for a node flux ϕj ,

2Cjϕ̈j +
1

Lin
(ϕj − ϕE) +

1

LJ

[
sin
(
ϕj − ϕj+1 +

ϕext

4

)
− sin

(
ϕj−1 − ϕj +

ϕext

4

)]
= 0, (7)

where ϕj is the node phases, j = 1, 2, 3, 4, and we use
the index convention that ϕ0 = ϕ4, ϕ5 = ϕ1. According
to the Fig. 2(b), the node capacitance are C1 = C3 = Ca
and C2 = C4 = Cb. The Josephson inductance LJ =
φ0/ic.

To analyze the normal modes of the circuit, we assume
we have chosen suitable values for the parameters so that
the ground state of the circuit is ϕ1 = ϕ2 = ϕ3 = ϕ4 = 0,
and expand in small oscillations to obtain a linearized set
of EOMs around the ground state. The corresponding
normal coordinates, which we denote as [ϕM ] in vector
form, are related to the node fluxes via [ϕ] = [A].[ϕM ],

where transformation matrix [A] is

[A] =


1 1

2 0 − Cb

(Ca+Cb)

1 0 1
2

Ca

(Ca+Cb)

1 − 1
2 0 − Cb

(Ca+Cb)

1 0 − 1
2

Ca

(Ca+Cb)

 , (8)

and the flux coordinates vectors are defined as [ϕ] =
(ϕ1, ϕ2, ϕ3, ϕ4)

ᵀ
and [ϕM ] = (ϕm, ϕa, ϕb, ϕc)

ᵀ
. Invert-

ing this transformation, we obtain the expression for the
normal modes in terms of the node fluxes,

ϕa = ϕ1 − ϕ3, (9a)

ϕb = ϕ2 − ϕ4, (9b)

ϕc = −1

2
(ϕ1 + ϕ3 − ϕ2 − ϕ4) (9c)

ϕm =
Ca

2(Ca + Cb)

(
ϕ1 +

Cb
Ca

ϕ2 + ϕ3 +
Cb
Ca

ϕ4

)
. (9d)

The profiles for the normal modes, ϕa, ϕb, ϕc and ϕm are
sketched in Fig. 2(c). The normal mode ϕm has zero fre-
quency and it is not coupled with any of the other three
modes [see Eq. (11)]. Therefore, ϕm is a trivial mode,
which can be safely ignored in our following discussion.
The corresponding frequencies for the other three non-
trivial modes are

ω2
a =

LJ + 2Lin cos
(
ϕext

4

)
2CaLinLJ

, (10a)

ω2
b =

LJ + 2Lin cos
(
ϕext

4

)
2CbLinLJ

, (10b)

ω2
c =

Ca + Cb
CaCb

·
LJ + 4Lin cos

(
ϕext

4

)
4LinLJ

. (10c)

With the coordinate transformation given by the
model matrix [A] [see Eq. (8)], we can re-write the poten-
tial energy of the JPA (the energy of JRM circuit) using
the normal modes ϕa, ϕb and ϕc, as

EJRM =− 4EJ

[
cos
(ϕa

2

)
cos
(ϕb

2

)
cos (ϕc) cos

(ϕext

4

)
+ sin

(ϕa
2

)
sin
(ϕb

2

)
sin (ϕc) sin

(ϕext

4

)]
+

φ2
0

4Lin

(
ϕ2
a + ϕ2

b + 2ϕ2
c

) (11)

where EJ = φ0ic is the Josephson energy.
We observe from Eq. (11) that the four Josephson junctions on the outer arms of the JRM provide nonlinear

couplings between the normal modes of the circuit. Assuming that the ground state of the circuit is ϕa = ϕb = ϕc = 0,
and it is stable as we tune the external magnetic flux bias, we can expand the nonlinear coupling terms around the
ground state as

EJRM ∼
[
φ2

0

4Lin
+
EJ

2
cos
(ϕext

4

)] (
ϕ2
a + ϕ2

b

)
+

[
φ2

0

2Lin
+ 2EJ cos

(ϕext

4

)]
ϕ2
c − EJ sin

(ϕext

4

)
ϕaϕbϕc

− 1

96
EJ cos

(ϕext

4

) (
ϕ4
a + ϕ4

b + 16ϕ4
c

)
+

1

16
EJ cos

(ϕext

4

) (
ϕ2
aϕ

2
b + 4ϕ2

aϕ
2
c + 4ϕ2

bϕ
2
c

)
+ ...

(12)

Because of the parity of the cosine and sine functions, the cosine terms in Eq. (11) contribute the even order
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coupling terms while the sine terms contributes the odd
order coupling terms. The nonlinear couplings are con-
trolled by the external magnetic flux bias ϕext. The third
order nonlinear coupling is the desired term for a non-
degenerate Josephson parametric amplifier, while all the
higher order couplings are unwanted. The Kerr nulling
point [17, 29] is achieved by setting the external magnetic
flux to ϕext = 2π (and assuming that the ground state
ϕa = ϕb = ϕc = 0 remains stable), and we find that all
the even order nonlinear couplings are turned off.

III. INPUT-OUTPUT THEORY OF THE
JOSEPHSON PARAMETRIC AMPLIFIER

The linear-inductor shunted JRM described in the pre-
vious section is the core elements of the Josephson para-
metric amplifier. In order to build the JPA, we add input-
output lines and external parallel capacitors to the JRM,
see Fig. 2(b). In Section V we will extend the description
of the JPA by adding stray and series inductors to the
JRM.

In order to fully model the JPA, we need to describe
the input-output properties of the JPA circuit. In Sub-
sec. III A we introduce input-output theory, and apply
it to the problem of modeling drive and response of the
JPA. In Subsec. III B we present the full nonlinear equa-
tions of motion that describe the JPA circuit.

A. Input-output relation for the Josephson
Parametric Amplifier

To solve the full dynamics of the JPA with amplifica-
tion process, we need to be able to describe the microwave
signals that are sent into and extracted (either reflected
or transmitted) from the circuit. Therefore, we need to
connect the input-output ports to the JPA circuit and
include the description of them in the EOMs.

To simplify the problem, we assume that the drives
perfectly match the profiles of the corresponding nor-
mal modes, as shown schematically for modes a and b
in Fig. 2(a). Take mode a as an example. We send
in a microwave signal with the amplitude of the voltage
Va,in = φ0ϕ̇a,in into the port for this mode. The corre-
sponding current flow from the transmission line to the

amplifier is Ia,in =
Va,in

Za
, where Za is the impedance of

the transmission line. The voltage applied to node 1 and
node 3 are V1 = φ0

2 ϕ̇a,in and V3 = −φ0

2 ϕ̇a,in, respectively.
While the output microwave signal has output voltage
amplitude Va,out = φ0ϕ̇a,out and the output current is

Ia,out =
Va,out

Za
.

At the nodes which connect to the transmission line,
e.g. nodes 1 and 3 for a mode, the voltage and current
should be single-valued. This requirement induces an

input-output condition

Va,in + Va,out = Va = V1 − V3

Ia,in − Ia,out = I1,a = −I3,a,
(13)

where I1,a (I3,a) is the net current flow into node 1 (3) of
the amplifier from the port. Because the output signals
should be determined by the input signals, we eliminate
the output variables from the input-output relation so
that it can be combined with the current relation inside
the JRM to construct the EOMs for the open circuit
model

I1,a = −I3,a =
2Va,in
Za

− φ0 (ϕ̇1 − ϕ̇3)

Za
. (14)

Given the the drives (inputs), we can solve for the mode
fluxes using the EOMs, and then obtain the outputs us-
ing the input-output relations. For example, the output
voltage on port a is determined by

Va,out = φ0 (ϕ̇1 − ϕ̇3)− Va,in. (15)

In the remainder of this paper we focus on the reflec-
tion gain of the JPA which is obtained from a phase-
preserving amplification process. The input signal to be
amplified by the JPA is a single-frequency tone. The
amplified output is the reflected signal at the same fre-
quency. Using the Josephson relation relating voltage
and flux, we observe that the reflected voltage gain is
equal to the reflected flux gain. Therefore, we use the
input-output relation for the mode flux, e.g. for port a
we have

ϕa,out = ϕ1 − ϕ3 − ϕa,in. (16)

The analysis of input-output ports for mode b and c is
similar. For b-port we have

I2,b = −I4,b =
2Vb,in
Zb

− φ0 (ϕ̇2 − ϕ̇4)

Zb
(17a)

Vb,out = φ0 (ϕ̇2 − ϕ̇4)− Vb,in, (17b)

and for c-port

I2,c = I4,c = −I1,c = −I3,c

=

√
2Vc,in
Zc

− φ0

2Zc
(ϕ̇2 + ϕ̇4 − ϕ̇1 − ϕ̇3) (18a)

Vc,out =

√
2φ0

2
(ϕ̇2 + ϕ̇4 − ϕ̇1 − ϕ̇3)− Vc,in. (18b)

The extra factor
√

2 that app[ears for the c port is due
to the microwave power being split 50/50 between the
two transmission lines that drive all four nodes simulta-
neously.

When constructing the EOM with input-output ports,
we should consider the current contribution from all the
input-output ports together. For example, the net cur-
rent injected through node 1 should have contributions
from the drive applied to both ports for mode a and mode
c, i.e. I1,net = I1,a + I1,c.
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B. Full nonlinear Equations of Motion for the
Josephson Parametric Amplifier

In this subsection, we combine the circuit model for
JPA with the input-output relations to construct the full
nonlinear EOMs of the JPA. We will take node 1 as an
illustrative example and then give the full set of EOMs
for the circuit. Note that the left hand side of the EOM

for the closed circuit model of the JRM in Eq. (7) is
equivalent to the current relation at node 1, except for a
constant factor φ0. To construct the EOM for the open
circuit with all the driving ports, we should take the net
current injected into node 1 to replace the right hand side
of the Eq. (7). Applying this procedure to all nodes we
obtain the EOMs

ϕ̈1 +
(3ϕ1 − ϕ2 − ϕ3 − ϕ4)

8CaLin
+

1

2CaLJ

[
sin
(
ϕ1 − ϕ2 +

ϕext

4

)
− sin

(
ϕ4 − ϕ1 +

ϕext

4

)]
=

1

2Caφ0
(I1,a + I1,c) , (19a)

ϕ̈2 +
(3ϕ2 − ϕ1 − ϕ3 − ϕ4)

8CbLin
+

1

2CbLJ

[
sin
(
ϕ2 − ϕ3 +

ϕext

4

)
− sin

(
ϕ1 − ϕ2 +

ϕext

4

)]
=

1

2Cbφ0
(I2,b + I2,c) , (19b)

ϕ̈3 +
(3ϕ3 − ϕ1 − ϕ2 − ϕ4)

8CaLin
+

1

2CaLJ

[
sin
(
ϕ3 − ϕ4 +

ϕext

4

)
− sin

(
ϕ2 − ϕ3 +

ϕext

4

)]
=

1

2Caφ0
(I3,a + I3,c) , (19c)

ϕ̈4 +
(3ϕ4 − ϕ1 − ϕ2 − ϕ3)

8CbLin
+

1

2CbLJ

[
sin
(
ϕ4 − ϕ1 +

ϕext

4

)
− sin

(
ϕ3 − ϕ4 +

ϕext

4

)]
=

1

2Cbφ0
(I4,b + I4,c) . (19d)

where the net currents injected from each of the ports to the corresponding nodes are given in Eqs. (14), (17) and (18).
Using the transformation of Eq. (8) we obtain the EOMs using the normal modes

ϕ̈a + γaϕ̇a +
ϕa

2CaLin
+

2

CaLJ

[
sin
(ϕa

2

)
cos
(ϕb

2

)
cos (ϕc) cos

(ϕext

4

)
− cos

(ϕa
2

)
sin
(ϕb

2

)
sin (ϕc) sin

(ϕext

4

)]
= 2γa∂tϕa,in(t) (20a)

ϕ̈b + γbϕ̇b +
ϕb

2CbLin
+

2

CbLJ

[
cos
(ϕa

2

)
sin
(ϕb

2

)
cos (ϕc) cos

(ϕext

4

)
− sin

(ϕa
2

)
cos
(ϕb

2

)
sin (ϕc) sin

(ϕext

4

)]
= 2γb∂tϕb,in(t) (20b)

ϕ̈c + γcϕ̇c +
ϕc

CcLin
+

4

CcLJ

[
cos
(ϕa

2

)
cos
(ϕb

2

)
sin (ϕc) cos

(ϕext

4

)
− sin

(ϕa
2

)
sin
(ϕb

2

)
cos (ϕc) sin

(ϕext

4

)]
=
√

2γc∂tϕc,in(t) (20c)

where we define the effective capacitance for the c mode
as Cc = 4CaCb

Ca+Cb
. The mode decay rates γa, γb and

γc are given by γa = (CaZa)
−1

, γb = (CbZb)
−1

and
γc = Ca+Cb

2CaCbZc
. We convert the input-output relations

of Eqs. (15), (17b) and (18b) into input-output relations
for flux

ϕa,out = ϕa − ϕa,in (21a)

ϕb,out = ϕb − ϕb,in (21b)

ϕc,out =
√

2ϕc − ϕc,in. (21c)

The response of the JPA can be fully described using
Eqs. (20) and (21).

Finally, we point out that it is useful to use the nor-
mal modes of the JRM as the coordinates for writing the
EOMs as it makes the analysis of the effects of the various
orders of nonlinear coupling easier to understand. On the
other hand, using the node fluxes as coordinates is useful

as they are more naturally connected to Kirchhoff’s law,
especially when we want to include experimental imper-
fections.

IV. SATURATION POWER OF A JOSEPHSON
PARAMETRIC AMPLIFIER (WITH

PARTICIPATION RATIO p = 1)

In this section, we first obtain the saturation power of
the JPA as described by the exact nonlinear EOMs dis-
cussed in subsection III B. Next, we analyze how higher-
order nonlinear couplings affect the dynamics of the JPA
with the goal of understanding which couplings control
the saturation power of the parametric amplifier, to give
us guidance on how to improve the saturation power.

We begin with Subsec. IV A, in which we summarize
our main results concerning the dependence of the satu-
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ration power on the parameter

β = LJ/Lin. (22)

Specifically, we compare numerical solution of the full
nonlinear model with numerical solutions of truncated
models as well as perturbation theory results. We show
that for small β the limitation on saturation power comes
from dynamically generated Kerr-like terms, while for
large β saturation power is limited by 5th order non-
linearities of the JRM. The details of the analytical cal-
culations are provided in the following subsections.

In Subsec. IV B, we remind ourselves of the exact ana-
lytical solution for the ideal third order amplifier in which
the signal is so weak that it does not perturb the pump
(i.e. the stiff-pump case). Next, in Subsec. IV C we con-
sider the case of a third order amplifier with input signal
sufficiently strong such that it can affect the pump (i.e.
the soft pump case). In this Subsection we construct a
classical perturbation expansion (in which the stiff pump
solution corresponds to the zeroth order solution and
the first order correction) and find that it leads to the
generation of an effective cross-Kerr term, and a pair of
two-photon loss terms, one of which could be thought of
as and imaginary cross-Kerr term. In Subsec. IV D) we
compare the effects of the dynamically generated terms
to intrinsic Kerr terms. We analyze fifth and higher order
couplings in Subsec. IV E).

A note about notation: Throughout this section, we
refer to the a-mode as the signal mode, b-mode as the
idler mode, and c-mode as the pump mode with intrinsic
frequencies ωa, ωb and ωc. To simplify the discussion
of the perturbative expansion, we only consider the case
in which we assume that (1) the parametric amplifier
is on resonance, i.e. δ = ωS − ωa = 0 (where ωS is the
frequency of the signal tone) and εp = ωP −(ωa+ωb) = 0
(where ωP is the pump tone frequency), so that ωS = ωa,
ωI = ωb and ωP = ωa + ωb, (2) the magnetic flux bias is
set to the Kerr nulling point, i.e. ϕext = 2π, (3) an input
tone is only sent to the signal mode and there is no input
to the idler mode.

A. Main result: saturation power as a function of β

In this subsection, we will compare the exact numerical
solution of the full nonlinear EOMs of the JPA to various
approximate solutions in order to identify the effects that
limit saturation power.

For concreteness, we fix the following parameters: The
magnetic field bias is fixed at ϕext = 2π, the mode fre-
quencies are fixed at ωa/(2π) = 7.5 GHz and ωb/(2π) =
5.0 GHz (ωc/(2π) = 6.37 GHz is fixed by the JPA cir-
cuit), the decay rates of the modes are fixed at γa/(2π) =
γb/(2π) = γc/(2π) = 0.1 GHz, and the critical current of
the Josephson junctions is fixed at ic = 1µA. Through-
out, we will set the amplitude of the pump to achieve
20dB reflection gain (at small signal powers). This leaves

us with one independent parameter: the JRM inductance
ratio β.

We shall now analyze saturation of the amplifier as a
function of β. We find it convenient to use saturation
input signal flux |ϕa,in(ωa)| as opposed to P±1dB because
the former saturates to a constant value at high β while
the latter grows linearly at high β. We note that the two
quantities are related by the formula

P±1dB =
φ2

0

2Za

∣∣∂2
t ϕa,in(t)

∣∣2 =
1

2
Caφ

2
0γaω

2
a |ϕa,in(ωa)|2 .

(23)
At the nulling point, the EOMs do not explicitly

depend on the Josephson junction critical current ic.
Therefore, the dynamics of the circuit in terms of the di-
mensionless fluxes ϕa, ϕb, and ϕc are invariant if we fix
ωa, ωb, γa, γb, γc and β. However, ic is needed to connect
the dimensionless fluxes to dimensional variables. Specif-
ically, the connection requires the mode capacitance, see
Eq. (23). At the nulling point, the mode capacitance is
set by the mode frequency and Lin [e.g. Ca = 1/(ω2

aLin)]
and Lin is set by ic, see Eq (22). In the following, we
will analyze saturation power in terms of dimensionless
fluxes.

In Fig 3 we plot the saturation flux as a function of β
obtained using the full nonlinear EOMs as well as various
truncated EOMs and perturbation theory. In panel (a) of
the figure we use the conventional criteria that saturation
occurs when the gain change by ±1 dB, while in panel
(b) we use the tighter condition that gain changes by
±0.1 dB. We observe that the saturation flux has two
different regimes. At small β the saturation flux grows
linearly with β, while at high β it saturates to a constant.

To understand the limiting mechanisms in both β
regimes, we compare the saturation flux ϕa,in obtained
from the numerical integration of full nonlinear EOMs
with the various truncated EOMs. We mainly focus on
two nonlinear truncated models: (1) soft-pump third or-
der truncated model (SoP-3rd), in which the EOMs of the
amplifier are obtained by truncating the Josephson en-
ergy to 3rd order in mode fluxes; (2) the stiff-pump fifth
order truncated model (StP-5th), in which the Josephson
energy is truncated to 5th order in mode fluxes and we
ignore the back-action of the signal and idler modes on
pump mode dynamics.

We begin by considering the small β regime. Com-
paring the saturation flux obtained from the numerical
integration of full nonlinear EOMs with the above two
truncated EOMs, we see that the saturation flux ϕa,in of
the full nonlinear EOMs most closely matches the EOMs
of SoP-3rd order model of the amplifier, which indicates
the soft-pump condition is the dominating limitation in
this regime.

In the soft-pump model, saturation power is limited by
the dynamically generated Kerr term. This term shifts
the signal and idler modes off resonance as the power
in these modes builds up. We describe the details of
this process in Subsections IV C and IV D. In the small β
regime, the saturation flux of the amplifier increases as we



9

(b)

(a)

FIG. 3. (Color online.) We plot the saturation flux |ϕa,in| of
the JPA as we change JRM inductance ratio β = LJ/Lin. The
amplifier saturates to 19 dB and 19.9 dB in (a) and (b) re-
spectively. The saturation flux from numerical integration of
full nonlinear EOMs, SoP-3rd order and StP-5th order nonlin-
ear models of JPA is plotted as blue, orange and dark green
solid lines in both subplots. The saturation fluxes are also
obtained by the perturbation analysis for the SoP-3rd order
and StP-5th order nonlinear models. We plot the third order
and fifth order perturbation results as dashed lines and dash-
dotted lines. In (a), the perturbation saturation fluxes do not
agree well with the numerical ones. This is because the sat-
uration fluxes are already out of the radius of convergence of
the perturbation series. While in (b), they have a good agree-
ment. Parameters chosen: ϕext = 2π, the mode frequencies
ωa/(2π) = 7.5 GHz, ωb/(2π) = 5.0 GHz, mode decay rates
γ/(2π) = 100 MHz for all three modes. The critical current
is set to ic = 1 µA. We tune the inner shunted inductance Lin

to tune β.

increase β [see Fig. 3(a)]. This is because increasing β ef-
fectively decreases the nonlinear coupling strength of the
amplifier and therefore decreasing the effective strength
of the dynamically generated Kerr term. This conclu-
sion is supported by comparing (see Fig. 3) the exact
numerics on the SoP-3rd model (labeled SoP-3rd) with a
perturbative analysis of the same model which captures
the generated Kerr terms (labeled SoP-3rd 5th order).

In large β regime, the saturation flux obtained from full
nonlinear model saturates to a constant value (see Fig. 3,
“All-order” line). This behavior diverges from the pre-
diction of the SoP-3rd order nonlinear model (“SoP-3rd”
line) but it is consistent with the StP-5th order nonlinear
model (“StP-5th” line), which indicates that the domi-

FIG. 4. (Color online.) The reflection gain of an ideal para-
metric amplifier calculated by both scattering matrix (blue
curve) and time-domain numerical evolution (red dashed
line). The response of the ideal amplifier can be faithfully
simulated by the time-domain numerical method with a rea-
sonable reflection gain. The black dashed line shows the bias
point beyond which the amplifier is unstable. Our time-
domain numerical solution start to deviated form the scat-
tering matrix calculation at ∼ 2.1. This is because the nu-
merical accuracy of the time-domain solver. In the insert,
we increase the final time tf of the time-solver. We notice
a better and better convergence to the analytical solution
(red dashed line). This is caused by a numerical instabil-
ity that occurs near the divergence point of the amplifier,
Eq. (32). Parameters chosen: ϕext = 2π, ωa/(2π) = 7.5 GHz,
ωb/(2π) = 5.0 GHz, γa = γb = γc = 2π × 0.01 GHz and
ic = 1.0 µA. Time constant τ0 = 4000f−1

a where fa is the
signal mode frequency.

nating limitation in the large β regime is the intrinsic 5th
order nonlinearity of the JRM energy. Perturbation the-
ory analysis of the StP-5th order nonlinear model (“StP-
5th 3rd order” and “StP-5th 5th order” lines, see Sub-
sec. IV E) indicates that the saturation flux depends on
the ratio of the fifth order and the third order nonlinear
couplings arising from the Josephson non-linearity, and
is therefore independent of β. As we increase β, the lim-
itation on the saturation power placed by the generated
cross-Kerr couplings decreases and hence the mechanism
limiting the amplifier’s saturation flux changes from gen-
erated cross-Kerr couplings to fifth order nonlinearity of
the JRM energy. The β at which the mechanism control-
ling saturation flux changes is controlled by the decay
rates as β ∝ γ−1/2. For our choice of parameters this
change of mechanism occurs at β ∼ 6.

B. Ideal parametric amplifier, 3rd order coupling
with stiff pump approximation

In this subsection, we remind ourselves with the solu-
tion of ideal parametric amplifier. The ideal parametric
amplifier can be exactly solved in frequency domain such
that we can also verify the reliability of the numerical
solutions.

In an ideal parametric amplifier, the only coupling
present is a third order coupling between the signal, idler
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and pump mode that results in parametric amplifica-
tion. Further, the pump mode strength is considered to
be strong compared to the power consumed by the am-
plification, such that the pump mode dynamics can be
treated independently of the signal and idler modes. This
approximation is commonly referred to as the “stiff-pump
approximation” (StP). The EOMs to describe the para-
metric amplifier can be derived from the full nonlinear
EOMs in Eq. (20) by expanding the nonlinear coupling
terms to second order in mode fluxes ϕ’s (2nd order in
EOMs corresponding to 3rd order in Lagrangian). Under
the stiff-pump approximation, we can effectively remove
the three mode coupling terms in the EOM for the pump
mode

ϕ̈c + γcϕ̇c + ω2
cϕc =

√
2γc∂tϕc,in(t). (24)

ϕc obtained from this equation acts as a time-dependent
parameter in the EOMs for the a and b modes

ϕ̈a + γaϕ̇a + ω2
aϕa −

2ω2
a

β
ϕbϕc = 2γa∂tϕa,in(t), (25a)

ϕ̈b + γbϕ̇b + ω2
bϕb −

2ω2
b

β
ϕaϕc = 2γb∂tϕb,in(t). (25b)

Assuming the pump tone is ϕc,in(t) = ϕc,ine
−iωP t + c.c.,

we find that ϕc(t) = ϕc(ωP )e−iωP t + c.c. where,

ϕc(ωP ) =
−i
√

2γcωP
ω2
c − ω2

P − iγcωP
ϕc,in (26)

Substituting the c-mode flux ϕc in Eq. (25) the EOMs
for a and b modes become linear and can be solved in the
frequency domain. The Fourier components of the a and
b modes, under the rotating-wave approximation, are

ϕa(ωa) =
2γ̃aγ̃b

γ̃aγ̃b − 4g2 |ϕc(ωP )|2
ϕa,in (27a)

ϕ∗b(ωb) =
4igγ̃aϕ

∗
c(ωP )

γ̃aγ̃b − 4g2 |ϕc(ωP )|2
ϕa,in (27b)

where we define the dimensionless decay rates γ̃j =
γj/ωj , the dimensionless three-mode coupling strength
g = (1/β) sin

(
ϕext

4

)
= 1/β, which is obtained from a

series expansion of the dimensionless potential energy

EJRM ≡
[
(φ2

0/Lin)
]−1

EJRM. (28)

Here we assume the input tone is ϕa,in = ϕa,ine
−iωat+c.c.

and there is no input into idler (b) mode.
The linear response of the ideal parametric amplifier is

obtained using scattering matrix formalism. The EOMs
of an ideal parametric amplifier can be written in matrix
form as [M ].[ϕ] = 2[γ̃].[ϕin], where

[M ] =

(
γ̃a −2igϕc(ωP )

2igϕ∗c(ωP ) γ̃b

)
, (29)

[γ̃] =

(
γ̃a

γ̃b

)
. (30)

The scattering matrix, which is defined by [ϕout] =
[S].[ϕin], is given by [S] = 2[M−1].[γ̃] − I2×2, where we
have used the input-output relation [ϕ] = [ϕin] + [ϕout]
and I2×2 is the 2× 2 identity matrix,

[S] =

(
2γ̃aγ̃b

γ̃aγ̃b−4g2|ϕc(ωP )|2 − 1 − 4igγ̃bϕc(ωP )

γ̃aγ̃b−4g2|ϕc(ωP )|2
4igγ̃aϕ

∗
c(ωP )

γ̃aγ̃b−4g2|ϕc(ωP )|2
2γ̃aγ̃b

γ̃aγ̃b−4g2|ϕc(ωP )|2 − 1

)
.

(31)
The reflection gain of the signal mode (in units of power)

is defined as G0 = |[S]11|2. To get large gain (G0 � 1),
the pump mode strength should be tuned to

2g |ϕc(ωP )| ∼
√
γ̃aγ̃b. (32)

Alternatively, we can obtain the response of the JPA
using time-domain numerical integration. First, we solve
for the mode variables inside the JPA circuit with specific
signal and pump inputs. Next, we use the input-output
relation to find the output signal and then we obtain the
reflection gain of the amplifier. Specifically, to solve the
dynamics of the parametric amplifier, we set the input
signal as ϕa,in(t) = ϕ̄a,in cos(ωSt) and ϕb,in = 0, and nu-
merically integrate the EOMs [Eq. (25)]. Here we note
that ϕ̄a,in = 2ϕa,in, which is defined in Eq. (27). In
Fig. 4, we show the comparison of the reflection gain ob-
tained using numerical integration (red dashed line) and
the scattering matrix solution (blue solid line). The two
solutions start out identical. However, as we increase the
pump mode strength ϕc,in, we notice that as the reflec-
tion gain starts diverging (G0 ∼ 35 dB, see the insert
of Fig. 4) from the analytical solution. This is because
the numerical solver need a longer and longer time win-
dow to establish the steady-state solution of the nonlinear
EOMs as we move towards the unstable point (vertical
dashed line). To optimize the run time, here and later in
the paper, we choose the time-window for our solver so
that the numerical solution saturates for amplification of
∼ 20 dB.

In the unstable regime the reflection flux on the signal
mode diverges exponentially with time, as the amplifier
will never run out of power under the StP approximation.
Therefore, in this regime the time-domain solver gives a
large unphysical reflection gain (as we cut it off at some
large, but finite time).

C. JPA with third order coupling, relaxing the
stiff-pump approximation

As we increase the input signal strength, the power
supplied to the pump mode will eventually be comparable
to the power consumed by amplification, where the am-
plifier will significantly deviate from the ideal parametric
amplifier. In this subsection, we reinstate the action of
the signal and idler modes on the pump mode. Since the
pump mode strength is affected by the signal and idler
mode strengths, we refer to it as the “Soft-pump” (SoP)
condition.
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FIG. 5. (Color online.) We consider the soft-pump condition
with third order coupling strength and calculate the reflection
gain of the amplifier. We slightly detune the pump drive fre-
quency from the sum frequency of the signal and idler mode
frequency. When the pump frequency detuning εp is neg-
ative (green dash-dotted line), the reflection gain is further
suppressed compared with on-resonance drive (orange dashed
line). However, when the pump frequency detuning is posi-
tive (blue line), the “shark fin” feature reappears, which was
understood as the consequence of the existence of Kerr non-
linearity in the amplifier system.

The EOMs for the Soft-pump third order model of
the JPA can be obtained by expanding the full nonlin-
ear EOMs [Eq. (20)] and truncating all three EOMs to
second order in mode fluxes. That is, we use Eq. (25)
to describe a and b modes and modify Eq. (24) for the c
mode as

ϕ̈c + γcϕ̇c + ω2
cϕc −

ω2
c

β
ϕaϕb =

√
2γc∂tϕc,in(t). (33)

Unlike the StP approximation, the c mode flux ϕc can no
longer be treated as a time-dependent parameter unaf-
fected by a and b modes. While we can no longer obtain
an exact analytical solution to these EOMs, we use per-

turbation theory as well as time-domain numerical inte-
gration to seek the dynamics of the amplifier.

In Fig. 5, we plot the reflection gain obtained by nu-
merical integration. The reflection gain of the amplifier is
no longer independent of the input signal power, instead
we see that the reflection gain deviates from 20 dB as we
increase the signal mode power. Moreover, as we change
the detuning of the pump mode relative to the sum fre-
quency of the signal and idler mode, the deviation of the
reflection gain changes from negative to positive. While
a deviation towards smaller gain (which occurs at nega-
tive or zero detuning) is consistent with the pump satu-
ration scenario, a deviation towards higher gain (which
occurs at positive detuning) is not. The “shark fin” fea-
ture we observe here, in which the gain first deviates up
and then down, has been previously attributed to intrin-
sic Kerr couplings [24]. The fact that the “shark fin”
reappears without an intrinsic Kerr term gives us a hint
that SoP-3rd order couplings can generate an effective
Kerr nonlinearity.

To fully understand the effect of the SoP condition, we
use classical perturbation theory to analyze the dynamics
of the circuit. Below, we explain the essential steps of
the perturbation analysis. Then, we focus on the SoP-
3rd order truncated model and compute the parametric
dependence of the saturation flux of the amplifier.

1. Classical perturbation theory for the Josephson
Parametric Amplifier

The small parameter in our perturbative expansion is
the input fluxes to the signal and idler modes, ϕa,in and
ϕb,in. We can expand the mode fluxes in a series as

ϕj(t) = ϕ
(0)
j (t) + ϕ

(1)
j (t) + ϕ

(2)
j (t)... (34)

for j = a, b, c. The EOM of the signal mode flux ϕa after
series expansion is

(
∂2
t + γa∂t + ω2

a

) (
ϕ(1)
a (t) + ϕ(2)

a (t) + ...
)
− 2ω2

a

β

(
ϕ

(1)
b (t) + ϕ

(2)
b (t) + ...

)(
ϕ(0)
c (t) + ϕ(1)

c (t) + ...
)

= 2γa∂tϕa,in(t).

(35)

The idler and pump mode EOMs are similar.
In the absence of inputs to the signal and idler modes,

we obtain the zeroth order solution of the EOMs. Since
the amplifier should be stable, there should be no output
in the signal and idler modes when there is no input,

i.e. ϕ
(0)
a = ϕ

(0)
b = 0. Therefore, the only nonzero zeroth

order solution is for the pump mode, which is given by

ϕ̈(0)
c + γcϕ̇

(0)
c + ω2

cϕ
(0)
c =

√
2γc∂tϕc,in(t). (36)

This equation matches the StP c mode EOM [see
Eq. (24)], the zeroth-order solution for ϕc is given in

Eq. (26). We can then solve the higher corrections to sig-
nal, idler and pump mode fluxes by matching the terms
in the EOMs order-by-order. For example, the equations

for first order corrections ϕ
(1)
a and ϕ

(1)
b are identical to

the ideal parametric amplifier, and hence they are given
by the StP solution Eq. (27), while the first order correc-

tion to the pump mode flux is ϕ
(1)
c = 0.

As the first order correction to the pump mode is zero,
there are no second order corrections to the signal and
idler mode fluxes. While the second order correction to
the pump mode has two frequency components: Σ =
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ωS + ωI and ∆ = ωS − ωI with Fourier components

ϕ(2)
c (Σ) = fΣ

1

β
ϕ(1)
a (ωS)ϕ

(1)
b (ωI) (37a)

ϕ(2)
c (∆) = f∆

1

β
ϕ(1)
a (ωS)ϕ

(1)∗
b (ωI), (37b)

where the two dimensionless parameters fΣ and f∆ are
defined as

fΣ =
ω2
c

ω2
c − Σ2 − iγcΣ

, (38a)

f∆ =
ω2
c

ω2
c −∆2 − iγc∆

. (38b)

Both of these two frequency components contribute to
the third order correction to the signal and idler mode
flux with frequency ωS and ωI .

To obtain the third order corrections to the signal and
idler mode fluxes we define an effective drive vector that
is comprised of all the contributions from lower orders,

utilizing Eq. (37) to express ϕ
(2)
c in terms of ϕ

(1)
a and ϕ

(1)
b

[ϕ
(3)
d ] =

 2g2 (f∆ + fΣ)ϕ
(1)
a

∣∣∣ϕ(1)
b

∣∣∣2
2g2 (f∆ + f∗Σ)ϕ

(1)∗
b

∣∣∣ϕ(1)
a

∣∣∣2
 . (39)

The third order correction to the signal and idler mode

is given by [ϕ(3)] = [M−1].[i].[ϕ
(3)
d ], where [M ] is the

same matrix as in the discussion of the ideal parametric
amplifier Eq. (29), and [i] = diag{i,−i} is a diagonal
2× 2 matrix. The signal mode 3rd order correction is

ϕ(3)
a =

(
1

β

)2{
2i[M−1]11 (fΣ + f∆)ϕ(1)

a

∣∣∣ϕ(1)
b

∣∣∣2
− 2i[M−1]21 (f∗Σ + f∆)ϕ

(1)∗
b

∣∣∣ϕ(1)
a

∣∣∣2} . (40)

Using this expression we obtain the corrections to the

reflection gain up to second order G(2) = |ϕ(1)
a (ωS) +

ϕ
(3)
a (ωS) − ϕa,in|2/|ϕa,in|2. Similarly, we can solve the

perturbation theory order-by-order till the desired order.
Here we want to stress that we only focus on the

main frequency components of signal and idler modes,
i.e. ϕa(ωa) and ϕb(ωb) and ignore the higher order har-
monics. This assumption is also applied when we con-
sider the higher than 3rd order nonlinear couplings in
the JPA truncated EOMs, e.g. in StP-Kerr nonlinear
truncated model (discussed in subsec. IV D) and StP-5th
order truncated model (discussed in subsec. IV E).

Further, we point out that the above discussion is eas-
ily generalized to the case when ωS 6= ωa, ωI 6= ωb and
(or) ϕext 6= 2π.

Next, we consider the question, how the perturbation
on the reflection gain can be used to compute the satu-
ration power of the amplifier. The saturation power is
defined as the input power at which the amplifier’s re-
flection gain changes by 1 dB. At the limit ϕa,in → 0, the

reflection gain of the amplifier is noted as G0, which is

given by G0 = |ϕ(1)
a − ϕa,in|2/|ϕa,in|2.

As we increase the input signal strength ϕa,in to reach
1 dB suppression of the reflection gain, the corrected gain
(in power unit) should satisfy,

G =

∣∣∣ϕ(1)
a + ϕ

(c)
a − ϕa,in

∣∣∣2
|ϕa,in|2

= 10−0.1G0 (41)

where ϕ
(c)
a is the higher order corrections to the signal

mode flux in perturbation theory. In the high gain limit
(G0 � 1), we can estimate the criteria by,∣∣∣ϕ(c)

a

∣∣∣ / ∣∣∣ϕ(1)
a

∣∣∣ = ε ≡ 10−0.05 − 1. (42)

Note ε depends on the definition of the threshold for the
gain change at the amplifier saturation.

2. Perturbative analysis on SoP third order EOM.

We apply the above perturbation analysis to SoP-3rd
order truncated model to understand the mechanism of
amplifier saturation in this model. Before we proceed to
calculate the corrections to the reflection gain, we esti-
mate the matrix elements in the inverse of the parametric
matrix [M ] [see Eq. (29)] in high gain limit, i.e.

GA ≡
√
G0 = 2γ̃a[M−1]11 − 1

=
2γ̃aγ̃b

γ̃aγ̃b − 4g2 |ϕc(ωP )|2
− 1� 1.

(43)

Therefore, we can approximate 2γ̃a[M−1]11 ∼ GA and

hence ϕ
(1)
a (ωa) ∼ GAϕa,in. The matrix element [M−1]21

can be approximated by −iGA/(2
√
γ̃aγ̃b), which can be

seen from the relation [M−1]21 = −i2gϕ(0)∗
c ([M−1]11)/γ̃b

and
√
γ̃aγ̃b ∼ 2g|ϕ(0)

c |.
The third order correction to signal mode strength is

given by the Eq. (40), which becomes

ϕ(3)
a (ωb) ∼ 2

g2

γ̃a
G4
AIm(fΣ)ϕ3

a,in (44)

in the high gain approximation.

To calculate the saturation flux, we let ϕ
(3)
a ∼ εϕ

(1)
a

and solve for ϕa,in, where ε is given in Eq. (42). The
saturation flux given by 3rd order perturbation is

ϕa,in,±1 dB ∼ G−3/4
0

√
ε

√
γ̃b
g

Im(fΣ)−1/2. (45)

where G0 is the small-signal reflection gain of the am-
plifier. The saturation flux given by third order pertur-
bation theory of SoP-3rd nonlinear model is plotted as
orange (light gray) dashed line in Fig. 3(a) [41]. We no-
tice that the saturation flux predicted by 3rd order per-
turbation theory does not agree well with the numerical
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simulation (“SoP-3rd” line). The disagreement also oc-
curs when we tighten the criteria for amplifier saturation
to 0.1 dB (see Fig. 3(b) “SoP-3rd 3rd order” line).

To explain the disagreement between the perturbation
theory and the numerical integration method, we correct
the signal mode flux to the next non-zero order, which is
at fifth order in ϕa,in. To solve the fifth order correction
of signal and idler mode fluxes, we follow the same strat-
egy as demonstrated above. The only nonzero fourth

order correction is ϕ
(4)
c , with two frequency components,

ϕ
(4)
c (Σ) and ϕ

(4)
c (∆). The fifth order correction to the

signal mode strength ϕ
(5)
a is

ϕ(5)
a ∼

g4

γ̃2
G

5/2
0 Re [fΣ + f∆]

2
ϕ5
a,in (46)

where we use the fact that imaginary parts of f∆ and
fΣ are much smaller than their real parts and hence we
ignore the contribution from their imaginary parts. The

saturation flux can be estimated by |ϕ(5)
a | ∼ ε|ϕ(1)

a | as,

ϕa,in,±1 dB ∼ G−5/8
0

√
γ̃b
g

[ ε
2

Re(fΣ + f∆)−1
]1/4

(47)

Compared with the saturation flux given by third order
perturbation, the fifth order correction is more significant
as f∆ and fΣ are almost real. However, in third order
perturbation theory, the contribution of real parts of f∆

and fΣ is canceled, but they will appear in next order
perturbation, which dominates the saturation.

The saturation flux correction till fifth order pertur-
bation is obtained by directively solving Eq. (41) for
ϕa,in, where the corrections of signal mode strength

ϕ
(c)
a = ϕ

(3)
a + ϕ

(5)
a . The saturation flux corrected upto

fifth order [“SoP-3rd 5th order” line in Fig. 3(a) and (b)]
have better agreement with the numerical solution.

However, in both third order and fifth order perturba-
tion analysis, the saturation flux with 1 dB gain change
does not agree well with the numerical solution [see
Fig. 3(a)]. This is because the saturation flux for ±1 dB
is beyond the radius of convergence of the perturbation
series. In order to validate the perturbation analysis, we
tight the criteria for amplifier saturation to change of the
amplifier gain by±0.1 dB, which makes the signal flux to
stay in the radius of convergence. In Fig. 3(b), the satu-
ration flux corrected to fifth order (“SoP-3rd 5th order”
line) has a much better agreement with the numerical
methods [“SoP-3rd” line in Fig. 3(b)].

We notice that the saturation flux is inversely propor-
tional to g = 1/β, and hence we expect that it can be in-
creased by decreasing the three-mode coupling strength
(increasing β). At the same time, the pump strength
must be increased in order to reach G0. This procedure,
in effect, makes the pump stiffer.

D. Intrinsic and Generated Kerr Couplings

In this subsection, we comment on the generation of
effective Kerr terms and compare it with the intrinsic
cross-Kerr couplings in the Lagrangian. In the perturba-
tion analysis, if we expand the pump mode strength to
second order, the effective EOMs of the signal and idler
modes contains a cross Kerr coupling term, in the form
of ϕa|ϕb|2 for the signal mode and |ϕa|2ϕb for the idler
mode (see, e.g. Eq. (40)). We will show that these gen-
erated Kerr terms limit the saturation power (at least for
small β).

To construct an understanding of this mechanism, we
use perturbation theory to analyze the StP amplifier with
an intrinsic cross Kerr kab, and compare it with the SoP-
3rd order nonlinear amplifier. As we discussed in subsec-
tion IV B, in the stiff pump approximation, we treat the
pump mode flux, ϕc, as a time-dependent parameter that
is independent of the signal and idler modes. The EOMs
for the signal and idler modes can be obtained by adding
the terms 4kabϕaϕ

2
b and 4kabϕ

2
aϕb to the left-hand-side

of Eq. (25a) and (25b), respectively.
In perturbation analysis, following the discussion in

the previous subsection, we expand the signal and idler
mode fluxes in the order of ϕa,in and ϕb,in. We further
assume that the amplifier is stable, i.e. there is no output
from the amplifier if there is no input, which gives the

zeroth order solution of signal and idler modes as ϕ
(0)
a =

ϕ
(0)
b = 0. The first order solution of signal and idler mode

fluxes repeats the solution of ideal parametric amplifier
[Eq. (27)] and the next non-zero correction appears at
third order. The corresponding drive term is

[ϕ
(3)
d ] =

 8kabϕ
(1)
a (ωS)

∣∣∣ϕ(1)
b (ωI)

∣∣∣2
8kabϕ

(1)∗
b (ωI)

∣∣∣ϕ(1)
a (ωS)

∣∣∣2
 . (48)

Comparing with Eq. (39), we see that the soft-pump
condition gives an effective signal-idler Kerr coupling
strength

keff
ab =

1

4
g2 [f∆ + Re(fΣ)] . (49)

We note that this effective Kerr coupling is complex as f∆

is complex. We also observe that there is an additional
term in Eq. (39), that we label qeff

ab = (1/4)g2Im(fΣ),
which cannot be mapped onto a Kerr coupling (as the
signal and idler parts have opposite sign).

Further, as the intrinsic cross Kerr coupling kab is real,
the third order correction to the signal mode in StP cross-
Kerr amplifier model is zero. If we proceed to next non-
zero order correction to the signal and idler mode, and
compare the drive term with the one from StP-3rd order
truncated model in same perturbation order, we identify
the same effective Kerr coupling strength as Eq. (49).

To check the correspondence and understand to what
degree the saturation power of SoP-3rd order amplifier
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(a) (b)

FIG. 6. (Color online.) We compare three different cases, soft-pump with third order coupling (SoP-3rd), Stiff-pump with
Kerr coupling (StP-4th) and soft pump truncated till the third order with fifth order couplings between signal and idler mode

(SoP-3rd + 5th). For each cases, we manually turn on a cross-Kerr coupling kab. For StP-4th case, the plot is shifted by −k(eff)
ab .

The vertical red dashed line shows the location where the real part of the dynamically generated cross-Kerr is fully compensated
by the intrinsic cross-Kerr coupling. The parameters chosen: ωa/(2π) = 7.5 GHz, ωb/(2π) = 5.0 GHz, γj/(2π) = 100 MHz.
We set β = 1.2 [in (a)] and 10.0 [in (b)]. The critical current is ic = 1.0 µA.

is limited by the generated effective Kerr coupling, we
manually add an intrinsic cross Kerr coupling, kabϕ

2
aϕ

2
b ,

in the SoP-3rd order truncated Lagrangian, and observe
the saturation power of the amplifier as we tune kab (see
Fig 6(a) and (b), SoP-3rd line). We observe that in both
small β (see Fig. 6(a), β = 1.2) and large β (see Fig. 6(b),
β = 10.0), as we tune the intrinsic Kerr term, the satu-
ration power is maximized at the point indicated by the
dashed red line. This maximum corresponds to the value
of the intrinsic Kerr term that best cancels the generated
Kerr coupling (kab = −Re[keff

ab ]) and hence provides a
maximum boost to the saturation power. We also notice
that the maximum peak on Fig. 6(a) has a shift from the
full compensation point (kab = −Re[keff

ab ]). This is caused
by the existence of imaginary term of fΣ. In perturba-
tion analysis, if we turn off the imaginary part of fΣ, the
peak is perfectly centered at the full-compensation point.

We also compare the saturation power obtained with
SoP 3rd order (blue solid lines) to the StP with intrinsic
cross-Kerr term kab (orange dahsed lines). In order to
make the comparison more direct, we shift kab for the
StP-Kerr amplifier by the computed value of the gener-
ated Re[keff

ab ] of the SoP-3rd order amplifier (i.e. we line
up the peaks). We observe that away from the satura-
tion power peak the two models are in good agreement,
which supports the correspondence. Further, if we fo-
cus on kab = 0 point on the plot, i.e. the point at which
SoP-3rd order model has no added intrinsic kab, the satu-
ration power of SoP-3rd order amplifier (blue solid lines)
matches the shifted StP cross-Kerr nonlinear amplifier
(orange dashed lines) in both Fig. 6(a) and (b). There-
fore, we conclude that it is indeed the generated Kerr
coupling that is limiting the saturation power of the SoP-
3rd order model.

However, near the saturation power maximum the two
models diverge: the saturation power of the StP-Kerr
amplifier becomes infinite as the intrinsic Kerr nonlin-

earity becomes zero, while the saturation power of the
SoP-3rd order amplifier remains finite. This is caused by
the imagniary part of keff

ab and the qeff
ab , which cannot be

compensated by a real intrinsic cross-Kerr coupling kab.
We can understand the Im[keff

ab ] and the qeff
ab terms as

a two-photon loss channel, i.e. in which a photon in the
signal mode and a photon in the idler mode combine
and are lost in the pump mode. Both of the terms can
be mapped to an imaginary energy which represents the
decay of the signal and idler mode fluxes. Specifically,
Im(fΣ) term represents the loss of a photon in signal
mode and a photon in idler mode to a pump photon with
frequency ω = Σ, while Im(f∆) term represents the loss
to a ω = ∆ pump photon.

E. Fifth and Higher Order Nonlinearities

As we pointed out in Eq. (47), the saturation flux in-
creases as we decrease the three-mode coupling strength
g (by increase β). However, as we increase β, the satu-
ration flux diverges from the SoP-3rd order model (see
Fig. 3). This is because the saturation flux is so large
that higher order nonlinear couplings becomes the limit-
ing mechanism to the saturation flux. In this subsection,
we focus on the higher order couplings and show how
they limit the saturation flux of the amplifier.

At the Kerr nulling point, ϕext = 2π, the Kerr cou-
plings are turned off, and hence the next nonzero order
of nonlinear couplings are fifth order in mode fluxes. The
fifth order terms in the expansion of the dimensionless
potential energy of the JRM, Eq. (28), are

E(5)
JRM = haϕ

3
aϕbϕc + hbϕaϕ

3
bϕc + hcϕaϕbϕ

3
c , (50)

where ha = hb = 1
24β sin

(
ϕext

4

)
and hc = 1

6β sin
(
ϕext

4

)
.

To understand the direct effects of the fifth order cou-
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plings, we apply stiff-pump approximation and only in-
clude 3rd and 5th order nonlinear coupling terms into
the EOMs (kerr couplings are turned off at ϕext = 2π).
Among the three fifth order terms, ha and hb terms are
more significant as in stiff-pump approximation where c
mode is treated as stiff, the term hcϕ

2
cϕaϕbϕc only shifts

the pump mode flux to reach the desired gain G0 and
does not causes saturation. However, haϕ

2
aϕaϕbϕc and

hbϕ
2
bϕaϕbϕc terms dynamically shift the effective third

order coupling strength as we increase the input signal
power, which saturates the amplifier.

Again, we apply perturbation theory to analyze the
StP-5th order amplifier following the discussion in sub-
section IV C. The lowest order solution of the signal and
idler mode fluxes are at first order, which repeats the
solution of the ideal parametric amplifier. The next
nonzero correction appears at third order with equation

[M ].[ϕ(3)] = −[i].[ϕ
(3)
d ], where [i] is a 2× 2 diagonal ma-

trix with elements {i,−i} and the corresponding drive
term is

[ϕ
(3)
d ] =

 12haϕc

∣∣∣ϕ(1)
a

∣∣∣2 ϕ(1)∗
b + 6haϕ

∗
c

(
ϕ

(1)
a

)2

ϕ
(1)
b + 6hbϕc

∣∣∣ϕ(1)
b

∣∣∣2 ϕ(1)∗
b

6haϕ
∗
c

∣∣∣ϕ(1)
a

∣∣∣2 ϕ(1)
a + 12hbϕ

∗
c

∣∣∣ϕ(1)
b

∣∣∣2 ϕ(1)
a + 6hbϕc

(
ϕ

(1)∗
b

)2

ϕ
(1)∗
a

 . (51)

In the high-gain limit, the third order correction of the
signal mode flux is

ϕ(3)
a ∼ 4

h

g

(
1 +

γ̃a
γ̃b

)
G2

0ϕ
3
a,in, (52)

where h = ha = hb is the dimensionless fifth order cou-
pling strength. Following the same method, we get an
estimate on the saturation flux

ϕa,in,±1dB ∼

√
ε
g

4h

(
1 +

γ̃a
γ̃b

)
G
−3/4
0 . (53)

We note that the ratio g/h is independent of β. As
we increase β to reduce the limitation placed by SoP-3rd
order model, Eq. (47), we eventually hit the limit that
is given by StP-5th order nonlinear model, Eq. (53), i.e.
the dominating limiting mechanisms on saturation flux
switches.

To be more explicit, similar to the effective cross-Kerr
compensation illustrated in subsec. IV D, we add fifth
order nonlinear coupling terms into the SoP-3rd order
nonlinear model, which is labeled as “SoP-3rd+5th” in
Fig. 6 (green lines). In the small β regime [Fig. 6(a)], ex-
cept around the generated cross-Kerr full compensation
region, the SoP-3rd+5th order nonlinear model closely
follows the SoP-3rd order model, especially at kab = 0
point where there is no intrinsic kab added to both of
the models. This indicates that at low β regime, the
dominating limitation on the saturation power is given
by the generated effective cross-Kerr coupling from the
SoP-3rd order nonlinear coupling. However, when β is
large [Fig. 6(b)], the saturation flux calculated from these
two models disagrees. With additional fifth order nonlin-
ear couplings, the saturation flux is heavily suppressed,
which shows that the fifth order nonlinear couplings dom-
inates the SoP-3rd effects in limiting the saturation power
of the amplifier.

Furthermore, in the large β regime, the fifth order non-
linear couplings in the JPA Lagrangian is the dominat-
ing limitation on the saturation power in full nonlinear
EOMs of JPA among all the nonlinear couplings. To
prove it, we numerically solve the saturation flux of the
StP-5th order truncated model of JPA (“StP-5th” line in
Fig. 3) and compare it with saturation flux obtained from
the full nonlinear EOMs (“All-orders” line in Fig. 3).
The saturation flux from StP-5th order model matches
the saturation flux of full nonlinear JPA model in large
β regime perfectly.

The saturation flux computed by numerical integra-
tion of StP-5th order nonlinear model is independent of
parameter β, which agrees with the perturbation anal-
ysis. To further validate the perturbation theory, we
plot the saturation flux from third order perturbation
in Fig. 3(a) (“StP-5th 3rd order” line) for comparison.
We notice that the perturbation result does not have a
good quantitative agreement with the numerical solution.
This is because the saturation flux is outside the radius
of convergence of the perturbation series. If we tighten
the criteria for amplifier saturation to the signal mode
flux that causes the gain to change by ±0.1 dB instead,
the third order perturbation on StP-5th has much bet-
ter agreement with the numerical solutions (see Fig. 3(b)
“StP-5th” line and “StP-5th 3rd order” line). However,
to perfectly match the numerical solution, we need next
order correction, i.e. fifth order correction to signal mode
flux. The result saturation flux is plotted in Fig. 3(b) as
the red dot-dashed line.

Similarly, for the higher order nonlinear couplings in
the Lagrangian, e.g. the seventh order in the Hamilto-
nian, we can still apply the perturbation theory to ana-
lyze the saturation flux. Here we focus on one of the sev-
enth order couplings, −laaϕ4

aϕaϕbϕc, to finalize the dis-
cussion. According to Eq. (12), laa is sin

(
ϕext

4

)
/(1920β).

We still consider the truncated EOMs of the amplifier un-
der stiff-pump approximation.
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Following the same procedures discussed above, the
lowest order solution of signal and idler mode fluxes are
in first order and are given by the ideal parametric am-
plifier solution in Eq. (27). However, the next nonzero
correction to signal and idler mode fluxes appears at fifth
order with the corresponding drive term,

[ϕ
(5)
d ] = 20

∣∣∣ϕ(1)
a

∣∣∣2
 3laa

∣∣∣ϕ(1)
a

∣∣∣2 ϕ(1)∗
b ϕc + 2

(
ϕ

(1)
a

)2

ϕ
(1)
b ϕ∗c

laa

∣∣∣ϕ(1)
a

∣∣∣2 ϕ(1)
a ϕ∗c

 .

(54)
The saturation flux given by this order of perturbation
theory obeys

ϕa,in,±1dB ∼
(
g

laa

)1/4

G
−5/8
0 . (55)

This limit does not depend on β either. With StP-7th
order truncated nonlinear model, where we include 3rd,
5th and 7th order nonlinear couplings in JPA Lagrangian
(even orders are turned off at ϕext = 2π), the existence of
the 7th-order nonlinear couplings contributes to a small
correction to the saturation flux at large β. However,
the fifth order term remains the dominant factor in de-
termining the saturation flux.

To conclude this section, for a JRM based JPA that is
operated at the nulling point with fixed mode frequen-
cies and mode linewidth, saturation flux can be increased
by increasing β which suppresses the effects of generated
Kerr couplings. As we move to large β regime, if we want
to further improve the saturation power of the amplifier,
we need to reduce the fifth and higher order nonlinear
coupling strengths with respect to the third order cou-
pling strength in the Lagrangian. In Ref. [24], we notice
that the imperfect participation ratio p 6= 1 caused by
nonzero linear inductance in series of JRM circuit, is one
of the candidates for the suggested suppression, which
will be discussed in the following sections.

V. EFFECTS OF PARTICIPATION RATIO

In this section, we focus on the effects of reducing par-
ticipation ratio by introducing outer linear inductors in
series with the JRM circuit [Lout in Fig. 7(a)].

When there are external resonators connected to the
JRM, the flux injected from the microwave ports is
shared between the JRM and the external resonators and
hence the JRM nonlinearity is attenuated. To model this
effect, four outer linear inductors Lout are added in series
with the JRM circuit [see Fig. 7(a)]. These inductors and
the JRM can be treated as a “flux-divider” type circuit.
Further, as the input-output ports are connected to the
outer nodes and there is no capacitors connecting the in-
ner nodes to ground, we treat the fluxes of outer nodes
(ϕ̃j) as free coordinates, while the inner node fluxes (ϕj)
are restricted by the Kirchhoff’s current relation. The
potential energy of JRM becomes

E = Eout + EJRM

=
∑
j

φ2
0

Lout
(ϕ̃j − ϕj)2

+ EJRM(ϕ1, ϕ2, ϕ3, ϕ4).
(56)

The EOM for node flux ϕ̃j are

¨̃ϕj +
1

CjLout
(ϕ̃j − ϕj) = INj , (57)

where j = 1, 2, 3, 4 and the node capacitance Cj = Ca for
j = 1, 3 and Cj = Cb for j = 2, 4. The right hand side,
INj is the corresponding input terms derived in Eq. (19)
for each node flux. The inner node fluxes ϕj are restricted
by

ϕ̃j = ϕj + ζ

 1

β
sin
(
ϕj − ϕj+1 +

ϕext

4

)
− 1

β
sin
(
ϕj−1 − ϕj +

ϕext

4

)
+

1

4

3ϕj −
∑
k 6=j

ϕk

 , (58)

where ζ = Lout/Lin and we apply index convention that
ϕ0 = ϕ4, ϕ5 = ϕ1. As the symmetry of the JRM still
persist, the normal mode profiles in terms of the outer
node fluxes ϕ̃’s are identical to the ones without outer
linear inductance, i.e. the normal mode coordinates are
given by [ϕ̃M ] = [A−1].[ϕ̃], where the model matrix [A]
is identical to Eq. (8). This can also be derived from
the linearization of the JPA’s EOMs [Eq. (57)] and the
constrains in Eq. (58). But the frequencies of the normal

modes are shifted

ω2
a,(b) =

1

2Ca,(b)Lin

β + 2 cos
(
ϕext

4

)
β + βζ + 2ζ cos

(
ϕext

4

) , (59a)

ω2
c =

1

CcLin

β + 4 cos
(
ϕext

4

)
β + βζ + 4ζ cos

(
ϕext

4

) , (59b)

where Cc = 4CaCb

Ca+Cb
.

The question of how the nonlinear couplings shift when
we add Lout into the JRM circuit is hard to directly
analyze by the expanding the JRM potential energy in
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(a) (b) (c)

FIG. 7. (Color online.) In (a), we show a more realistic circuit model for JRM, in which we include stray inductance Lstray

in series of Josephson junctions and outer linear inductance Lout in series of JRM. The fluxes associated with each nodes are
labeled on the plot. In (b) and (c), we calculate the Kerr coupling strength kaa (b) and kab (c) as we sweep external magnetic
field bias ϕext when participation ratio 1/p = 1.1. The perturbation solution (lines) and numerical solution (dots) agree well.
In (b) for all three β values, the self-Kerr coupling strength kaa can always be turned off at the Kerr nulling point ϕext = 2π.
However, in (c), we notice that the the magnetic field bias ϕext to turn off cross-Kerr coupling kab depends on the choice of β.
This means the exact Kerr nulling point of the does not exist any more when the participation ratio is not unity. Parameters
chosen: three mode decay rates are γ/(2π) = 0.1 GHz, the critial current of the junctions is ic = 1.0 µA. The outer linear
inductance ratio ζ = 0.1. The rest of the circuit elements are set by the mode frequencies at ϕext = 2π, and they remains when
we tune the external flux bias.

terms of normal modes around the ground state, as the
constrains [Eq. (58)] are hard to invert. To obtain the
nonlinear coupling strengths, we can either numerically
calculate the derivatives of the potential energy with re-
spect to the mode fluxes or using analytical perturba-
tion expansion to get an approximate inversion relation
of Eq. (58) and find the non-linear couplings. Here we
stop at fourth-order non-linearities (in energy).

To solve the self-Kerr kjj and cross-Kerr kij nonlin-
ear coupling strengths, we can calculate the fourth order
derivatives of the circuit potential energy E with respect
to the normal coordinates ϕ̃a, ϕ̃b and ϕ̃c, i.e.

kjj =
1

24

∂4E
∂ϕ̃4

j

, kij =
1

4

∂4E
∂ϕ̃2

i ∂ϕ̃
2
j

. (60)

where E is dimensionless energy of JRM circuit defined
as E = (Lin/φ

2
0)E.

It is straightforward to use inner node fluxes to express
the energy E in Eq. (56), and hence find an analytical
expression for the derivatives with respect to inner node
fluxes. However, to calculate derivatives with respect to
the outer node fluxes requires the Jacobian matrix [J ] =

[∂ϕ∂ϕ̃ ], which effectively requires inversion of the constrains

in Eq. (58).
To analytically solve this problem and give us a hint

on the how the outer linear inductance will affect the
nonlinear couplings, we apply the perturbation expan-
sion around the ground state (ϕ̃j = 0) to obtain an ap-
proximate inverse transformation and find the Jacobian.
To simplify the discussion, we assume Ca = Cb. We
note that this assumption does not affect the nonlinear
coupling strengths which are independent of the c mode.
Further, the method we discussed below can be easily
generalized to the case when Ca 6= Cb.

We at first define a set of new variables using the nor-

mal mode transformation matrix [A], but use the inner
node fluxes instead, noted as [ϕM ] = [A−1].[ϕ]. There-
fore, the relation in Eq. (58) using normal coordinates
[ϕ̃M ] and inner node coordinates [ϕM ] is

ϕ̃j = (1 + ζ)ϕj + (2 )
2ζ

β

∂

∂ϕj
E(0)

JRM (61)

where E(0)
JRM is given in Eq. (28), the factor (2 ) only exists

for a and b modes. Here we only focus on the three
nontrivial modes, ϕ̃a, ϕ̃b and ϕ̃c. The circuit ground
state is assumed to be stable and at ϕ̃a = ϕ̃b = ϕ̃c = 0
(which we confirm numerically). Further, at this stable
ground state, the inner node fluxes are also zero. Since we
only focus on the Kerr coupling strength in the vicinity
of the ground state, the exact inner node fluxes that obey
the inverse relation of Eq. (61) can be expanded in series
of the small oscillations of the normal modes ϕ̃j ’s. That

is, ϕj ∼ 0 + ϕ
(1)
j + ϕ

(2)
j + ....

We plug the expansion of inner node fluxes back to
Eq. (58) and match the terms with order-by-order. The
lowest order solutions appear at the first order in normal
coordinates

ϕ
(1)
a,b =

[
1 + ζ +

2ζ

β
cos
(ϕext

4

)]−1

ϕ̃a,b, (62a)

ϕ(1)
c =

[
1 + ζ +

4ζ

β
cos
(ϕext

4

)]−1

ϕ̃c. (62b)

At this order, we can extract the definition of par-
ticipation ratio for signal and idler mode as pa,b =[
1 + ζ + 2ζ

β cos
(
ϕext

4

)]−1

and for pump mode as pc =[
1 + ζ + 4ζ

β cos
(
ϕext

4

)]−1

. If we bias the circuit at ϕext =

2π, all three participation ratios become p0 = 1
1+ζ .
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The second order correction to the inner node fluxes
are

ϕ(2)
a = pa

2ζ

β
sin
(ϕext

4

)
ϕ

(1)
b ϕ(1)

c , (63a)

ϕ
(2)
b = pb

2ζ

β
sin
(ϕext

4

)
ϕ

(1)
b ϕ(1)

c , (63b)

ϕ(2)
c = pc

ζ

β
sin
(ϕext

4

)
ϕ(1)
a ϕ

(1)
b . (63c)

The corresponding approximate inverse transformation

of Eq. (58) is ϕj ∼ ϕ
(1)
j ({ϕ̃}) + ϕ

(2)
j ({ϕ̃}) for j = a, b, c.

At second order, it is sufficient to calculate the three
mode coupling strength, as we only need at most the
second order derivatives to the Jacobian matrix elements.
The dimensionless three mode coupling strength are

g(ζ) ≡ ∂3E
∂ϕ̃a∂ϕ̃b∂ϕ̃c

= papbpcg(0), (64)

where g(0) is the three-mode coupling strength with unit
participation ratio. Based on Eq. (64), decreasing the
participation ratio by increasing Lout reduces the corre-
sponding third order coupling strength, which is benefi-
cial to reduce the limitation placed by the effective cross-
Kerr nonlinearity generated by SoP-3rd order nonlinear
couplings, and hence it is beneficial to improving the sat-
uration power of the amplifier in the small β regime.

However, to calculate the fourth order derivatives, we
need at least third order correction to the inner node
fluxes. Following the same strategy, the third order cor-
rection of the inverse transformation for normal coordi-
nate ϕa is

ϕ(3)
a =

p4
aζ

12β
cos
(ϕext

4

)
ϕ̃3
a +

p2
ap

2
bζ

4β2

[
β cos

(ϕext

4

)
+ 8pcζ sin2

(ϕext

4

)]
ϕ̃aϕ̃

2
b

+
p2
ap

2
cζ

4β2

[
β cos

(ϕext

4

)
+ 4pbζ sin2

(ϕext

4

)]
ϕ̃aϕ̃

2
c

(65)

and the relations for ϕ
(3)
b and ϕ

(3)
c can be derived sim-

ilarly. The inverse relation from Eq. (58) is ϕj ∼
ϕ

(1)
j ({ϕ̃}) + ϕ

(2)
j ({ϕ̃}) + ϕ

(3)
j ({ϕ̃}). The Kerr coupling

strengths can be obtained from Eq. (60) with Jacobian
derived from the perturbation expansion. For example
kab is

kab(ζ) = −
β3
{
β(1 + ζ) cos

(
ϕext

4

)
+ 2ζ

[
−3 + cos

(
ϕext

4

)
+ 8 sin

(
ϕext

4

)]}
16
[
β + βζ + 2ζ cos

(
ϕext

4

)]4 [
β + βζ + 4ζ cos

(
ϕext

4

)] . (66)

The self-Kerr coupling strength kaa and the cross-Kerr
coupling strength kab are plotted in Fig. 7(b) and (c),
respectively. The Kerr nonlinear coupling strengths (kaa
and kab) are calculated via both numerical method (dots)
and the above perturbation method (lines). In all three
β values, the perturbation analysis matches the numer-
ical solution well. Further, we notice that the self-Kerr
coupling strength can still be turned off at the ϕext = 2π
(Kerr nulling point) no matter what β value we choose
[see Fig. 7(b)]. But the cross-Kerr couplings cannot be
turned off at this magnetic bias point when participation
ratio is not unity [see Fig. 7(c)].

The breakdown of the universal Kerr nulling point is
also demonstrated by Eq. (66). The ϕext that makes the
numerator of Eq. (66) zero depends on the choice of β and
ζ. This indicates that as we turn the participation ratio
to be smaller than unity, some nonlinear couplings that
are previously killed by Kerr nulling point can reappear

in the JPA Lagrangian. These extra nonlinear couplings
are a consequence of the nonlinearity of the inner JRM
circuit. As we mentioned, the JRM circuit with outer
linear inductance shown in Fig. 7(a) can be treated as
a phase divider, i.e. the phase across the outer nodes
are divided to the phase across the outer linear inductors
(Lout) and the phase across inner JRM nodes governed
by the effective inductance of the inner JRM. Naively, if
the divider is linear, we would expect the JRM with outer
linear inductance generates nonlinear coupling strengths
that are suppressed by the participation ratio (which does
not depend on the mode flux), e.g. kab(ζ) = p2

ap
2
bkab(0)

and kab(0) = 0 is the cross-Kerr coupling strength of a
JRM without outer linear inductance. However, as the
effective inductance of inner JRM circuit is nonlinear, the
total phase is not divided linearly, i.e. the more precise
participation ratio defined as p = ϕ̃/ϕ will change as the
input flux oscillates as it is indeed a function of the outer
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node fluxes. Therefore, the normal modes experience ex-
tra nonlinearities as compared to the naive analysis. The
re-apprearace of these extra nonlinearities will limit the
saturation power of the amplifier.

However, for a general ϕext, the Kerr couplings are sup-
pressed roughly by ∼ p4. If we calculate one order up,
the fifth order nonlinear coupling strength is suppressed
by ∼ p5. This indicates that the non-unity participation
ratio can help to suppress the higher order nonlinear cou-
plings with respect to the third order, which is beneficial
for improving the saturation power of the amplifier. We
will focus on the quantitative understand of how these
two factors compete with each other and further optimize
the saturation power of the amplifier in next section.

VI. OPTIMIZING THE JPA USING
PARTICIPATION RATIO

As demonstrated in the above section, the outer lin-
ear inductance impacts the saturation power of the JPA
in both negative and positive ways. In this section we
describe the effects of the outer linear inductance quan-
titatively using numerics to obtain the saturation power
of the JPA as we sweep the JRM inductance ratio (β)
and participation ratio (p).

Because of the presence of the outer linear inductance,
even order nonlinear coupling terms reappears in the
EOMs. The presence of these higher order couplings re-
sults in a shift of the mode frequencies. For example,
the nonzero cross-Kerr coupling strength kacϕ

2
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FIG. 8. (Color online.) The optimization of the pump config-
uration. We sweep the signal mode detuning δ = ωS− ω̄a and
the pump tone detuning εp = ωP −(ω̄a+ω̄b) and fix the pump
tone strength. The maximum gain is labeled by the black
dot. The maximum gain is achieved when the signal tone
matches the mode frequency and the pump mode matches the
sum frequency of the signal and idler mode. The parameters
used: γ/2π = 0.2 GHz, ω̄a/2π = 7.5 GHz, ω̄b/2π = 5.0 GHz,
β = 3.0, 1/p = 8.0.

kbcϕ
2
bϕ

2
c causes the signal and idler mode frequencies to

be dependent on the pump mode strength, which shifts
the signal and idler mode frequencies away from the bare
mode frequencies calculated from the normal mode anal-
ysis. To correctly pump the amplifier with the sum fre-
quency of mode and idler mode frequencies and probe the
signal with the correct signal mode frequency, as well as
set the amplifier’s small-signal reflection gain to 20 dB,
we need to adjust the pump tone frequency and pump
tone strength at the same time. Before we perform the
numerical calculation of the amplifier’s reflection gain as
we tune the input tone strength and extract the satura-
tion power, we need to find the correct pump configu-
rations and the signal mode frequency under that pump
configuration.

To compensate for the frequency shifts and find the
optimum pump configuration and corresponding signal
mode frequency for JPA, we numerically optimize the
pump tone frequency and strength. To solve this op-
timization problem, we notice that the amplifier is ex-
pected to consume the least pump tone input flux to
reach the desired small-signal reflection gain when the
amplifier is perfectly on resonance with its mode frequen-
cies, i.e. ωS = ωa and ωP = ωa + ωb. Therefore, we split
the optimization process into two optimization tasks: (1)
for a given input pump tone strength ϕc,in, find the opti-
mimal pump tone frequency and signal mode frequency
and (2) find the desired pump tone strength ϕc,in to get
20 dB small-signal reflection gain with the corresponding
optimized pump tone frequency. In (1), we fix the pump
tone strength ϕc,in and sweep signal tone and pump tone
frequencies to find the parameters which maximize the
reflection gain (a typical sweep is shown in Fig. 8). In
(2), we use a binary search to find the desired pump
strength ϕc,in for 20 dB reflection gain.

The resulting saturation power sweep of the JPA is
shown in Fig. 1(a). In the large β regime (β > 4.0), as we
decrease the participation ratio, the saturation power in-
creases. However, at the same time, the pump power for
20 dB reflection gain also increase, until the JRM reaches
the full nonlinear regime and we cannot inject enough
power to get 20 dB reflection gain anymore. However,
in the low β regime (β < 4.0), when the participation
ratio is less than unity, even though we firstly optimize
the pump configuration to compensate for mode shifting,
we still found that the reflection gain of the amplifier in-
creases before it starts to drop (“shark fin”). This causes
the amplifier to saturate as gain increases to 21 dB. If
we move out of this regime by reducing the participation
ratio or increase β, the “shark fin” reduces and we find a
band of sweet spots of the JPA saturation power. The re-
flection gain of the JPA with configurations around one
of the sweet spots is shown in Fig. 9(a), with the the
blue curve corresponding to the sweet spot at β = 3.5,
1/p = 7.0. As we decrease β to 3.0, the JPA saturates as
gain touches 21 dB [green dash-dotted curve in Fig. 9(a)],
while as we increase β to 4.0 the “shark fin” disappears
but the saturation power decreases.
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FIG. 9. (Color online.) In this plot, we show the reflection
gain of the amplifier as we increase the input signal power.
We focus on a point which is away from the boundary shown
in Fig. 7(a). We test the reflection gain of the truncated
model for β = 4.5 and 1/p ∼ 4.0 as we increase the input
signal power Pa,in in (c). In the calculation for the truncated
model, we only truncate the JRM potential energy to the
desired order, but fix the pump configuration as the full-order
case. The reflection gain solved from truncated model also
converge to the full-order analysis (red solid line) pretty well
we truncated to 7th order. But as we decrease p further to
push the configuration closer to the boundary (1/p = 7.0),
the higher and higher order terms are needed to have a good
approximation to the full-order performance.

To understand the dominating limitations placed by
different nonlinear terms in the JPA Hamiltonian, espe-
cially around the sweet spot, we truncate the Hamilto-
nian order-by-order and analyze the performance of the
truncated model. We keep the pump configurations iden-
tical to the full-order analysis and increase the truncation

order from 3rd order to 8th order. In Fig. 9(b), we fo-
cus on the sweet spot β = 3.5, 1/p = 7.0, and compare
the truncated theory with the full-nonlinear solution. At
small signal input, the nonlinear couplings up to 7th or-
der are needed to converge to desired 20 dB reflection
gain. This is a sign that the high order nonlinear cou-
pling terms play an important role in the dynamics of
the JPA. As we increase the signal power, the truncation
to 4th order analysis does not show an obvious “shark
fin” feature. However, when we include the higher or-
der coupling terms, e.g. 5th to 8th, the “shark fin” ap-
pears. The truncated 5th order analysis supports another
mechanism that causes the amplifier to saturate to 21 dB
which is different from the one discussion in Ref. [24], that
is the fifth order terms, e.g. ϕ2

aϕaϕbϕc term, can shift the
bias condition by shifting the effective third order cou-
pling strength to drive the amplifier towards the unsta-
ble regime causing the reflection gain to rise. Further, as
we discussed above, the external linear inductors break-
down the perfect nulling point for even order nonlinear
couplings, the 6th order and 8th order terms can survive
at the nulling point. From 5th order to 8th order trun-
cation, the large signal input behavior oscillates, which
is a sign that we are reaching the convergence point of
the series expansion casued by the competition between
different orders. We also compare it with a point away
from the sweet spot in Fig. 9(c) (β = 3.5, 1/p = 4.0).
At this point, the 5th order truncation already converges
to 20 dB reflection gain and the 7th order theory gives
a good approximation to full order analysis with moder-
ate input signal power. We conclude that the boost in
performance of the amplifier at the sweet spot is a result
of taking advantage of all orders, and hence cannot be
modeled using a low order truncated theory.

VII. EFFECTS OF TUNING THE EXTERNAL
MAGNETIC FIELD, DECAY RATES, AND

STRAY INDUCTANCE

In this section, we further explore how the saturation
power of the amplifier is affected by the magnetic field
bias (ϕext), the modes’ decay rates (γ), and stray induc-
tance in the JRM loop [Lstray in Fig. 7(a)].

In Fig. 10, we plots the saturation power of the am-
plifier as we perturb the magnetic field bias and decay
rates of JPA. Here we focus on the line of 1/p = 7.0 in
Fig. 10(a) and (b), and focus on the line of β = 3.5 in (c)
and (d). In Fig. 10(a) and (c), we explore the effects of
tuning the magnetic field bias. We at first set the JPA cir-
cuit parameters at ϕext = 2π. We then operate the JPA
at ϕext = 1.9π and ϕext = 2.1π, respectively. We notice
that as we perturb the magnetic field to ϕext = 1.9π, the
optimum saturation power is achieved at larger β val-
ues [see Fig. 10(a)] and smaller participation ratio p [see
Fig. 10(c)]. By tuning β, the saturation power of the
amplifier improves from −104.8 dBm to −103.9 dBm,
while by tuning p, it improves to −104.1 dBm. This



21

FIG. 10. The saturation power of the JPA with external magnetic field bias and mode decay rates perturbation. In (a) and (c)
we perturb the JPA external magnetic field bias from 2π by ±0.1π. We assume the JPA circuit parameters are fixed with bias
ϕext = 2π, and then we operate the JPA at the perturbed magnetic field bias. In (b) and (d) we set the circuit parameters of
JPA to change the modes’ decay rates from γ/2π = 0.2 GHz by ±10 MHz. In (a) and (b), we focus on the JPA settings with
1/p = 7.0 and investigate the effect of the perturbation while in (c) and (d), we focus on the settings with β = 3.5.

indicates that the optimal magnetic field bias occurs at
somewhat lower magnetic field as compared to the Kerr
nulling point. The corresponding sweet spot of the am-
plifier has larger β and lower p compare to the present
setting.

In Fig. 10(b) and (d), we change the JPA modes’ de-
cay rates by 10 MHz to explore the effects of different
decay rates to the JPA saturation power. In large β
regime, increasing the JPA mode decay rates causes the
regime in which we cannot obtain 20 dB (see Fig. 1) gain
to become larger. For example at γ/2π = 0.21 GHz,
the JPA with β = 6.0 and 1/p = 7.0 can no longer
reach 20 dB reflection gain while a comparable JRM with
γ/2π = 0.20 GHz could. The amplifier’s optimum sat-
uration power is also achieved at a lower β value as we
increase the decay rates [see Fig. 10(b)]. However, as we
tune the decay rates by ±10 MHz, the maximum satu-
ration power of the amplifier at 1/p = 7.0 shows little
change. Similarly, in Fig. 10(d), we perturb the modes’
decay rates by ±10 MHz on JPA with different p but a
fixed β (β = 3.5). The amplifier’s optimum saturation
power is achieved at a lower p value as we decrease the
decay rates [see Fig. 10(d)]], while the maximum satura-
tion power of the amplifier still shows little change.

Finally we consider the effect of stray inductors (Lstray

in Fig. 7). We include stray inductance such that α =
Lstray/LJ = 0.1 and compare the reflection gain of the
amplifier as we increase the signal power (Pa). Note that
when the stray inductance is nonzero, the Kerr nulling
point is shifted away from ϕext = 2π (see discussion in

FIG. 11. We compare the saturation power of the amplifier
without stray inductance (α = 0, dashed curves) and with
stray inductance (α = 0.1 slide curves). We tested three
different settings of JPA, β = 3.0, 3.5 and 4.0, respectively.
All of them have 1/p = 7.0. We compare the reflection gain
of the amplifier as we increase the signal power Pa. For all
three cases, the saturation power is suppressed. The existence
of the stray inductance enhances the shark fin, which causes
the amplifier at previous sweet spot (1/p = 7.0 and β = 3.5)
saturates to 21 dB instead.

subsec. X A), especially, when α = 0.1, the Kerr nulling
point is at ϕext ∼ 2.49π. We will operator the JPA at
this magnetic field bias when the participation ratio is not
unity. In Fig. 11, we compare three different settings of
JPA, 1/p = 7.0, β = 3.0 (blue curves), 1/p = 7.0, β = 3.5
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(orange curves) and 1/p = 7.0, β = 4.0 (green curves). In
all three different sittings, we notice enhancement of the
“shark fin”, which causes the JPA at the previous sweet
spot (β = 3.5, orange dashed curve) saturates to 21 dB
instead, which greatly reduce the saturation power at this
point (from −104.8 dBm to −120 dBm). At β = 4.0,
without stray inductors, the reflection gain of the ampli-
fier monotonically decreases as the signal power increases
(dashed green line), while at α = 0.1 there is a shallow
increases (see solid green line). Besides, the saturation
power slightly drops from −107.5 dBm to −108.7 dBm.

VIII. SUMMARY AND OUTLOOK

In conclusion, we have investigated the nonlinear cou-
plings of the JRM based JPA and how these different
nonlinear couplings controls the performance of the para-
metric amplifier. In our analysis, we have adapted both
perturbative and time-domain numerical methods to give
us a full understanding of the circuit dynamics. By con-
sidering the full nonlinear Hamiltonian of the device, we
show that we can fully optimize the performance of the
amplifier, and achieve a ∼ 10 to 15 dB improvement
of the saturation power of the JRM based JPA for a
range of circuit parameters. Our method for numeri-
cally modeling multi-port circuits of inductors, capaci-
tors, and Josephson junctions is also applicable to more
complex circuits and pumping schemes, which can create
JPAs with addition virtues such as extremely broad (and
gain-independent) bandwidth and directional amplifica-
tion [15, 17, 18, 32, 42, 43].

IX. ACKNOWLEDGEMENT

The authors gratefully acknowledge fruitful discussions
with J. Aumentado, S. Khan, A. Metelmann, and H.
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Stable

2-fold

FIG. 12. (Color online.) The stability diagram of the ground
state of the JPA when we have nonzero stray inductance. We
assume Lout = 0 and set β = 4.0. The blue region (labeled
as “stable”) shows the stable region of the JPA ground state,
while in orange region (labeled as “2-fold”), the JPA ground
state is doubly degenerate. In the red region (unlabeled re-
gion), JPA has four-fold degenerate ground state. The green
line shows the position of the nulling point.

X. APPENDIX

A. The effect of stray inductance with unit
participation ratio

In this section, we focus on the effect of the existence
of nonzero stray inductance with unit participation ratio.
This discussion is also provided in Ref. [17].

The circuit model of JRM circuit with stray inductance
is in Fig 7(a). When the stray inductance is nonzero, sim-
ilar to shunted JRM circuit, we can write the potential
energy of JRM circuit as,

EJRM =
φ2

0

2Lin

∑
j

(ϕj − ϕE)
2

+
∑
j

Earm (δj) , (67)

where ϕE = 1
4 (ϕ1+ϕ2+ϕ3+ϕ4), the arm energy, Earm, is

the total energy of the stray inductor and the Josephson
junction on one arm of the JRM, δj = ϕj−ϕj+1 + ϕext

4 is
the total phase difference across the j-th arm. Take one
of the arms as an example,

Harm(δ1) =
φ2

0

2Lstray
(ϕ1 − ϕ5)

2−φ
2
0

LJ
cos
(
ϕ5 − ϕ2 +

ϕext

4

)
,

(68)
where the phase on node ϕ5 is constrained by the current
relation at the corresponding node,

δ1 −∆ϕ = α sin (∆ϕ) , (69)

where α = Lstray/LJ, δ1 = ϕ1 − ϕ2 + ϕext

4 is the total
phase difference of the arm and ∆ϕ is the phase across
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the junction, defined as ∆ϕ = ϕ5 − ϕ2 + ϕext

4 . Suppose
we focus on the case where the external magnetic flux
is around 2π, when α is small (α < 2.80), the nonlinear
relation in Eq. (69) only has a single root when the total
phase across the arm is determined.

To determine the self-Kerr kjj and cross-Kerr kij cou-
pling strengths, we can use the derivatives of the dimen-
sionless JRM energy as,

kjj =
1

24

∂4EJRM

∂ϕ4
j

, kij =
1

4

∂4EJRM

∂ϕ2
i ∂ϕ

2
j

. (70)

Before we carry on the derivative, we appreciate the fact
that the phase difference across the arms are linearly de-
pendent on the node fluxes, and the node fluxes are lin-
early dependent on the normal mode coordinates. Since
the inner linear inductance only contribute the energy
which are quadratic to the node phases, there will be
no contribution to the Kerr couplings. Because the four
arms of the JRM is symmetric, the arm Hamiltonian for
four arms should have identical form in terms of the phase
difference δ. To finalize the calculation, the forth order
derivatives with respect to normal modes in general can
be calculated as,

∂4

∂ϕ2
i ∂ϕ

2
j

EJRM =
∑
l

∂4

∂ϕ2
i ∂ϕ

2
j

Earm(δl)

=
∑
l

(
∂4

∂δ4
Earm

)(
∂δl
∂ϕi

)2(
∂δl
∂ϕj

)2

.

(71)

Therefore, for both self-Kerr couplings and cross-Kerr
couplings, there is a common factor ∂4

δEarm, so that the
nulling point still exists at the external magnetic bias to
let ∂4

δEarm = 0.

However, as we increase the stray inductance α, which
effectively decrease the inductance ratio β, it causes the
ground state to be more and more unstable. Adding to
it, increasing α causes the nulling point to shift from
ϕext = 2π to higher magnetic bias. At a relative large
α, the nulling point may end up in the unstable regime
and become unreachable in real experiment. In Fig. 12,
we plot the ground state stability diagram as we change
external magnetic flux and α, we further plot shifting of
the nulling points as we change α [green curve in Fig 12].
In Fig. 12, we set the JRM inductance ratio β = 4.0 and
when α ∼ 0.4, the nulling point hits the boundary of the
unstable regime, which means the nulling point does not
exist in experiment any longer.
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