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We study theoretically the interaction between two photons in a nonlinear cavity. The photons are
absorbed into the cavity by an effective tuning of its input/output coupling via external control of
a coupling to a second, strongly output-coupled cavity mode. Such “dynamically coupled” cavities,
which can be implemented using bulk χ(2) and χ(3) nonlinearities, enable incoming photon wave
packets to be absorbed into the cavity with high fidelity when the duration of the control is similar
to that of the wave packets. Further, this configuration can be used to avoid limitations in the
photon-photon interaction time set by the delay-bandwidth product of passive cavities, and enables
the elimination of wave packet distortions caused by dispersive cavity transmission and reflection.
We consider three kinds of nonlinearities, those arising from χ(2) and χ(3) materials and that due
to an interaction with a two-level emitter. To analyze the input and output of few-photon wave
packets we use a Schrödinger-picture formalism in which travelling-wave fields are discretized into
infinitesimal time-bins. We suggest that dynamically coupled cavities provide a very useful tool for
improving the performance of quantum devices relying on cavity-enhanced light-matter interactions
such as single-photon sources and atom-like quantum memories with photon interfaces. As an
example, we present simulation results showing that high fidelity two-qubit entangling gates may
be constructed using any of the considered nonlinear interactions.

I. INTRODUCTION

Photons make excellent flying qubits due to the low de-
coherence and loss associated with their transport over
standard telecommunication fibers. It therefore seems
unavoidable that they will play a key role as carriers of
quantum information for secure communication networks
and distributed quantum computing [1]. The lack of di-
rect interactions between photons makes it very challeng-
ing to perform universal quantum information processing
using photonic qubits. Indirect interactions may be me-
diated by materials with optical nonlinearities but these
are usually very weak at optical frequencies. Neverthe-
less, progress in the design and fabrication of nanocavities
with very small mode volumes and very large lifetimes [2–
6] has reduced the optical energy required to observe non-
linear interactions close to the single-photon level. To
fully exploit the enhanced light-matter interaction inside
the cavity, it is necessary for the entire energy of an in-
coming wave packet to reside in the cavity throughout
its lifetime. However, delay-bandwidth trade-offs [7] put
bounds on the energy from an incoming wave packet that
can reside inside a passive cavity throughout its lifetime.
For instance, a rising exponential wave packet may be
absorbed completely into a cavity, but only for an in-
finitesimal time, such that the average energy is smaller
than the total incoming energy. The delay-bandwidth
limit may be broken using active controls to modify the
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cavity-waveguide coupling at a timescale smaller than the
wave packet temporal width. Such dynamically coupled
cavities have been demonstrated in photonic crystals [8]
and ring resonators [9]. These demonstrations used short
optical pump pulses to generate electric charge carriers
in the semiconductor material forming the cavities. The
free carrier absorption loss associated with this method
degrades the intrinsic quality factor, QL, which motivates
the search for an alternative approach.

Here, we use a method to achieve dynamic coupling
that is based on the parametric nonlinearity of cavity
materials (χ(2) or χ(3)) and therefore avoids loss. Two

FIG. 1. (a) Ring resonator with a Mach-Zehnder interferome-
ter coupling region for frequency dependent cavity-waveguide
coupling rate. (b) Spectra of the incoming photon wave
packet (top), cavity modes a (oscillating at ωa) and b (os-
cillating at ωb) coupled via external control fields (center),
and cavity-waveguide coupling rate (bottom).

strong optical control fields may couple two cavity modes
via so-called Bragg-scattering four-wave-mixing (FWM)
in χ(3)-materials [10–12] and a single control field may
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do the same in a χ(2) material [5, 13], as illustrated
with arrows in Fig. 1b. Matching the path-length imbal-
ance of the Mach-Zehnder interferometer coupling region
(see Fig. 1a) to the round-trip length of the ring causes
destructive interference at ωb (no coupling) and construc-
tive interference at ωa (maximal coupling), see Fig. 1b.
External control over the coupling between modes a and
b therefore introduces a time-dependent effective cou-
pling between mode b and the waveguide [12, 14]. In
other words, photons may be loaded in and out of mode
b via the strongly coupled mode, a, due to their time-
dependent mutual coupling. We note that this method
has also been proposed to implement so-called quantum
pulse gates [15].

We succinctly review a Schrödinger-picture, discrete-
time formalism for treating input and output from optical
cavities (equivalent to the well-known Heisenberg-picture
input/output formalism [16–18]), and show how it can be
used to treat the input/output of one- and two-photon
wave packets into and out of dynamically coupled nonlin-
ear cavities. We suggest that dynamically coupled cavi-
ties would be useful for a range of quantum applications
relying on cavity-enhanced light-matter interaction, and
specifically use the formalism to calculate the fidelity of
two-qubit gates for travelling-wave photons.

The method we develop here for treating the effect of
localized systems on few-photon wave packets is not the
first. The basic formalism for this scattering problem
for Markovian systems is input-output theory [16, 17].
While scattering of one or two photons from sufficiently
simple systems can be solved analytically [19–29], pre-
vious numerical methods can be divided into two types.
The most direct is essentially a brute-force approach in
which the field is discretized and the full state of the sys-
tem and field is simulated [30–32]. The second method,
derived from input-output theory for general systems by
Shi et al. [33] and Trivadi et al. [34], involves calculating
the “scattering matrix” (or Green’s function/impulse re-
sponse) that maps delta-function input wave packets to
output wave packets. For an N -photon wave-packet the
scattering “matrix” is a function of 2N -variables, and for
a given input the output is calculated by integrating it
over the input wave packet. This method is more numer-
ically efficient than the brute-force method because the
scattering matrix can be determined by solving the equa-
tions of motion of the system alone [33, 34]. The method
we present here is somewhat more efficient numerically
than the above method. We derive equations of motion
that are driven by the input wave-packet(s), and the so-
lutions of these for a set of shifted times gives the output
wave packet(s). This requires a similar amount of numer-
ical overhead as the calculation of the scattering matrix,
and thus avoids the final step of integrating the scatter-
ing matrix over the input wave packet(s) to determine the
output. Our equations are derived from a Schrödinger-
picture version of input-output theory, and correspond
to a diagram that describes the various “pathways” that
photons can take by being absorbed and emitted from

the system. They thus provide a more detailed under-
standing of the dynamics of the scattering process than
previous methods. The disadvantage of our method is
that more work is required to derive the equations of mo-
tion than for the scattering method. We also note that
if one wishes to calculate the output for a large number
of different inputs, there will be a point at which it will
be more efficient to calculate the scattering matrix. Fi-
nally we note that Baragiola et al. have derived master
equations describing the evolution of Markovian systems
driven by N -photon wave packets, although they did not
provide a method to obtain the output wave-packets.

This article is organized as follows: Section II describes
the discrete-time formalism and Section III elucidates the
Hamiltonians that describe our nonlinear cavity modes.
In Section IV we consider the linear regime and examine
the dynamics of the cavity modes under the controlled
coupling. In Section V we present analytic solutions for
the control fields required to absorb and emit wave pack-
ets with predefined shapes and consider a specific exam-
ple in which the wave packets are Gaussian. Section VI
contains a description of three types of nonlinear inter-
actions, χ(2), χ(3), and two-level emitters (TLEs), and
considers their application to controlled-phase (c-phase)
gates. Finally, we conclude with a discussion of the limi-
tations of our model and suggest other quantum applica-
tions that could benefit from dynamically coupled cavi-
ties.

II. DISCRETE-TIME FORMALISM

In our analysis of the dynamics of photons scatter-
ing off a system driven by external control fields we dis-
cretize the traveling-wave field into time-bins of duration
∆t as illustrated in Fig. 2 [35–37]. The time-axis may

FIG. 2. Illustration of the discrete time formalism. The time-
axis for the travelling-wave field is divided into discrete bins
and time evolution is modeled by shifting the time-axis from
left to right. The system interacts with one time bin at a time,
modelling a point-interaction with the field as is standard in
the input/output formalism for quantum systems.

be thought of as a conveyor belt and time evolution cor-
responds to dragging this conveyor belt past the fixed
system one bin at a time. The discretization involves
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introducing new field operators

ŵ(tk) = ŵ(k∆t) ≡ ŵk√
∆t

with [ŵj , ŵ
†
k] = δjk, (1)

where ŵ(tk) is the continuous-time annihilation opera-
tor that removes a photon from the waveguide at time
tk = k∆t. The operator ŵk is the discrete-time counter-
part of ŵ(tk) that removes a photon from the kth time-

bin. The factor of 1/
√

∆t allows ŵ(tk) to have the canon-
ical commutation relation, [ŵ(tj), ŵ

†(tk)]=δ(tj − tk), as
∆t→ 0.

For a single-photon input with a wave packet described
by ξin(t), the continuous and discrete descriptions are

|ψin〉 =

∫ tN

t0

dtξin(t)ŵ†(t)|∅〉 ≈
N∑
k=1

√
∆tξin

k ŵ
†
k|∅〉, (2)

in which
∫ tN
t0
|ξin(t)|2 = 1 so the state is normalized,

ξin
k = ξin(tk), and |∅〉 denotes the vacuum state of the

waveguide. At any time step, n, (see Fig. 2) a photon in
bin k is referred to as an input photon if k > n and we

write the corresponding state of the field as ŵ†k|∅〉≡|1k〉.
Similarly, if k ≤ n the photon is referred to as an output
photon and we denote the corresponding state of the field
by |1k〉. A system consisting of M cavity modes is de-
scribed by a state |ψsys〉=ψnanb...nM (t)|na〉|nb〉 · · · |nM 〉,
where e.g. na is the number of photons in mode a (oscil-
lating at ωa), see Fig. 1.

We use the Schrödinger-picture to derive equations of
motion for the time-dependent state coefficients. The
unitary time evolution operator describing one time step
from tn−1 to tn in Fig. 2 is

Ûn = exp
(
− i

~
Ĥn∆t

)
=

∞∑
m=0

1

m!

(
− i

~
Ĥn∆t

)m
, (3)

such that the updated state is

|ψn〉 = Ûn|ψn−1〉, (4)

with Ĥn being the Hamiltonian describing the system
and its interaction with the waveguide at time-step n. In
the next section we explain the model used to describe
the system and its interaction with the waveguide and
additional loss channels.

III. MODEL

A model for the complete system consists of a specifica-
tion of the Hamiltonian in Eq. (3). It is assumed that the
interaction between the system and waveguide occurs at
a singular spatial point, which corresponds to interaction
only with bin n at time tn. It is therefore convenient to
think of N different Hamiltonians, Ĥn, each acting only
during the nth time step.

In our analysis, the system in Fig. 2 contains up to
three cavity modes and one TLE. Only mode a is cou-
pled to the waveguide in order to load and unload pho-
tons into and out of mode b (oscillating at ωb), see Fig. 1.
Our choice of cavity mode configurations is motivated
by the type of photon-photon interaction and applica-
tion (c-phase gate) that we are considering. For a χ(3)

nonlinearity, we consider the photon-number dependent
phase acquired by the field in mode b through self phase
modulation. For a χ(2) nonlinearity, we consider an addi-
tional mode, c (oscillating at ωc=2ωb), which is coupled
to mode b through second-harmonic-generation (SHG).
Two photons loaded into mode b acquire a π-phase shift
by undergoing one Rabi oscillation (turning into one pho-
ton in mode c and back to two photons in mode b). A
single photon in mode b does not acquire any phase be-
cause SHG requires at least two photons. For a TLE,
we again consider a third mode (oscillating at ωc with
|ωc −ωb| 6= |ωb −ωa|), which is coupled to the TLE.
In this case, the acquired phase of the field in mode c
is photon-number dependent since the resonance experi-
ences an energy-shift proportional to

√
ng for n photons

and a TLE-cavity coupling rate, g.
The self-energy terms of the system Hamiltonian in

a rotating frame (also know as the interaction picture,
see Appendix A) are

Ĥ0 = ~δaâ†â+ ~δbb̂†b̂+ ~δcĉ†ĉ+ ~δeσ̂z, (5)

where â, b̂, and ĉ annihilate a photon from mode a, b,
and c. The operator σ̂z= |e〉〈e|, with |e〉 being the excited
state of a TLE coupled to mode c. The detunings, δn, are
used to account for discrepancies between energy levels of
the system and the incoming photons and control fields
as described in Appendix A.

Coupling between the waveguide and mode a is de-
scribed by the Hamiltonian [36]

Ĥcav−wg
n = i~

√
γ

∆t

(
â†ŵn − âŵ†n

)
, (6)

where γ is the coupling rate.
As mentioned above, a dynamic cavity-waveguide cou-

pling is established by coupling two cavity modes, one
strongly coupled and one decoupled from the waveg-
uide, via nonlinear interactions driven by external control
fields. In materials with a third order nonlinearity, χ(3),
the coupling Hamiltonian is

Ĥcav−cav
n = ~χ3

(
p̂†1p̂2â

†b̂+ p̂†2p̂1b̂
†â
)
, (7)

The operators p̂1 and p̂2 annihilate photons from two
pump modes far detuned from modes a, b, and c. The
pump fields are treated classically by taking expectation
values and making the substitution [38]

χ3〈p̂†2p̂1〉=χ3α
∗
2(tn)α1(tn)=Λ(tn), (8)
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where αn is the eigenvalue of the annihilation operator
p̂n and Λ(tn) is the complex-valued control field. With
the classical control field, Eq. (7) reads

Ĥcav−cav
n = ~

(
Λ∗nâ

†b̂+ Λnb̂
†â
)
, (9)

which now describes a linear coupling between modes a
and b driven by the time-dependent control field, Λ(t).
Note that in the case of a TLE nonlinearity, we intro-
duce a second control field, Π(t) that couples modes b
and c using pump modes p1 and another mode p3, see Ap-
pendix A.

For χ(3) materials, we must also include the cross-phase
modulation caused by the pump fields on modes a, b, and
c described by the Hamiltonian

ĤXPM,p
n = ~χ3

2∑
m=1

p̂†mp̂m

(
â†â+ b̂†b̂+ ĉ†ĉ

)
→

2~|Λn|
(
â†â+ b̂†b̂+ ĉ†ĉ

)
, (10)

where we have assumed χ3〈p̂†2p̂2〉 = χ3〈p̂†1p̂1〉 = |Λn|,
which means that the optical energy in each pump mode
is identical at all times.

In a χ(2) material the cavity-cavity coupling arises from
the Hamiltonian

Ĥcav−cav
n = ~χ2

(
p̂†â†b̂+ p̂b̂†â

)
. (11)

Again, we describe it classically by

χ2〈p̂〉=χ2αp(tn)=Λn. (12)

The coupling Hamiltonian expressed in terms of the
classical control field is therefore given by Eq. (9) for
both second- and third-order nonlinear materials. There
is no cross-phase modulation term in the Hamiltonian
for a χ(2) material (unless a DC electric field is applied),
so the contribution from Eq. (10) should be omitted in
that case.

The Hamiltonian describing the three different types
of nonlinear materials are

ĤXPM+ĤSPM = ~χ3

[
â†âb̂†b̂+ b̂†b̂ĉ†ĉ

]
+

~χ3

4

∑
q̂

(̂
q†q̂−1

)
q̂†q̂ (13a)

ĤSHG = ~χ2

(
ĉb̂†b̂† + ĉ†b̂b̂

)
(13b)

ĤTLE = ~
(
gĉ†σ̂− + g∗ĉσ̂+

)
. (13c)

Eq. (13a) describes cross- (XPM) and self-phase modu-
lation (SPM) in materials with a third-order nonlinear-

ity (note that q̂ ∈ {â, b̂, ĉ}). Eq. (13b) describes second-
harmonic-generation (SHG) in materials with second-
order nonlinearities. Eq. (13c) describes the interaction

between photons in mode c and a two-level emitter, where
g is the coupling rate, σ̂−≡|g〉〈e|, and σ̂+≡|e〉〈g|, where
|g〉 and |e〉 are the ground and excited state of the TLE.
Note that not all possible combinations of modes are con-
sidered in Eq. (13), but only those included in the pro-
tocols for photon-photon interactions that we consider
here.

IV. LINEAR DYNAMICS

In this section we derive equations of motion including
only the linear dynamics. We start with the simplest case
of one photon coupling to one cavity mode to build intu-
ition about the derivation procedure. Then, we consider
one photon coupling to a cavity with two modes, and fi-
nally two photons coupling to a cavity with two modes.
Having derived equations of motion when the Hamilto-
nian is linear, it is fairly straight forward to add nonlinear
interactions and make the appropriate additions to the
equations, which we do in Section VI.

A. One Cavity Mode - One Photon

Let us begin by considering a single input photon cou-
pling to one cavity mode. The relevant terms of the
Hamiltonian are

Ĥ(1)
n = ~δaâ†â+ i~

√
γ

∆t

(
â†ŵn − âŵ†n

)
. (14)

Keeping only terms to first order in ∆t, the corresponding
time-evolution operator is

Û (1)
n ≈ Î +

√
γ∆t

(
â†ŵn − âŵ†n

)
−

γ

2
∆tâ†âŵnŵ

†
n − iδa∆tâ†â. (15)

Note that we omitted the term γ/2∆tââ†ŵ†nŵn because
it results in terms proportional to ∆t3/2 when acting on
states with the photon in the waveguide. The state at
time step n is

|ψn〉 =

N∑
k=n+1

ξin
k

√
∆t|0〉|1k〉 +

n∑
k=1

ξout
k

√
∆t|0〉|1k〉+ ψ1(n)|1〉|∅〉. (16)

The states |0〉|1k〉 and |0〉|1k〉 correspond to an empty
cavity and a photon in bin k on the input (k > n) and
output (k ≤ n) side, respectively. The state correspond-
ing to a photon in the cavity has the coefficient ψ1(n).
In Appendix B we derive the equation of motion for ψ1(t)
and the input-output relation connecting ξout(t) to ξin(t)
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ψ̇1(t) = −
(
iδa +

γ

2

)
ψ1(t) +

√
γξin(t) (17a)

ξout(t) = ξin(t)−√γψ1(t). (17b)

These equations have the same form as those derived
classically using arguments of energy conservation and
time-reversal symmetry [39]. They also have the same
form as the Heisenberg equations of motion of the usual
input-output formalism [40].

B. Loss

At this stage we consider the effect of loss through cou-
pling of the system to a heat bath at zero temperature. It
may be conveniently modeled using an additional waveg-
uide with a vacuum input. If the annihilation operator

that removes a photon from the bath at time tn is l̂n, then
the time-evolution operator has the additional terms

Û loss
n =

∑
q̂

[√
γL∆t

(
q̂† l̂n − q̂l̂†n

)
− γL

2
∆tq̂†q̂l̂n l̂

†
n

]
, (18)

where q̂ represents all the cavity modes (we assume they
have identical loss rates, γL). If we ignore all states of
the loss channel except the vacuum, Eq. (18) shows that
a term, −mγL/2, is added to all decay terms (with m
photons in the cavity mode), such that the decay term
in Eq. (17a) would have the coefficient −(γ+γL)/2. We
therefore define the total coupling rate, Γ=γ+γL. If we
kept track of the state of the heat bath, B, the complete
state after time evolution is

|Θ〉 = |θ0〉|0B〉+ |θ1〉|1B〉+ . . .+ |θN 〉|NB〉, (19)

where |nB〉 is a Fock state of the bath with n photons
and N is the total number of incident photons. Our
calculation only considers the state without loss, |ψout〉 ≡
|θ0〉, which is not normalized as seen from Eq. (19). The
density operator is ρ̂ = |Θ〉〈Θ| and the reduced density
operator is found by tracing out the bath

ρ̂s = Trbath

[
ρ̂
]

=

N∑
mB=0

〈mB|ρ̂|mB〉 =

N∑
n=0

|θn〉〈θn|. (20)

If |µ0〉 is the desired output state, the state fidelity is
defined as [41]

Fs ≡ 〈µ0|ρ̂s|µ0〉 = |〈µ0|ψout〉|2 +

N∑
n=1

|〈µ0|θn〉|2. (21)

If we denote the unnormalised (no-loss) output state (the
output state that we calculate) when there are N input
photons by |ψ(N)

out〉, and define the “N -photon state fi-
delity” by

〈µ0|ψ(N)

out〉 =
√
FNe

iϑn , (22)

then FN is a lower bound on the fidelity, Fs, as seen
from Eq. (21).

The one- and two-photon output states are given by

|ψ(1)

out〉=
∫ tN

t0

dtξout(t)ŵ
†(t)|∅〉 (23a)

|ψ(2)

out〉=
∫ tN

t0

∫ tN

t0

dtmdtnξout(tm, tn)ŵ†(tm)ŵ†(tn)|∅〉, (23b)

so that the overlaps in Eq. (22) are

〈µ0|ψ(1)

out〉=
∫ tN

t0

ξout(t)ξµ(t)∗dt (24)

〈µ0|ψ(2)

out〉=
∫ tN

t0

∫ tN

t0

ξout(tm, tn)ξµ(tn)∗ξµ(tm)∗dtmdtn, (25)

where we have assumed that |µ0〉 for two-photon inputs
is a separable state with a wave packet, ξµ(t).

If it is known that all input photons were present in
the output state (such knowledge could be obtained by
detection), it corresponds to projecting the state |Θ〉 onto
the zero-loss subspace

|ΘP 〉 =

(
|0B〉〈0B|

)
|Θ〉√〈

Θ|
(
|0B〉〈0B|

)
|Θ
〉 =

|ψout〉|0B〉√〈
ψout|ψout

〉 . (26)

The probability of losing at least one photon is PL =
1−
〈
ψout|ψout

〉
. If we define the projected state of the

considered system as the re-normalized state, |ψP 〉 =
|ψout〉/

〈
ψout|ψout

〉
, it may be understood as the output

state conditioned on the knowledge that no photons were
lost. We may then define the conditional fidelity

FN ≡
∣∣〈µ0|ψ(N)

P

〉∣∣2 =
1

1− PL
FN , (27)

Eq. (27) may be interpreted using Baye’s rule, P (A|B)=
P (A,B)/P (B), where A means ”ξµ and ξout have the

same shape” and B means ”no photons were lost”. FN

is useful because it determines the visibility of quantum
interference between output photons and other photons
that did not scatter off a dynamically coupled cavity.

Since the calculation of |ψout〉 leads to a lower bound
on the fidelity of output states, we simply include the loss
term proportional to γL in all the equations of motion in
the following sections.

C. Two Cavity Modes - One Photon

For two cavity modes and a χ(3) material, the Hamil-
tonian describing the linear dynamics is

Ĥ(2)
n = ~δaâ†â+~δbb̂†b̂+i~

√
γ

∆t

(
â†ŵn − âŵ†n

)
+

~
(

Λ∗nâ
†b̂+ Λnb̂

†â
)

+ 2~|Λn|
(
â†â+ b̂†b̂

)
. (28)
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The corresponding time-evolution operator is

Û (2)
n ≈ Î +

√
γ∆t

(
â†ŵn − âŵ†n

)
−

γ

2
∆tâ†âŵnŵ

†
n − i∆t

(
Λ∗nâ

†b̂+ Λnb̂
†â
)
−

i∆t
(
δa + 2|Λn|

)
â†â− i∆t

(
δb + 2|Λn|

)
b̂†b̂. (29)

Note that we have omitted the loss terms from Eq. (18),
but we will include them in the equations of motion be-
low. The state at time step n is

|ψn〉 =

N∑
k=n+1

ξin
k

√
∆t|00〉|1k〉+

n∑
k=1

ξout
k

√
∆t|00〉|1k〉 +

+ ψ10(n)|10〉|∅〉+ ψ01(n)|01〉|∅〉, (30)

where |01〉≡|0a〉|1b〉 is the state with one photon in mode
b. In Appendix C we derive the equations of motion for
the coefficients ψ10(t) and ψ01(t) along with the input-
output relation

ψ̇10 = −
(
iδa +

Γ

2
+ i2|Λ|

)
ψ10 − iΛ∗ψ01 +

√
γξin (31a)

ψ̇01 = −
(
iδb +

γL
2

+ i2|Λ|
)
ψ01 − iΛψ10 (31b)

ξout = ξin −
√
γψ10. (31c)

Note that we have not explicitly written the time depen-
dence of the functions in Eq. (31).

D. Two Cavity Modes - Two Identical Photons

The analysis becomes significantly more complicated
for two input photons so we find it beneficial to map
out all the different paths they may take from input to
output and the different types of states generated in the
process, see Fig. 3. Let us go through the layers of the
map from left to right and write down the dynamical
equations governing the Schrödinger coefficients of the
states in each layer. The first layer only contains the
input state

|ψ0〉 =
√

2

N∑
j=1

N∑
k>j

ξin
j ξ

in
k ∆t|00〉|1j1k〉. (32)

Note that the summation over k starts at j in Eq. (32)
so that the indistinguishable states |1j1k〉 and |1k1j〉 are
only counted once in the summations. In Appendix D
we prove that the factor of

√
2 ensures that the state is

normalized when the integral of |ξin(t)|2 equals 1. We
note that derivations of all the equations of motion for
coefficients of the Schrödinger picture state in this section
may be found in Appendix D.

One of the two photons in layer 1 may be absorbed
giving rise to states in layer 2 with one photon in mode

FIG. 3. Map of states generated with two cavity modes and
two input photons and paths from input to output. Green
arrows represent absorption of a photon into mode a. Red
arrows represent emission into the waveguide in bin m. Blue
arrows represent a photon passing by the system without in-
teracting in time bin m. Black arrows indicate the interaction
between modes a and b driven by the external control fields.
There are five vertical layers going from left to right.

a or b. The dynamical equations for the coefficients cor-
responding to these states are

ψ̇(2)

10 =−
(
iδa+

Γ

2
+i2|Λ|

)
ψ(2)

10 − iΛ∗ψ
(2)

01 +
√

2
√
γξin (33a)

ψ̇(2)

01 =−
(
iδb+

γL
2

+i2|Λ|
)
ψ(2)

01−iΛψ
(2)

10 , (33b)

where we use the superscript (2) to signify that the driv-
ing term in Eq. (33a) originates from two input pho-

tons, which is why it contains a factor of
√

2 relative
to Eq. (31a). A convenient feature of the map in Fig. 3 is
that the couplings represented by black arrows turn up in
the equations of motion as coupling terms proportional
to the control field, Λ(t), and therefore serves to check
whether all the dynamics is included.

The state |00〉|1k1m〉 in layer 2 originates from direct
passage of one of the input photons at time tm, while in
layer 3 it originates from absorption and subsequent emis-
sion. If the photon remaining on the input side is later
absorbed, it gives rise to states |10〉|1m〉 and |01〉|1m〉 in
layer 3 or 4. The dynamical equations for the coefficients
corresponding to these states are

ψ̇(1)

10 (tm, t)=−
(
iδa+

Γ

2
+i2|Λ(t)|

)
ψ(1)

10 (tm, t) −

iΛ∗ψ(1)

01 (tm, t) +
√
γξin(t) (34a)

ψ̇(1)

01 (tm, t)=−
(
iδb+

γL
2

+i2|Λ(t)|
)
ψ(1)

01 (tm, t) −

iΛψ(1)

10 (tm, t), (34b)

where the superscript (1) signifies that Eq. (34a) is
driven by a single input photon. The coefficients ψ(1)

10
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and ψ(1)

01 are functions of two times, tm being the ini-
tial time at which the state |00〉|1k1m〉 was created, and
t ≥ tm describing the subsequent evolution of the coeffi-
cients. The initial condition of Eq. (34) is ψ(1)

10 (tm, tm)=
ψ(1)

01 (tm, tm) = 0 since the system is in state |00〉 at time
tm.

States in layer 3 with two photons in the system have
coefficients with the following equations of motion

ψ̇20 = −
(
i2δa+Γ + i4|Λ|

)
ψ20 −

i
√

2Λ∗ψ11 +
√

2γψ(2)

10 ξin (35a)

ψ̇11 = −
(
i(δa+δb) +

Γ + γL
2

+i4|Λ|
)
ψ11 −

i
√

2
[
Λψ20+Λ∗ψ02

]
+
√
γψ(2)

01 ξin (35b)

ψ̇02 =−
(
i2δb + γL+i4|Λ|

)
ψ02−i

√
2Λψ11. (35c)

The initial conditions are ψ20(0)=ψ11(0)=ψ02(0)=0.
There are other paths leading to the states |10〉|1m〉

and |01〉|1m〉 than those described by the dynamics
in Eq. (34). It could either be from absorption of the
first photon followed by direct passage of the second pho-
ton or emission from mode a while the state is |20〉|∅〉 or
|11〉|∅〉. We use different coefficients for the state origi-
nating from these paths because their dynamical equa-
tions do not contain driving terms from input photons

ψ̇(0)

10 (tm, t) = −
(
iδa+

Γ

2
+ i2|Λ(t)|

)
ψ(0)

10 (tm, t) −

iΛ(t)∗ψ(0)

01 (tm, t) (36a)

ψ̇(0)

01 (tm, t) = −
(
iδb+

γL
2

+ i2|Λ(t)|
)
ψ(0)

01 (tm, t) −

iΛ(t)ψ(0)

10 (tm, t). (36b)

There are two sets of initial conditions for Eq. (36) de-
pending on whether the dynamics originated from the
formation of state |10〉|1m〉 or |01〉|1m〉 at time tm. If
the photon started in mode a, the initial condition is
ψ(0)

10 (tm, tm) = 1 and ψ(0)

01 (tm, tm) = 0, and we define
A10 ≡ ψ(0)

10 and A01 ≡ ψ(0)

01 . If the photon started in
mode b, the initial condition is ψ(0)

10 (tm, tm) = 0 and
ψ(0)

01 (tm, tm)=1, and we define B10 ≡ ψ(0)

10 and B01 ≡ ψ(0)

01 .
Fig. 3 reveals that there are 8 distinct paths from

input to output so the coefficient of the output state,
|00〉|1m1n〉, should contain 8 terms

ξout(tm, t) =
1√
2

[
γψ11(tm)B10(tm, t) +

√
2γψ20(tm)A10(tm, t)−

√
γψ(2)

01 (tm)ξ(tm)B10(tm, t) −
√
γψ(2)

10 (tm)ξ(tm)A10(tm, t)−
√
γψ(2)

10 (tm)ξ(t) +

γψ(2)

10 (tm)ψ(1)

10 (tm, t)+
√

2ξ(tm)ξ(t) −√
2γξ(tm)ψ(1)

10 (tm, t)
]
, (37)

where we omitted the subscript of ξin for brevity. The
first term in Eq. (37) corresponds to the upper path

in Fig. 3, the second term to the path immediately be-
low, and so forth. Note that tm ≤ t in Eq. (37) and
ξout(tm, t) = ξout(t, tm) follows from the indistinguisha-
bility of the photons. To calculate the output state
in Eq. (37), we solve the above equations of motion for N
different initial conditions corresponding to all the time
bins in Fig. 2.

V. ABSORBING AND EMITTING WAVE
PACKETS VIA DYNAMIC COUPLING

In this section we find analytic solutions for the control
fields that allow absorption and emission of wave packets
with known shapes. We consider a specific example of
Gaussian wave packets and show by numerical integra-
tion of Eq. (31) that the fidelity of the absorption and
emission process approaches unity very rapidly as the
ratio between the cavity-waveguide coupling, γ, and the
wave packet bandwidth, ΩG, increases.

A. Absorption

For the absorption process, the initial condition
of Eq. (31) is ψ10(t0) = ψ01(t0) = 0. We use a sub-
script i (for in) on the control function, Λi(t). The
goal is to determine Λi(t) such that a single incoming
photon with wave packet ξin(t) is absorbed into cav-
ity mode b. Since Λi is complex-valued, we write it as
Λi(t) ≡ |Λi(t)| exp[iφi(t)]. In Appendix E we find the
solution for a material with a third-order nonlinearity

|Λi(t)| =
|fi(t)|e−

γLt

2

|ξin(t)|
√

2
∫ t
t0
fi(s)ds− 4|ξin(t)|2eγLt

(38a)

φi(t) = −δbt− 2

∫ t

t0

|Λi(s)|ds− arg(ξin) +

tan−1

(
fi sin(θi)− gi cos(θi)

fi cos(θi) + gi sin(θi)

)
, (38b)

where

fi(t) =
(γ − γL

2
ξin(t)− ξ̇in(t)

)
ξin(t)∗eγLt (39a)

gi(t) = −2|Λi(t)||ξin(t)|2eγLt (39b)

θi(t) = −1

2

∫ t

t0

gi(s)∫ s
t0
fi(z)dz

ds. (39c)

Note that we have assumed that ξin does not have a time
dependent phase, such that fi and gi are real functions.
It is straight forward to generalize this to chirped pulses
with time dependent phases by re-defining fi and gi. We
also assumed δa=0 above.



8

In the case of a material with a second-order nonlinear-
ity there is no cross-phase modulation from the control
field, so gi=0 and the solution reduces to

|Λi(t)| =
|fi(t)|e−

γLt

2

|ξin(t)|
√

2
∫ t
t0
fi(s)ds

(40a)

φi(t) = −δbt− arg(ξin), (40b)

with fi(t) still given by Eq. (39a).

B. Emission

Without any driving field, the equations of motion are
found by setting ξin =0 in Eq. (31)

ψ̇10 =
(
− Γ

2
− i2|Λo|

)
ψ10 − i|Λo|e−iφoψ01 (41a)

ψ̇01 =
(
− γL

2
− i2|Λo|

)
ψ01 − i|Λo|eiφoψ10 (41b)

ξout = −√γψ10. (41c)

Note that we use the subscript o (for out) on the control
function in Eq. (41). The initial condition is ψ10(t0) = 0
and state |01〉|∅〉 has the complex amplitude ψ01(t0). The
goal is to determine |Λo(t)| and φo(t) such that ξout(t)
equals some desired wave packet, ξ(t). The solution is
found in Appendix F

|Λo(t)| =
|fo|e−

γLt

2

|ξ|
√
γ|ψ01(t0)|2−2

∫ t
t0
fo(s)ds−4|ξ|2eγLt

(42a)

φo(t) = −δbt− 2

∫ t

t0

|Λo(s)|ds− arg(ξ) +

tan−1

(
fo cos(θo)− go sin(θo)

−fo sin(θo)− go cos(θo)

)
, (42b)

where

fo(t) =
(Γ

2
ξ(t) + ξ̇(t)

)
ξ(t)∗eγLt (43a)

go(t) = −2|Λo(t)||ξ(t)|2eγLt (43b)

θo(t) = −
∫ t

t0

go(s)

γ|ψ01(0)|2 − 2
∫ s
t0
fo(z)dz

ds. (43c)

Again, we assumed δa=0.

The solution simplifies in the case of a material with a
second-order nonlinearity

|Λo(t)| =
|fo|e−

γLt

2

|ξ|
√
γ|ψ01(t0)|2 − 2

∫ t
t0
fo(s)ds

(44a)

φo(t) = −δbt− arg(ξ)− π

2
, (44b)

with fo(t) still given by Eq. (43a).

We note that the solutions found in this section corre-
spond to the amplitude and phase of control fields inside
the cavity. In Appendix G we derive expressions for the
control fields in the waveguide giving rise to these desired
cavity-fields.

C. Gaussian Wave Packet

We consider an example of a Gaussian wave packet to
investigate how well our absorption and emission tech-
nique works. The Gaussian wave packet of the input
field is defined as

G(t) =

√
2

τG

(
ln(2)

π

)1
4

exp

(
−2ln(2)

t2

τ2
G

)
, (45)

where |G(t)|2 has a full temporal width at half maximum
(FWHM) of τG, spectral width of ΩG =4ln(2)/τG, and in-
tegrates to 1 (over the infinite interval from −∞ to ∞).
The input states are characterized by the wave packet
ξin(t)=G(t− Ti) and the ideal output state is character-
ized by a simple time-translation

|Gout〉 =

∫ tN

t0

dtG(t− To)ŵ†(t)|∅〉, (46)

where To=Ti+T and T is the storage time. The duration
of the entire interaction process, tN = To+τo, is divided
into three time intervals denoted absorption, t∈ [0, 2Ti],
storage, t ∈ [2Ti, To−τo], and emission, t ∈ [To−τo, tN ].
Practically, wave packets must have a finite duration and
our choice of absorption interval causes a discontinuous
jump in ξin from ξin(0−) = 0 to ξin(0+) = G(−Ti). The
field in cavity mode a takes a finite time to build up
sufficiently to cause complete destructive interference
with the part of the incoming wave packet that did not
interact with the cavity. It is therefore impossible to
perfectly absorb a wave packet of finite length, but the
probability that the photon passes by the cavity without
interacting, Ppass, becomes negligible for relatively small
values of the ratio γ/ΩG as seen below. The problem of
absorbing a wave packet of finite length is reflected in the
solutions for the control fields in Eqs. (38a) and (42a),
which become imaginary when the terms under the
square root in the denominators are negative. As
explained in Appendix F 1, we use smoothing functions
to avoid divergences and ensure the control functions
are zero outside the absorption and emission intervals.
The smoothing functions in Eq. (F24) are parametrized
by the on/off duration, τe.

Fig. 4 shows an example of the absorption, storage,
and emission of a single photon in a Gaussian wave
packet. The control field is given by Λ = Λi+Λo since
the storage time, T , is chosen large enough to avoid
overlap between the absorption and emission intervals,
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FIG. 4. Plots of the solution to Eq. (31) along with
the input/output Gaussians and the control field found
in Eqs. (38a) and (42a). Parameters: γ/ΩG = 30, γL/ΩG =
5×10−3, τe =τG, τo/τG =4.08, T/τG =9.

T > Ti+τo. Note that the control field responsible for
emission is different from a simple time-inversion of the
control field responsible for absorption. This is because
the presence of loss breaks the time-reversal symmetry
of the equations of motion in Eq. (31).

In the presence of loss, it is possible to emit a wave
packet with the desired shape but reduced amplitude,
ξout(t)≈

√
ηG(t − To), where η is a real number smaller

than 1. Note, however, that this is only true in the emis-
sion interval, t ∈ [To−τo, tN ], since ξout(t) generally has
some small contribution from the absorption interval due
to imperfect absorption. The probability that the photon
passes by the cavity without being absorbed is

Ppass ≡
∫ 2Ti

t0

|ξout(t)|2dt. (47)

The probability of a successful storage process is equal to
η in the limit Ppass → 0. The maximum possible value of
η can be found by inserting ξ=

√
ηG into the denominator

of Eq. (42a) and ensuring that the terms under the square
root are positive for all t. For the Gaussian in Eq. (45),
we have

Fo ≡ 2

∫ ∞
−∞
fo(t)dt = γ exp

[
γL

(
To+

γLτ
2
G

16 ln(2)

)]
, (48)

and we therefore choose η as

η =
γ|ψ01(t0)|2

Fo
(
1− εη

)
. (49)

The value of the small parameter, εη, is optimized by
minimizing |ψ01(tN)|2, which is the probability that an
absorbed photon remains in mode b after the emission
interval. Finite values of Ppass limits the achievable over-
lap of the output wave packet with a desired shape, which
is seen by calculating the conditional fidelity in Eq. (27)
using ξout =

√
ηG(t−To) in the emission interval

F1 =

∣∣∣ ∫ tNt0 ξout(t)G(t−To)∗dt
∣∣∣2∫ tN

t0
|ξout(t)|2dt

≈ η

Ppass+η
, (50)

where we changed the lower integration limit from t0
to To− τo in the numerator since G(t−To) ≈ 0 outside
the emission interval. We also divided the integration
of |ξout|2 into intervals [0, 2Ti] and [To − τo, tN ] since
|ξout(t)|2 ≈ 0 in the storage interval. Fig. 5 shows a

FIG. 5. Degradation of conditional fidelity in the limit of
large loss. Parameters: γ/ΩG =30, τe =τG.

plot of the conditional fidelity using ξout calculated
from Eq. (31) along with the approximation in Eq. (50).
It also shows that F1 → 1−Ppass in the limit where
Ppass � η and η ≈ 1, which is seen from a Taylor

expansion of Eq. (50), F1≈ 1/(1+Ppass/η)≈ 1−Ppass/η.
It is important to note that Fig. 5 clearly illus-
trates that very small error in the conditional fidelity is
possible even in the case of an efficiency well below unity.

The value of Ppass only depends on the ratio γ/ΩG

and Fig. 6 plots the dependence for both second- and
third-order nonlinear materials. It is seen that Ppass

FIG. 6. Ppass as a function of γ/ΩG for χ(2) and χ(3) materials.
Parameters: γL =0, τe =τG.

falls off faster for χ(2) materials due to the absence of
cross-phase modulation. In Appendix E 1 we derive
expressions suggesting that a five times larger coupling
rate, γ, is needed for a χ(3) material, which agrees well
with the result in Fig. 6. Importantly, Fig. 6 shows that
Ppass approaches zero extremely fast as the ratio γ/ΩG

increases.

VI. NONLINEAR DYNAMICS

In this section we consider three types of nonlinear-
ities that mediate photon-photon interactions and de-
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scribe the necessary extensions to the equations of mo-
tion in Section IV to account for them. Since we have a
particular interest in two-qubit logic gates for quantum
information processing, we consider cavity configurations
enabling a c-phase gate. Note that we envision a configu-
ration where two identical cavities are placed in between
two 50/50 beam-splitters that convert the two-qubit state

|11〉 into 1/
√

2(|02〉+|20〉) [42, 43]. In this case, the phase
ϑn in Eq. (22) is important in that ϑ2−2ϑ1 =π is required
for the gate transformation |00〉 → |00〉, |10〉 → |10〉,
|01〉 → |01〉, |11〉 → −|11〉. For a more complete analysis
of gate performance we refer to Ref. [44].

We start by considering a material with a third-order
nonlinearity, then we describe second-order nonlineari-
ties, and finally interactions with a two-level emitter. In
all numerical examples we use the Gaussian input wave
packet in Eq. (45).

A. Material with a Third-order Nonlinearity

Only modes a and b are needed in the case of a χ(3) ma-
terial. The Hamiltonian corresponding to photon-photon
interactions is

Ĥχ(3) =~χ3

[
â†âb̂†b̂+

(
â†â−1

)
â†â+

(
b̂†b̂−1

)
b̂†b̂

4

]
. (51)

The corresponding unitary time-evolution operator is

Ûχ(3) = −i∆tχ3b̂
†b̂â†â −

i
1

4
∆tχ3

[(
b̂†b̂− 1

)
b̂†b̂+

(
â†â− 1

)
â†â
]
. (52)

Only states with two photons in the system are affected,
so that

Ûχ(3) |20〉 = −iχ3∆t
1

4

(
2− 1

)
2|20〉 = −iχ3

2
∆t|20〉 (53a)

Ûχ(3) |11〉 = −iχ3∆t|11〉 (53b)

Ûχ(3) |02〉 = −iχ3∆t
1

4

(
2− 1

)
2|02〉 = −iχ3

2
∆t|02〉. (53c)

The equations of motion for the corresponding coeffi-
cients in Eq. (35) are therefore modified as

ψ̇20 = −
(
i2δa + Γ+i

χ3

2
+i4|Λ|

)
ψ20−i

√
2Λ∗ψ11 +√
2γψ(2)

10 ξin (54a)

ψ̇11 = −
(
i(δa + δb) +

Γ + γL
2

+ iχ3 + i4|Λ|
)
ψ11 −

i
√

2
[
Λψ20+Λ∗ψ02

]
+
√
γψ(2)

01 ξin (54b)

ψ̇02 =−
(
i2δb+γL+i

χ3

2
+i4|Λ|

)
ψ02 − i

√
2Λψ11. (54c)

It is seen from Eq. (54c) that the amplitude of the state
|02〉 acquires a phase proportional to χ3/2, which the
amplitude of the state |01〉 in Eq. (31b) does not. By

a careful choice of storage time, T , one may achieve the
condition ∆ϑ = ϑ2 − 2ϑ1 = π, where ϑn is the phase
in Eq. (22). Fig. 7 plots the phase difference as a func-
tion of storage time for a range of different nonlinear cou-
pling coefficients, χ3. It shows how the phase condition,

FIG. 7. Nonlinear phase difference, ∆ϑ, and fidelity, F2, as a
function of storage time for different values of the nonlinear
coupling rate, χ3, ranging from 0.01ΩG (blue) to 0.5ΩG (red).
The black line shows the fidelity corresponding to ∆ϑ = π.
Parameters: γ/ΩG =30, γL/ΩG =10−5, τe =τG.

∆ϑ = π, may be met using a smaller nonlinearity and
larger storage time (blue curve) or a larger nonlinearity
and smaller storage time (red curve). Fig. 7 also plots
the corresponding fidelity, F2, which appears to reach an
optimum for T/τG ≈ 100. The fidelity degrades when
increasing χ3 because the solutions for the control fields
were found assuming a single photon input and photon-
photon interactions during the absorption and emission
process renders the control fields sub-optimal. The fi-
delity also degrades if χ3 is decreased too much because
losses increase with increased storage time.

B. Material with a Second-order Nonlinearity

For materials exhibiting a χ(2) nonlinearity, we ex-
plore the process of second-harmonic-generation where
ωc = 2ωb. With the introduction of mode c, the system
states are written as |nanbnc〉 with na, nb, and nc repre-
senting the number of photons in each mode. The Hamil-
tonian describing the interaction is given in Eq. (13b).
The corresponding unitary time-evolution operator is

ÛSHG = −iχ2∆t
(
ĉb̂†b̂† + ĉ†b̂b̂

)
. (55)

From Eq. (55) we see that it only causes a coupling be-
tween states |020〉 and |001〉

ÛSHG|020〉 = −iχ2∆t
√

2|001〉 (56a)

ÛSHG|001〉 = −iχ2∆t
√

2|020〉. (56b)
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The equations of motion for coefficients corresponding to
two photons in the system are then

ψ̇200 =−
(
i2δa+Γ

)
ψ200−i

√
2Λ∗ψ110+

√
2γψ(2)

100ξin (57a)

ψ̇110 = −
(
i(δa+δb)+

Γ + γL
2

)
ψ110 − i

√
2Λψ200 −

i
√

2Λ∗ψ020 +
√
γψ(2)

010ξin (57b)

ψ̇020 = −
(
i2δb+γL

)
ψ020−i

√
2Λψ110−i

√
2χ2ψ001 (57c)

ψ̇001 = −
(
iδc +

γL
2

)
ψ001 − i

√
2χ2ψ020. (57d)

It is the fact that SHG requires two input photons that
enables the phase condition ∆ϑ = π to be fulfilled. To
understand why, consider the case in which the storage
time is adjusted such that a single Rabi oscillation be-
tween states |020〉 and |001〉 occur. An example is shown
in Fig. 8. Occupation probabilities of the system states
are found in Appendix D and plotted as a function of
time in Fig. 8a. It shows how the photons are transferred
from state |020〉 to |001〉 and back via SHG. The phase
of ψ020(t) jumps by π as its amplitude becomes zero in
the middle of the storage interval (red curve in Fig. 8b).
The phase of ψ01(t) (blue curve in Fig. 8b) remains con-

FIG. 8. (a) Occupation probabilities of system states as a
function of time. (b) Phase of the coefficient corresponding
to state |01〉 (blue) and |020〉 (red). (c) Error measured as
the absolute distance from a Gaussian, |ξout(t)−

√
ηG(t−To)|

(blue) and |ξout(tm, To)+ηG(tm−To)G(0)| (red). Parameters:
γ/ΩG =6ΩG, γL/ΩG =1.5×10−4, τe =τG, η=0.9963.

stant since a single photon cannot undergo SHG. The
relevant phase difference, ∆ϑ, is therefore seen to be ex-
actly π. Fig. 8c shows the error in the output wave packet

for both single- and two-photon inputs. Only a negligi-
ble error is observed for the single-photon input whereas
the two-photon error is more pronounced leading to a
fidelity of F2 = 99.1% for this example. Similar to the
case of a χ(3) material, the fidelity of two-photon outputs
are degraded by the photon-photon interaction occurring
during the absorption and emission process, which is not
accounted for in the solution of the control fields.

C. Interaction with a Two-Level Emitter

We investigate the use of atom-like two-level emitters
because their nonlinearity is much stronger than the non-
resonant nonlinearities considered above. To ensure com-
plete absorption of incoming photons, the TLE should
not be coupled to mode b since we expect the nonlinear
interaction during absorption and emission to be pro-
hibitively strong. Instead, we use a tertiary mode, c,
with ωc−ωb 6= ωb−ωa, which ensures that modes b and c
are not coupled via the control field Λ(t). We envision a
control scheme where a first control pulse, Λi(t), is used
to absorb incoming photons into mode b. Subsequently,
a second control pulse, Π(t), couples modes b and c. Fi-
nally, a third control pulse, Λo(t), couples the photons
back into the waveguide through mode a. The first and
last stage of this control protocol is therefore still de-
scribed by the equations of motion in Section IV D. With
the introduction of cavity mode c and the TLE, states
with two photons in the system are: |100〉|e〉, |010〉|e〉,
|001〉|e〉, |200〉|g〉, |020〉|g〉, |002〉|g〉, |110〉|g〉, |101〉|g〉,
and |011〉|g〉.

During the second stage of the protocol, mode a
is empty so we introduce new coefficients, φnbncg(t)
and φnbnce(t), corresponding to states |0nbnc〉|g〉 and
|0nbnc〉|e〉. The dynamics is governed by the following
equations of motion

φ̇20g =−
(
i2δb+γL+iχ3+i4|Π|

)
φ20g−i

√
2Π∗φ11g (58a)

φ̇11g = −
[
i(δb + δc) + γL + iχ3 + i4|Π|

]
φ11g −

i
√

2Πφ20g − i
√

2Π∗φ02g − igφ10e (58b)

φ̇02g = −
(
i2δc + γL + iχ3 + i4|Π|

)
φ02g −

i
√

2Πφ11g − i
√

2gφ01e (58c)

φ̇10e = −
(
i(δb+δe) +

γe + γL
2

+ i2|Π|
)
φ10e −

iΠ∗φ01e − ig∗φ11g (58d)

φ̇01e = −
(
i(δc+δe) +

γe + γL
2

+ i2|Π|
)
φ01e −

iΠφ10e − i
√

2g∗φ02g. (58e)

Note that the dynamics is also changed for single-photon
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inputs, which have the following equations of motion

φ̇10g = −
(
iδb +

γL
2

+ i2|Π|
)
φ10g − iΠ∗φ01g (59a)

φ̇01g = −
(
iδc+

γL
2

+i2|Π|
)
φ01g−iΠφ10g−igφ00e (59b)

φ̇00e = −
(
iδe +

γe
2

)
φ00e − ig∗φ01g. (59c)

Many interesting properties of the nonlinear inter-
action may be investigated using Eqs. (58) and (59)
but here we again consider the implementation of
a c-phase gate. With the protocol described above,
the conditions for a successful gate operation are:
1) The occupation probability of mode b must equal
one for both single- and two-photon inputs after the
application of Π(t). 2) The phase difference must
be arg[φ20g(TΠ)] − 2 arg[φ10g(TΠ)] = π, where Π(t) is
non-zero only in the interval t ∈ [2Ti, TΠ]. We numeri-
cally optimize the control function Π(t) to fulfill these
conditions. An example of the resulting dynamics is

FIG. 9. Time evolution of the second stage of the control
protocol. (a) Probability that all incoming photons occupy
mode b for one- (blue) and two-photon (red) inputs. The
control function is also plotted (scaled to a maximum of 1).
(b) Phase difference arg[φ20g(t−2Ti)]−2 arg[φ10g(t−2Ti)] as a
function of time. Parameters: γL =0.

shown in Fig. 9. It shows how the conditions above may
be met using a control function plotted in Fig. 9a.

Here, we considered the host crystal containing the
TLE to be a third-order nonlinear material. The optical
control fields would not interact with the TLE as they
would be very far off-resonant. However, it would be in-
teresting to consider the TLE coupled to mode b and let-
ting Π(t) be a strong electrical field that causes a detun-
ing between the TLE and mode b during absorption and
emission via an AC Stark shift of the TLE transition en-

ergy. This would reduce the effective nonlinear coupling
between the photons during absorption and emission and
could potentially eliminate the need for mode c.

Note that the three-stage control protocol avoids any
error due to nonlinear interactions between the photons
during absorption and emission. The fidelity of a c-phase
gate with a TLE nonlinearity is therefore only limited by
loss when no decoherence mechanisms are included in the
model. A similar extension of the control protocol could
be applied to the case of second-order nonlinearities by
introducing a fourth mode, b′, coupled to mode c via
SHG. The second control field, Π(t), coupling modes b
and b′ would then effectively turn on the nonlinearity af-
ter the photons were coupled into mode b. Alternatively,
letting Π(t) be an electric field that induces a χ(2) coef-
ficient in a material with a third-order nonlinearity [45]
would constitute an equivalent method to the AC stark
shift of a TLE.

VII. DISCUSSION

Our simulation results illustrate that, within the limi-
tations of our model, it is possible to absorb and emit
photons with Gaussian wave packets into- and out of
a dynamically coupled cavity. We also show that high
fidelity c-phase gates may be implemented using such
structures with three different types of nonlinearity.
These fidelities were obtained while excluding certain
sources of error from our analysis including noise-photons
being injected from the loss channel, decoherence of the
TLE, and higher-order nonlinear effects.

We analyzed the interaction with two-level emitters in
the context of two-qubit gates, but we expect dynami-
cally coupled cavities to provide performance improve-
ments in other applications as well. For instance, perfect
state transfer between photonic qubits and solid-state
matter qubits has been proposed using classical control
fields coupling the energy levels of the matter qubit [46].
There is a strong analogy between that method and dy-
namically coupled cavities, however, we expect it to be
easier to engineer the photonic- rather than the atomic
degrees of freedom in practical implementations.
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Appendix A: Rotating Frame

The Hamiltonian of the three cavity modes, four pump fields, and the TLE is Ĥ, where

Ĥ

~
= ωaâ

†â+ ωbb̂
†b̂+ ωcĉ

†ĉ+ ωpp̂
†p̂+ ω1p̂

†
1p̂1 + ω2p̂

†
2p̂2 + ω3p̂

†
3p̂3 + ωeσ̂z + i

√
γ

∆t

(
â†ŵn − âŵ†n

)
+

ωw

N∑
k=1

ŵ†kŵk + χ2

(
p̂†â†b̂+ p̂b̂†â

)
+ χ3

(
p̂†1p̂2â

†b̂+ p̂†2p̂1b̂
†â
)

+ χ3

(
p̂†1p̂3b̂

†ĉ+ p̂†3p̂1ĉ
†b̂
)
. (A1)

(Since we wish merely to provide an example, we have left out the cross-phase modulation, self-phase modulation,
and second harmonic generation from the Hamiltonian.) We wish to move into the interaction picture, placing the
evolution generated by the Hamiltonian H0 into the operators, where

H0

~
= ωwâ

†â + (ωb− δb)b̂†b̂ + (ωc− δc)ĉ†ĉ + ωcσ̂z + ωpp̂
†p̂ + ω1p̂

†
1p̂1 + ω2p̂

†
2p̂2 + ω3p̂

†
3p̂3 + ωw

N∑
k=1

ŵ†kŵk. (A2)

Under this Hamiltonian the evolution of the operators is obtained merely by multiplying them by time-dependent

exponentials. Denoting the interaction-picture operators by upper-case letters, we have Â = âe−iωwt, B̂ = b̂e−i(ωb−δb)t,
Ĉ = ĉe−i(ωc−δc)t, Σ̂z = σ̂ze

−iωet, P̂ = p̂e−iωpt, P̂j = p̂je
−iωjt (j = 1, 2, 3), Ŵk = ŵke

−iωwtk . Since we have removed
this “rotating” evolution from the state of the system, we refer to the interaction picture as being in a “rotating
frame”.

The evolution of the state of the system is now given by an effective interaction Hamiltonian, usually referred to as
the “interaction Hamiltonian in the interaction picture”, which is given by

ĤI(t) = Û(Ĥ − Ĥ0)Û† (A3)

in which Û = e−iĤ0t/~. Since the right-hand side of the above equation is merely the Hamiltonian Ĥ − Ĥ0 evolved
in the interaction picture, we obtain ĤI(t) merely by replacing the Schrödinger picture operators in Ĥ − Ĥ0 with

their interaction picture counterparts given above. While in general ĤI(t) will be time-dependent, if we choose the
detuning parameters, δa through δe, to account for the detunings between the various modes and the TLE, we obtain
a time-independent interaction picture Hamiltonian, namely

Ĥrot = ~δaâ†â+ ~δbb̂†b̂+ ~δcĉ†ĉ+ ~δeσ̂z + i~
√

γ

∆t

(
â†ŵn − âŵ†n

)
+ ~χ2

(
p̂†â†b̂+ p̂b̂†â

)
+

~χ3

(
p̂†1p̂2â

†b̂+ p̂†2p̂1b̂
†â
)

+ ~χ3

(
p̂†1p̂3b̂

†ĉ+ p̂†3p̂1ĉ
†b̂
)
. (A4)

For the scenario in which the nonlinearity is provided by the TLE, the various detunings are chosen to satisfy

δa ≡ ωa − ωw
δb ≡ δΛ + δa
δc ≡ δΠ + δb
δe ≡ ωe − ωc
δΛ ≡ (ω2 − ω1)− (ωa − ωb)
δΠ ≡ (ω3 − ω1)− (ωb − ωc)


TLE nonlinearity . (A5)

Here we have chosen δb to remove the oscillating exponential factor in the FWM term corresponding to the control
field Λ(t):

P̂ †2 P̂1B̂
†Â = p̂†2p̂1b̂

†â exp
[
(ω2 − ω1) + ωb − δb − (ωa − δa)

]
⇒

δb = (ω2 − ω1)− (ωa − ωb) + δa ≡ δΛ + δa, (A6)

where we have defined δΛ, which describes energy mismatch in the FWM process that couples modes a and b. Similarly,
we choose δc to remove any exponential factor on the FWM term corresponding to the control field Π(t)

P̂ †3 P̂1Ĉ
†B̂ = p̂†3p̂1ĉ

†b̂ exp
[
(ω3 − ω1)− (ωb − δb) + (ωc − δc)

]
⇒

δc = (ω3 − ω1)− (ωb − ωc) + δb ≡ δΠ + δb, (A7)
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where we defined δΠ, which describes energy mismatch in the FWM process that couples modes b and c.

In a χ(2) material, where there is no control field Π(t), we instead define the detunings as

δa ≡ ωa − ωw
δb ≡ δΛ + δa
δc ≡ ωc − 2ωb
δΛ ≡ ωp − (ωb − ωa)

 χ(2) material, (A8)

where δc now describes energy mismatch in the second harmonic generation process.

Appendix B: Dynamics with One Cavity Mode and One Input Photon

Before the dynamics begins, the state is

|ψ0〉 =

N∑
k=1

ξin
k

√
∆t|0〉|1k〉, (B1)

where |0〉|1k〉 is the state with one photon in bin k and no photons in the system. The state after each time step is
found using the time evolution operator

|ψn+1〉 = Ûn+1|ψn〉. (B2)

After the first time step, the state is therefore

|ψ1〉 =

N∑
k=2

ξin
k

√
∆t|0〉|1k〉+ ξin

1

√
∆t|0〉|11〉+

√
γξin

1 ∆t|1〉|∅〉. (B3)

We define the Schrödinger coefficient corresponding to the photon being in the cavity mode as ψ1(1)=
√
γξin

1 ∆t. Note
that we split the summation over k into input states, n > k, and output states, k ≤ n, for which we use boldface
notation. After the second step, the state is

|ψ2〉 =

N∑
k=3

ξin
k

√
∆t|0〉|1k〉+

2∑
k=1

ξin
k

√
∆t|0〉|1k〉 −

√
γψ1(1)

√
∆t|0〉|12〉 +

[(
1− iδa∆t− Γ

2
∆t
)
ψ1(1) +

√
γξin

2 ∆t
]
|1〉|∅〉, (B4)

where the third term corresponds to a photon being emitted by the cavity into bin 2 on the output side. The fourth
term contains a contribution from the identity operator, a detuning term, a decay term, as well as a feeding term
corresponding to absorption of a photon from the waveguide in bin 2. Rewriting Eq. (B4) as

|ψ2〉 =

N∑
k=3

ξin
k

√
∆t|0〉|1k〉+ ξout

1

√
∆t|0〉|11〉+

[
ξin
2 −
√
γψ1(1)

]√
∆t|0〉|12〉+ ψ1(2)|1〉|∅〉 (B5)

lets us identify the update rules

ψ1(n+ 1) = ψ1(n) +
[(
− iδa −

Γ

2

)
ψ1(n) +

√
γξin
n+1

]
∆t ⇒ (B6)

ψ1(n+ 1)− ψ1(n)

∆t
= −

(
iδa +

Γ

2

)
ψ1(n) +

√
γξin
n+1 (B7)

ξout
n = ξin

n −
√
γψ1(n− 1). (B8)

We may now take the continuum limit, ∆t→ 0, to obtain the equation of motion and input-output relation

ψ̇1(t) =
(
− iδa −

Γ

2

)
ψ1(t) +

√
γξin(t) (B9a)

ξout(t) = ξin(t)−√γψ1(t). (B9b)

Note that we used ψ1(n−1) → ψ1(n) and ξin
n+1 → ξin

n in the continuum limit, so all functions are evaluated at the
same time in Eq. (B9).
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Appendix C: Dynamics with Two Cavity Modes and One Input Photon

Before the dynamics begins, the state is

|ψ0〉 =

N∑
k=1

ξin
k

√
∆t|00〉|1k〉, (C1)

where |00〉 is the state with no photons in either mode a or b. After step one, the state is

|ψ1〉 = |ψ0〉+
√
γξin

1 ∆t|10〉|∅〉 ≡ |ψ0〉+ ψ10(1)|10〉|∅〉, (C2)

where we defined the amplitude for the state with one photon in mode a and no photons in mode b, ψ10. After step
two, the state is

|ψ2〉 =

N∑
k=3

ξin
k

√
∆t|00〉|1k〉 −

√
γψ10(1)

√
∆t|00〉|11〉+

[
ξin
2 −
√
γψ10(1)

]√
∆t|00〉|12〉 +

[(
1− iδa∆t− Γ

2
∆t− i2|Λ2|∆t

)
ψ10(1) +

√
γξin

2 ∆t
]
|10〉|∅〉 − iΛ2ψ10(1)∆t|01〉|∅〉 ≡

N∑
k=3

ξin
k

√
∆t|00〉|1k〉+

2∑
k=1

ξout
k

√
∆t|00〉|1k〉+ ψ10|10〉|∅〉+ ψ01|01〉|∅〉. (C3)

After step three, the state is

|ψ3〉 =

N∑
k=4

ξin
k

√
∆t|00〉|1k〉+

3∑
k=1

ξout
k

√
∆t|00〉|1k〉+

[(
1−iδb∆t−

γL
2

∆t−i2|Λ3|∆t
)
ψ01(2)−iΛ3ψ10(2)∆t

]
|01〉|∅〉 +

[(
1− iδa∆t− Γ

2
∆t− i2|Λ3|∆t

)
ψ10(1)− iΛ∗3ψ01(2)∆t+

√
γξin

3 ∆t
]
|10〉|∅〉. (C4)

Eq. (C4) contains all the possible dynamics and we can use it to read off the update rules

ψ10(n+ 1)− ψ10(n)

∆t
=
(
− iδa −

Γ

2
− i2|Λn+1|

)
ψ10(n)− iΛ∗n+1ψ01(n) +

√
γξin
n+1 (C5)

ψ01(n+ 1)− ψ01(n)

∆t
=
(
− iδb −

γL
2
− i2|Λn+1|

)
ψ01(n)− iΛn+1ψ10(n) (C6)

ξout
n = ξin

n −
√
γψ10(n− 1). (C7)

In the continuum limit, we have the ODEs and input-output relation

ψ̇10(t) = −
(
iδa +

Γ

2
+ i2|Λ(t)|

)
ψ10(n)− iΛ(t)∗ψ01(t) +

√
γξin(t) (C8a)

ψ̇01(t) = −
(
iδb +

γL
2

+ i2|Λ(t)|
)
ψ01(t)− iΛ(t)ψ10(t) (C8b)

ξout(t) = ξin(t)−√γψ10(t). (C8c)

Appendix D: Dynamics with Two Cavity Modes and Two Input Photons

For identical input photons, the input state is

|ψ0〉 =
√

2

N∑
j=1

N∑
k>j

ξin
j ξ

in
k ∆t|00〉|1j1k〉. (D1)

Let us show that the state in Eq. (D1) is normalized. In the continuum limit, it corresponds to

|ψ〉 =
√

2

∫ tN

t0

dtj

∫ tN

tj

dtkξ(tj)ξ(tk)|00〉|1j1k〉, (D2)
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where we omitted the in superscripts. Let us calculate its norm

〈
ψ
∣∣ψ〉 = 2

∫ tN

t0

dt′j

∫ T

t′j

dt′k

∫ tN

t0

dtj

∫ tN

tj

dtkξ
∗(tj′)ξ(tj)ξ

∗(tk′)ξ(tk)
〈
1′j
∣∣1j〉〈1′k∣∣1k〉 ⇒ (D3a)

〈
ψ
∣∣ψ〉 = 2

∫ tN

t0

dtj
∣∣ξ(tj)∣∣2 ∫ tN

tj

dtk
∣∣ξ(tj)∣∣2 = 2

∫ tN

t0

dtj
∣∣ξ(tj)∣∣2[ ∫ tN

t0

dtk
∣∣ξ(tk)

∣∣2 − ∫ tj

t0

dtk
∣∣ξ(tk)

∣∣2] ⇒ (D3b)

〈
ψ
∣∣ψ〉 = 2

∫ tN

t0

dtj
∣∣ξ(tk)

∣∣2[1− ∫ tj

t0

dtk
∣∣ξ(tk)

∣∣2] = 2− 2

∫ tN

t0

dtj |ξ(tj)
∣∣2 ∫ tj

t0

dtk
∣∣ξ(tk)

∣∣2 ⇒ (D3c)

〈
ψ
∣∣ψ〉 = 2− 2

∫ tN

t0

dtjΞ̇(tj)Ξ(tj) = 2− 2

∫ tN

t0

dtj
d

dtj

(1

2
Ξ2(tj)

)
= 2−

[
Ξ(T )− Ξ(0)

]
= 2− (1− 0) = 1, (D3d)

where Ξ̇(tj)= |ξ(tj)|2.

To begin with, we follow the dynamics of states with one photon in the system and one photon on the input side

|ψn〉 = ψ(2)

10 (n)

N∑
k>n

ξin
k

√
∆t|10〉|1k〉+ ψ(2)

01 (n)

N∑
k>n

ξin
k

√
∆t|01〉|1k〉+ . . . (D4)

The superscript (2) signifies that the equation of motion for ψ(2)

10 (t) is driven by two photons on the input side. As
in Appendices B and C we follow the evolution of these states through the first time steps in order to identify the
update rules. After the first step, we have

|ψ1〉 =
√

2ξin
1

√
γ∆t

N∑
k>1

ξin
k

√
∆t|10〉|1k〉+ . . . = ψ(2)

10 (1)

N∑
k>1

ξin
k

√
∆t|10〉|1k〉+ . . . , (D5)

After step 2, we have

|ψ2〉 =
[(

1− iδa∆t− Γ

2
∆t− i2|Λ2|∆t

)
ψ(2)

10 (1) +
√

2ξin
2

√
γ∆t

] N∑
k>2

ξin
k

√
∆t|10〉|1k〉 −

iΛ2ψ
(2)

10 (1)

N∑
k>2

ξin
k

√
∆t|01〉|1k〉+ . . . = ψ(2)

10 (2)

N∑
k>2

ξin
k

√
∆t|10〉|1k〉+ ψ(2)

01 (2)

N∑
k>2

ξin
k

√
∆t|01〉|1k〉+ . . . (D6)

After step 3, all the possible interactions linking ψ(2)

10 and ψ(2)

01 are included

|ψ3〉 =
[(

1− iδa∆t− Γ

2
∆t− i2|Λ3|∆t

)
ψ(2)

10 (2) +
√

2ξin
3

√
γ∆t− iΛ∗3ψ

(2)

01 (2)∆t
] N∑
k>3

ξin
k

√
∆t|10〉|1k〉 +

[(
1− iδb∆t−

γL
2

∆t− i2|Λ3|∆t
)
ψ(2)

01 (2)− iΛ3ψ
(2)

10 (2)∆t
] N∑
k>3

ξin
k

√
∆t|01〉|1k〉+ . . . (D7)

From Eq. (D7) we identify the equations of motion in the continuum limit

ψ̇(2)

10 (t) = −
(
iδa −

Γ

2
+ i2|Λ(t)|

)
ψ(2)

10 (t)− iΛ(t)∗ψ(2)

01 (t) +
√

2γξin(t) (D8a)

ψ̇(2)

01 (t) = −
(
iδb −

γL
2

+ i2|Λ(t)|
)
ψ(2)

01 (t)− iΛ(t)ψ(2)

10 (t). (D8b)

Next, we consider states with two photons in the system

|ψn〉 = ψ20(n)|20〉|∅〉+ ψ11(n)|11〉|∅〉+ ψ02(n)|02〉|∅〉+ . . . (D9)

These states first appear after step 2

|ψ2〉 =
√

2γψ(2)

10 (1)ξin
2 ∆t|20〉|∅〉+

√
γψ(2)

01 (1)ξin
2 ∆t|11〉|∅〉+ . . . = ψ20(2)|20〉|∅〉+ ψ11(2)|11〉|∅〉+ . . . , (D10)
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where the factor of
√

2 in the first term comes from â† acting on |10〉. After step 3, we have

|ψ3〉 =
[(

1− i2δa∆t− Γ∆t− i4|Λ3|∆t
)
ψ20(2)− i

√
2Λ∗3ψ11(2)∆t+ ψ(2)

10 (2)ξin
3

√
2γ∆t

]
|20〉|∅〉 +[(

1−i(δa+δb)∆t−
Γ+γL

2
∆t−i4|Λ3|∆t

)
ψ11(2)−i

√
2∆tΛ3ψ20(2) +

√
γψ(2)

01 (2)ξin
3 ∆t

]
|11〉|∅〉 −

i
√

2Λ3ψ11(2)∆t|02〉|∅〉+ . . . (D11)

After step 4, all the dynamics describing the states with two photons in the system is present

|ψ4〉 =
[(

1− i2δa∆t− Γ∆t− i4|Λ4|∆t
)
ψ20(3)− i

√
2Λ∗4ψ11(3)∆t+ ψ(2)

10 (3)ξin
4

√
2γ∆t

]
|20〉|∅〉 +[(

1−i(δa+δb)∆t+
Γ+γL

2
∆t−i4|Λ4|∆t

)
ψ11(3)−i

√
2∆t

(
Λ4ψ20(3)+Λ∗4ψ02(3)

)
+ψ(2)

01 (3)ξin
4

√
γ∆t

]
|11〉|∅〉 +[(

1− i2δb − γL∆t− i4|Λ4|∆t
)
ψ02(3)− i

√
2Λ4ψ11(3)

]
|02〉|∅〉+ . . . (D12)

We identify the equations of motion in the continuum limit

ψ̇20(t) = −
(
i2δa + Γ + i4|Λ(t)|

)
ψ20(t)− i

√
2Λ(t)∗ψ11(t) +

√
2γψ(2)

10 (t)ξin(t) (D13a)

ψ̇11(t) = −
(
i(δa + δb) +

Γ + γL
2

+ i4|Λ(t)|
)
ψ11(t)− i

√
2Λ(t)ψ20(t)− i

√
2Λ(t)∗ψ02(t) +

√
γψ(2)

01 (t)ξin(t) (D13b)

ψ̇02(t) = −
(
i2δb + γL + i4|Λ(t)|

)
ψ02(t)− i

√
2Λ(t)ψ11(t). (D13c)

Next, we consider states with one photon on the input- and one on the output side. There are two paths resulting
in this state (see Fig. 3). One, a photon is emitted into the waveguide from the system while the other photon remains
on the input side. Two, one of the two input photons passes by the system without interacting. If this occurs in bin
m, the contribution to the state is

|ψm〉 =
[
−√γψ(2)

10 (m) +
√

2ξin
m

] N∑
k>m

ξin
k ∆t|00〉|1k1m〉+ . . . = ψ00(m)

N∑
k>m

ξin
k ∆t|00〉|1k1m〉+ . . . (D14)

If the photon remaining on the input side is absorbed, it gives rise to states with one photon in the system and one
on the output side

|ψn〉 = ψ00(m)
[
ψ(1)

10 (m,n)
√

∆t|10〉|1m〉+ ψ(1)

01 (m,n)
√

∆t|01〉|1m〉
]

+ . . . , (D15)

where we factored out ψ00(m) to obtain equations of motion for ψ(1)

10 (tm, t) and ψ(1)

01 (tm, t) that are similar to Eq. (D8).
These amplitudes are functions of two times, where tm describes the time the dynamics was initialized by the formation
of the state |1k1m〉. The superscript (1) signifies that the equations of motion for ψ(1)

10 (tm, t) and ψ(1)

01 (tm, t) are driven
by one photon on the input side. Let us again follow the evolution of Eq. (D15) for a few time steps to determine the
equations of motion for ψ(1)

10 (tm, t) and ψ(1)

01 (tm, t). At step n+ 1, we have

|ψn+1〉
ψ00(m)

=
[(

1− iδa∆t− Γ

2
∆t− i2|Λn+1|∆t

)
ψ(1)

10 (m,n)− iΛ∗n+1ψ01(m,n)∆t+
√
γξin
n+1∆t

]√
∆t|10〉|1m〉 +[(

1− iδb∆t−
γL
2

∆t− i2|Λn+1|∆t
)
ψ(1)

01 (m,n)− iΛn+1ψ10(m,n)∆t
]√

∆t|01〉|1m〉+ . . . =

ψ(1)

10 (m,n+ 1)
√

∆t|10〉|1m〉+ ψ(1)

01 (m,n+ 1)
√

∆t|01〉|1m〉+ . . . (D16)

From Eq. (D16) we obtain the equations of motion

ψ̇(1)

10 (tm, t) = −
(
iδa +

Γ

2
+ i2|Λ(t)|

)
ψ(1)

10 (tm, t)− iΛ(t)∗ψ(1)

01 (tm, t) +
√
γξin(t) (D17a)

ψ̇(1)

01 (tm, t) = −
(
iδb +

γL
2

+ i2|Λ(t)|
)
ψ01(tm, t)− iΛ(t)ψ(1)

10 (tm, t). (D17b)

Comparing Eqs. (D8) and (D17) we see that there is an additional factor of
√

2 on the driving term
√
γξin(t)

in Eq. (D8) because it is driven by two photons as opposed to one in Eq. (D17). The initial condition for Eq. (D17)
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is ψ(1)

10 (tm, tm)=0 and ψ(1)

01 (tm, tm)=0 because the system started out in the state |00〉 in Eq. (D14).

Finally, we need to consider states with one photon in the system and one photon on the output side

|ψn〉 = ψ(0)

10 (m,n)
√

∆t|10〉|1m〉+ ψ(0)

01 (m,n)
√

∆t|01〉|1m〉+ . . . (D18)

There are four different paths leading to this state. One (Two), a photon is emitted into the waveguide while the
state of the system is |20〉 (|11〉). Three (Four), the photon on the input side passes by the system without interacting
while the system is in the state |10〉 (|01〉). If this occurs in bin m, the contribution to the state is

|ψm〉 =
[
−
√

2γψ20(m) + ψ(2)

10 (m)ξin
m

]√
∆t|10〉|1m〉+

[
−√γψ11(m) + ψ(2)

01 (m)ξin
m

]√
∆t|01〉|1m〉+ . . . =

ψ(0)

10 (m,m)
√

∆t|10〉|1m〉+ ψ(0)

01 (m,m)
√

∆t|01〉|1m〉+ . . . (D19)

At time tm+1, the state is

|ψm+1〉 =
[(

1− iδa∆t− Γ

2
∆t− i2|Λm+1|∆t

)
ψ(0)

10 (m,m)− iΛ∗m+1ψ
(0)

01 (m,m)∆t
]√

γ∆t|10〉|1m〉 +[(
1− iδb∆t−

γL
2

∆t− i2|Λm+1|∆t
)
ψ(0)

01 (m,m)− iΛm+1ψ
(0)

10 (m,m)∆t
]√

γ∆t|01〉|1m〉+ . . . =

ψ(0)

10 (m,m+1)
√

∆t|10〉|1m〉+ ψ(0)

01 (m,m+1)
√

∆t|01〉|1m〉+ . . . (D20)

From Eq. (D20) we identify the equations of motion

ψ̇(0)

10 (tm, t) = −
(
iδa +

Γ

2
+ i2|Λ(t)|

)
ψ(0)

10 (tm, t)− iΛ(t)∗ψ(0)

01 (tm, t) (D21a)

ψ̇(0)

01 (tm, t) = −
(
iδb +

γL
2

+ i2|Λ(t)|
)
ψ(0)

01 (tm, t)− iΛ(t)ψ(0)

10 (tm, t). (D21b)

Eq. (D21) must be solved for two sets of initial conditions corresponding to the first (ψ(0)

10 (tm, tm) = 1 and
ψ(0)

01 (tm, tm) = 0) and second (ψ(0)

10 (tm, tm) = 0 and ψ(0)

01 (tm, tm) = 1) term in Eq. (D18), respectively. We introduce
functions A10(tm, t), A01(tm, t), B10(tm, t), and B01(tm, t), where A correspond to ψ(0) with the first initial condition
and B correspond to ψ(0) with the second initial condition.

The final step is to identify all terms of the output state using Fig. 3 and the derivations above. From Eq. (D14)
we have the contributions

ξout(tm, t) = −√γψ(1)

10 (tm, t)
[
−√γψ(2)

10 (tm) +
√

2ξin(tm)
]

+ . . . , (D22)

where the first factor is the probability amplitude for decay from state |10〉 into the waveguide at time t, and the
terms in brackets are the two contributions to the probability amplitude of a photon entering the waveguide at time
tm. From Eq. (D19) we have the contributions

ξout(tm, t) = −√γA10(tm, t)
[
−
√

2γψ20(tm) + ψ(2)

10 (tm)ξin(tm)
]
−

√
γB10(tm, t)

[
−√γψ11(tm) + ψ(2)

01 (tm)ξin(tm)
]

+ . . . (D23)

The remaining contributions to the output state come from both photons passing by the system without interacting
and decay from system state |10〉 followed by the second input photon passing by the system

ξout(tm, t) =
[√

2ξin(tm)−√γψ(2)

10 (tm)
]
ξin(t) + . . . (D24)

If we define the output state as

|ψout〉 ≡
∫ tN

t0

dtm

∫ tN

t0

dtξout(tm, t)ŵ
†(tm)ŵ†(t)|∅〉, (D25)
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then the output wave packet is

ξout(tm, t) ≡ ξin(tm)ξin(t) +
1√
2

[√
2γψ20(tm)A10(tm, t) + γψ11(tm)B10(tm, t)−

√
γψ(2)

10 (tm)ξin(tm)A10(tm, t) −

√
γψ(2)

01 (tm)ξin(tm)B10(tm, t) + γψ(2)

10 (tm)ψ(1)

10 (tm, t)−
√
γψ(2)

10 (tm)ξin(t)−
√

2γξin(tm)ψ(1)

10 (tm, t)
]
, tm ≤ t, (D26)

and ξout(tm, t) = ξout(t, tm). The factor of 1/
√

2 comes from the fact that the integrals in Eq. (D25) span the entire
time interval, whereas the terms in Eqs. (D22)-(D24) were derived using the definition in Eq. (D1), where each
two-photon field state appears only once in the summations.

The probability of finding the system in a state with na photons in mode a and nb photons in mode b at time tn is
found from the expectation value

Pnanb(tn) =
〈
ψn
∣∣(|nanb〉〈nanb| ⊗ Îfield

)∣∣ψn〉 =

N∑
j,k=1

∣∣〈1j1k|〈nanb|ψn〉∣∣2, with Îfield =

N∑
j,k=1

|1j1k〉〈1j1k|. (D27)

It is instructive to use Fig. 3 to keep track off all paths when evaluating the overlap 〈1j1k|〈nanb|ψn〉. For na=nb=0,
we see that there are contributions from the two paths leading to states with one photon on the input- and one on
the output side as well as contributions from both photons being on the input or output side. The first contribution
may be identified from Eq. (D14)

∣∣〈00|00
〉∣∣2 N∑

j′,k′=1

∣∣∣∣ n∑
m=1

([
−√γψ(2)

10 (m) +
√

2ξin
m

] ∑
k>m

ξin
k ∆t

〈
1j′1k′ |1k1m

〉)∣∣∣∣2 =

n∑
k′=1

N∑
j′=1

∣∣∣∣[−√γψ(2)

10 (k′) +
√

2ξin
k′
] ∑
k>k′

ξin
k ∆t

〈
1j′ |1k

〉∣∣∣∣2 =

n∑
k′=1

∆t
∣∣∣−√γψ(2)

10 (k′) +
√

2ξin
k′

∣∣∣2 N∑
j′=k′

∆t
∣∣ξin
j′

∣∣2, (D28)

where the summation over m from 1 to n was included because the photon on the output side could be in any bin
between 1 and n. The contribution from both photons being on the input side is

∣∣〈00|00
〉∣∣2 N∑

j′,k′=1

∑
m′>n

∆t
∣∣ξin
m′

∣∣2 ∑
m>n

∆t
∣∣ξin
m

∣∣2∣∣〈1j′1k′ |1m′1m
〉∣∣2 =

∑
j′>n

∆t
∣∣ξin
j′

∣∣2 ∑
k′>n

∆t
∣∣ξin
k′

∣∣2. (D29)

Similarly, the contribution from the output state is

∣∣〈00|00
〉∣∣2 N∑

j′,k′=1

n∑
m′=1

n∑
m=1

∆t∆t
∣∣ξout
m′m

∣∣2∣∣〈1j′1k′ |1m′1m
〉∣∣2 =

n∑
m′=1

n∑
m=1

∆t∆t
∣∣ξout
m′m

∣∣2. (D30)

Adding the contributions from Eqs. (D28) - (D30) and taking the continuum limit, we get

P00(tn) =

∫ tn

t0

(∣∣√2ξin(tm)−γψ(2)

10 (tm)
∣∣2∫ tN

tm

∣∣ξin(s)
∣∣2ds)dtm+

(∫ tN

tn

|ξin(t)|2dt
)2

+

∫ tn

t0

∫ tn

t0

∣∣ξout(tm, s)
∣∣2dsdtm. (D31)

There are 7 different paths leading to the system state |10〉 and the probability is

P10(tn) = |ψ(2)

10 (tn)|2
∫ tN

tn

|ξin(s)|2ds+

∫ tn

t0

∣∣∣ψ(2)

10 (tm)ξin(tm)A10(tm, tn) + ψ(2)

01 (tm)ξin(tm)B10(tm, tn) −

√
2γψ20(tm)A10(tm, tn)−√γψ11(tm)B10(tm, tn)−√γψ(2)

10 (tm)ψ(1)

10 (tm, tn) +
√

2ξin(tm)ψ(1)

10 (tm, tn)
∣∣∣2dtm. (D32)

Similarly, the probability of the system state |01〉 is

P01(tn) = |ψ(2)

01 (tn)|2
∫ tN

tn

|ξin(s)|2ds+

∫ tn

t0

∣∣∣ψ(2)

10 (tm)ξin(tm)A01(tm, tn) + ψ(2)

01 (tm)ξin(tm)B01(tm, tn) −

√
2γψ20(tm)A01(tm, tn)−√γψ11(tm)B01(tm, tn)−√γψ(2)

10 (tm)ψ(1)

01 (tm, tn) +
√

2ξin(tm)ψ(1)

01 (tm, tn)
∣∣∣2dtm. (D33)

The probability distributions for states with two photons in the system are simply

P20(tn) =
∣∣ψ20(tn)

∣∣2, P11(tn) =
∣∣ψ11(tn)

∣∣2, P02(tn) =
∣∣ψ02(t)

∣∣2. (D34)
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Appendix E: Absorption of Photon Wavepacket

We write the control function as Λ(t) ≡ |Λ(t)| exp[iφ(t)] and our goal is to determine the amplitude, |Λ(t)|, and
phase, φ(t), such that an incoming photon in the wave packet ξin(t) is fully absorbed into mode b. The equations of
motion are written in Eq. (C8), but we repeat them here for easy reference

ψ̇10(t) = −
(
iδa +

Γ

2
+ i2|Λ(t)|

)
ψ10(t)− i|Λ(t)|e−iφ(t)ψ01(t) +

√
γξ(t) (E1a)

ψ̇01(t) = −
(
iδb +

γL
2

+ i2|Λ(t)|
)
ψ01(t)− i|Λ(t)|eiφ(t)ψ10(t) (E1b)

ξout(t) = ξ(t)−√γψ10(t). (E1c)

Note that we have omitted the subscript of ξin(t) in Eq. (E1) for notational convenience. Absorbing the incoming
pulse implies ξout =0 and therefore ψ10 =ξin/

√
γ. Substituting this into Eq. (E1b) and re-arranging terms yields

d

dt

(
ψ01(t)e−Q(t)

)
eQ(t) =

−i
√
γ
|Λ(t)|eiφ(t)ξ(t) ⇒ ψ01(t) =

−i
√
γ
eQ(t)

∫ t

t0

e−Q(s)|Λ(s)|eiφ(s)ξ(s)ds, (E2)

where we defined the functions

Q(t) = −iP (t)−
(
iδb +

γL
2

)
t, P (t) = 2

∫ t

t0

|Λ(s)|ds. (E3)

Substituting ψ10 =ξ/
√
γ into Eq. (E1a) yields

(γ − γL)

2
ξ(t)− ξ̇(t)− i

(
δa + 2|Λ(t)|

)
ξ(t) = i|Λ(t)|e−iφ(t)√γψ01(t). (E4)

Multiplying Eq. (E4) by ξ(t)∗exp(γLt) and defining real functions fi and gi, we find

fi(t) + igi(t) = |Λ(t)|e−iφ(t)ξ(t)∗e(−iδb+
γL
2 )te−iP (t)

∫ t

t0

e(iδb+
γL
2 )seiP (s)|Λ(s)|eiφ(s)ξ(s)ds, (E5)

with

fi(t) =
(γ − γL

2
ξ(t)− ξ̇(t)

)
ξ(t)∗eγLt (E6a)

gi(t) = −
(
δa + 2|Λ(t)|

)
|ξ(t)|2eγLt. (E6b)

Note that Eq. (E6a) assumes an input wavepacket without chirp, d
dt [arg ξ(t)]=0. The RHS of Eq. (E5) can be written

as

[
x(t)− iy(t)

] ∫ t

t0

[
x(s) + iy(s)

]
ds = x(t)

∫ t

t0

x(s)ds+ y(t)

∫ t

t0

y(s)ds+ i
(
x(t)

∫ t

t0

y(s)ds− y(t)

∫ t

t0

x(s)ds
)
, (E7)

where

x(t) = |Λ(t)||ξ(t)| exp(γLt/2) cos
[
φ(t) + δbt+ P (t) + arg(ξ)

]
(E8a)

y(t) = |Λ(t)||ξ(t)| exp(γLt/2) sin
[
φ(t) + δbt+ P (t) + arg(ξ)

]
. (E8b)

By defining the functions

X(t) =

∫ t

t0

x(s)ds = R(t) cos
[
θ(t)

]
, Y (t) =

∫ t

t0

y(s)ds = R(t) sin
[
θ(t)

]
, (E9)

Eq. (E5) can be split into real and imaginary parts

fi = ẊX + Ẏ Y, gi = ẊY − Ẏ X. (E10)
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Using the definition in Eq. (E9), we have

fi = ẊX + Ẏ Y =
[
Ṙ cos(θ) − R sin(θ)θ̇

]
R cos(θ) +

[
Ṙ sin(θ) + R cos(θ)θ̇

]
R sin(θ) = ṘR =

1

2

d

dt

(
R2
)
, (E11)

which has the solution

R(t) =

√
2

∫ t

t0

fi(s)ds. (E12)

Similarly,

gi = ẊY − Ẏ X =
[
Ṙ cos(θ)−R sin(θ)θ̇

]
R sin(θ)−

[
Ṙ sin(θ) +R cos(θ)θ̇

]
R cos(θ) = −R2θ̇. (E13)

Using the result in Eq. (E12), the solution for θ is

θ(t) = −1

2

∫ t

t0

gi(s)∫ s
t0
fi(z)dz

ds. (E14)

To find the solution for |Λ(t)| we evaluate x2 + y2 = |Λ|2|ξ|2 exp(γLt) using the results above

|Λ|2|ξ|2eγLt = Ẋ2 + Ẏ 2 =
[
Ṙ cos(θ)−R sin(θ)θ̇

]2
+
[
Ṙ sin(θ) +R cos(θ)θ̇

]2
= Ṙ2 +R2θ̇2 =

1

2
∫
fi

(
g2
i + f2

i

)
. (E15)

Inserting the definition of gi from Eq. (E6b) yields

|Λ|2|ξ2| exp(γLt) =
1

2Fi

[(
δa + 2|Λ|

)2
exp(2γLt)|ξ|4 + f2

i

]
⇒

|Λ(t)| =
2δa|ξ|4eγLt ±

√
2e−

γL
2 t|ξ|

√
f2
i

(
Fi − 2|ξ|2eγLt

)
+ δ2

a|ξ|4Fie2γLt

2|ξ|2
[
Fi − 2|ξ|2eγLt

] , (E16)

where Fi(t) is the anti-derivative of fi(t). If δa=0, the solution is

|Λ(t)| = |fi(t)|e
−γLt/2

√
2|ξ(t)|

1√
Fi − 2|ξ(t)|2eγLt

. (E17)

Knowing |Λ(t)| means gi is a known function and x and y may be evaluated using θ from Eq. (E14). Then, the phase
φ is

φ(t) = −δbt− 2

∫ t

t0

|Λ(s)|ds− arg(ξ) + tan−1

(
y(t)

x(t)

)
. (E18)

To obtain x and y, note that

x = Ẋ = Ṙ cos(θ)−R sin(θ)θ̇ =
fi cos(θ) + gi sin(θ)√

2
∫
fi

(E19)

y = Ẏ = Ṙ sin(θ) +R cos(θ)θ̇ =
fi sin(θ)− gi cos(θ)√

2
∫
fi

. (E20)

1. When Does a Solution Exist?

From Eqs. (E6a) and (E16) it is seen that |Λ(t)| is only a real finite function if (assuming ξ is real and there is no
loss, γL=0) ∫ t

t0

(γ
2
ξ2(s)ds−ξ(s)ξ̇(s)

)
ds− 2ξ2(t) > 0 ⇒

γ

2

∫ t

t0

ξ2(s)ds−
∫ t

t0

1

2

d

ds

(
ξ2(s)

)
ds− 2ξ2(t) > 0 ⇒ ξ2(t) <

γ

5

∫ t

t0

ξ2(s)ds. (E21)
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A general identity holds for inequalities of the type in Eq. (E21) [47]

u̇(t) ≤ β(t)u(t) ⇒ u(t) ≤ u(a) exp
(∫ t

a

β(s)ds
)
. (E22)

Comparing Eq. (E22) to Eq. (E21) shows that

u(t) ≤ u(0) exp
(γ

5
t
)
, u(t) ≡

∫ t

t0

ξ2(s)ds. (E23)

Since u(0) should equal zero, we see that this cannot be fulfilled. If t=0 is excluded from the interval over which the
solution must be valid, then u(0+) can be made arbitrarily small and Eq. (E23) provides a bound on what the rising
edge of the wave packet can look like. However, since u(T )=1 in order for the input quantum state to be normalized,
we see that the wave packet length increases as u(0+) decreases. In physical terms, a finite length wave packet cannot
be fully absorbed into a resonator without letting the coupling rate, γ, tend to infinity, if only for an infinitely short
time. This is because the exponential decay out of the resonator only asymptotically approaches a state where the
entire cavity population has coupled into the waveguide.

We note that if there is no cross-phase modulation from the control fields, the decay rate γ/5 in Eq. (E23) would
instead be γ, suggesting that the same absorption efficiency could be achieved with a cavity mode having a 5 times
smaller linewidth.

Appendix F: Emission of Photon Wavepacket

The goal of this section is to derive a control field, Λ, such that the output wave packet, ξout, is given by some
desired function, ξ. In this case, the driving term, ξin = 0, and the initial condition is that ψ10(0) = 0 while the
Schrödinger coefficient corresponding to state |01〉 has some finite value, ψ01(0). The equations of motion are

ψ̇10(t) = −
(
iδa +

Γ

2
+ i2|Λ(t)|

)
ψ10(t)− i|Λ(t)|e−iφ(t)ψ01(t) (F1a)

ψ̇01(t) = −
(
iδb +

γL
2

+ i2|Λ(t)|
)
ψ01(t)− i|Λ(t)|eiφ(t)ψ10(t) (F1b)

ξ(t) = −√γψ10(t). (F1c)

Substituting ψ10 =−ξ/√γ into Eq. (F1), we have

ξ̇ = −
(

Γ

2
+ i
(
δa + 2|Λ|

))
ξ + i|Λ|e−iφ√γψ01 (F2)

ψ̇01(t) = −
(
iδb +

γL
2

+ i2|Λ|
)
ψ01 + i

|Λ|eiφ
√
γ
ξ. (F3)

Using the same functions P (t) and Q(t) as in Appendix E, Eq. (F3) can be solved

d

dt

(
ψ01(t)e−Q(t)

)
eQ(t) = i

|Λ(t)|eiφ(t)

√
γ

ξ(t) ⇒ ψ01(t)e−Q(t) − ψ01(0) =
i
√
γ

∫ t

t0

|Λ(s)|eiφ(s)ξ(s)e−Q(s)ds ⇒

ψ01(t) = eQ(t)
[
ψ01(0) +

i
√
γ

∫ t

t0

|Λ(s)|eiφ(s)ξ(s)e−Q(s)ds
]
. (F4)

Comparing Eqs. (F4) and (F2) we see that

ξ̇(t) +
Γ

2
ξ(t) + i

(
δa + 2|Λ(t)|

)
ξ(t) = i|Λ(t)|e−iφ(t)√γeQ(t)

[
ψ01(0) +

i
√
γ

∫ t

t0

|Λ(s)|eiφ(s)ξ(s)e−Q(s)ds
]
. (F5)

Multiplying both sides by −ξ∗ exp[γLt] yields

−
(
ξ̇(t) +

Γ

2
ξ(t)

)
ξ(t)∗eγLt − i

(
δa + 2|Λ(t)|

)
|ξ(t)|2eγLt =

− i|Λ(t)|e−iφ(t)ξ(t)∗e(−iδb+
γL
2 )te−iP (t)

[
ψ01(0)

√
γ +

∫ t

t0

i|Λ(s)|eiφ(s)ξ(s)e(iδb+
γL
2 )seiP (s)ds

]
(F6)
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Let us assume that ψ01(0) is complex-valued with a phase θ0. Then, Eq. (F6) can be rewritten as

LHS = −i|Λ(t)|e−iφ(t)ξ(t)∗e(−iδb+
γL
2 )te−iP (t)

[
|ψ01(0)|eiθ0√γ +

∫ t

t0

i|Λ(s)|eiφ(s)ξ(s)e(iδb+
γL
2 )seiP (s)ds

]
LHS×e−iθ0 = −i|Λ(t)|e−iφ(t)ξ(t)∗e(−iδb+

γL
2 )te−iP (t)

[
|ψ01(0)|√γ +

∫ t

t0

i|Λ(s)|eiφ(s)
(
ξ(s)e−iθ0

)
e(iδb+

γL
2 )seiP (s)ds

]
LHS = −i|Λ(t)|e−iφ(t)

(
ξ(t)∗eiθ0

)
e(−iδb+

γL
2 )te−iP

[
|ψ01(0)|√γ +

∫ t

t0

i|Λ(s)|eiφ(s)
(
ξ(s)e−iθ0

)
e(iδb+

γL
2 )seiP (s)ds

]
.

(F7)

Eq. (F7) may be written as

− fo + igo = (x− iy)
(
C +

∫ t

t0

[
x(s) + iy(s)

]
ds
)

=

x
[
C +

∫ t

t0

x(s)ds
]

+ y

∫ t

t0

y(s)ds+ i

(
x

∫ t

t0

y(s)ds− y
[
C +

∫ t

t0

x(s)ds
])
, (F8)

where

C = |ψ01(0)|√γ (F9a)

x = −|Λ(t)||ξ(t)| exp(γLt/2) sin
[
φ(t) + δbt+ P (t) + arg(ξ)− θ0

]
(F9b)

y = |Λ(t)||ξ(t)| exp(γLt/2) cos
[
φ(t) + δbt+ P (t) + arg(ξ)− θ0

]
(F9c)

fo =
(
ξ̇(t) +

Γ

2
ξ(t)

)
ξ(t)∗eγLt (F9d)

go = −
(
δa + 2|Λ(t)|

)
|ξ(t)|2eγLt. (F9e)

Let us define the functions

X(t) = C +

∫ t

t0

x(s)ds = R(t) cos
[
θ(t)

]
, Y (t) =

∫ t

t0

y(s)ds = R(t) sin
[
θ(t)

]
. (F10)

Equating real and imaginary parts of Eq. (F8) yields

−fo(t) = Ẋ(t)X(t) + Ẏ (t)Y (t), go(t) = Ẋ(t)Y (t)− Ẏ (t)X(t), (F11)

where x(t)=Ẋ(t) and y(t)= Ẏ (t). Using the definition in Eq. (F10), we have

−fo = ẊX + Ẏ Y =
[
Ṙ cos(θ)−R sin(θ)θ̇

]
R cos(θ) +

[
Ṙ sin(θ) +R cos(θ)θ̇

]
R sin(θ) = ṘR =

1

2

d

dt

(
R2
)
⇒

R(t)2 −R(0)2 = −
∫ t

t0

2fo(s)ds. (F12)

Since R2 =X2 + Y 2, we have R(0)2 =C2 and therefore

R(t) =

√
C2 − 2

∫ t

t0

fo(s)ds
)
. (F13)

Similarly,

go = ẊY − Ẏ X =
[
Ṙ cos(θ)−R sin(θ)θ̇

]
R sin(θ)−

[
Ṙ sin(θ) +R cos(θ)θ̇

]
R cos(θ) = −R2θ̇. (F14)

Using the result in Eq. (F13) and the initial condition θ(0)=0, the solution for θ is

θ(t) = −
∫ t

t0

go(s)

C2 − 2
∫ s
t0
fo(z)dz

ds. (F15)
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To find the solution for |Λ(t)| we evaluate x2 + y2 = |Λ|2|ξ|2 exp(γLt) using the results above

|Λ|2|ξ|2eγLt = Ẋ2 + Ẏ 2 =
[
Ṙ cos(θ)−R sin(θ)θ̇

]2
+
[
Ṙ sin(θ) +R cos(θ)θ̇

]2
= Ṙ2 +R2θ̇2 =

g2
o + f2

o

C2 − 2
∫
fo
. (F16)

Inserting the definition of go from Eq. (F9e) yields

|Λ|2|ξ|2 exp(γLt) =
1

C2 − 2Fo

[(
δa + 2|Λ|

)2
exp(2γLt)|ξ|4 + f2

o

]
⇒

|Λ(t)| = e−γLt
2δa|ξ|3e2γLt ±

√
eγLtf2

o

(
C2 − 2Fo − 4e2γLtξ2

)
+ δ2

aξ
4
(
C2 − 2Fo

)
e3γLt

|ξ|
[
C2 − 2Fo − 4ξ2eγLt

] , (F17)

where Fo(t) is the anti-derivative of fo(t). If δa=0, the solution is

|Λ(t)| = |fo| exp(−γLt/2)

|ξ|
1√

C2 − 2Fo − 4|ξ|2eγLt
. (F18)

Knowing |Λ(t)| means go is a known function and x and y may be evaluated using θ from Eq. (F15). Then, the phase
φ is

φ(t) = −δbt− 2

∫ t

t0

|Λ(s)|ds− arg(ξ) + θ0 + tan−1

(
−x(t)

y(t)

)
. (F19)

To obtain x and y, note that

x = Ẋ = Ṙ cos(θ)−R sin(θ)θ̇ =
−fo cos(θ) + go sin(θ)√

C2 − 2
∫
fo

(F20)

y = Ẏ = Ṙ sin(θ) +R cos(θ)θ̇ =
−fo sin(θ)− go cos(θ)√

C2 − 2
∫
fo

. (F21)

1. Gaussian Wave Packet

The Gaussian wave packet is

ξin(t) = G(t− Ti) =

√
2

τG

(
ln(2)

π

)1
4

exp

(
−2ln(2)

(t− Ti)2

τ2
G

)
, (F22)

where |G(t)|2 has a full width at half maximum (FWHM) temporal width τG, spectral width ΩG = 4ln(2)/τG, and
integrates to 1 (over the infinite interval from −∞ to ∞). As discussed in Appendix E 1, it is not possible to fully
absorb this wave packet and this issue manifests in the denominator of Eq. (E16) being imaginary during the rising
edge of the Gaussian where

2

∫ t

t0

fi(s)ds− 4|ξin(t)|2eγLt ≤ 0. (F23)

|Λ| diverges at the cross-point determined by an equality in Eq. (F23). This is illustrated in Fig. 10 (blue curve). To
avoid divergences and keep |Λ| real, we multiply the solution in Eq. (E16) by smoothing functions

f↑(t) =
1+sin

(
πt
τe

)
2

Θ
(
t+

τe
2

)
Θ
(τe

2
−t
)

+ Θ
(
t− τe

2

)
(F24)

f↓(t) =
1−sin

(
πt
τe

)
2

Θ
(
t+

τe
2

)
Θ
(τe

2
−t
)

+ Θ
(
− τe

2
−t
)

(F25)

where Θ is a step function that equals 1 for positive arguments and 0 for negative arguments. The smoothing functions
rise from 0 to 1 (f↑) or fall from 1 to 0 (f↓) in the interval t∈ [−τe/2, τe/2] as half a period of the sine function.
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FIG. 10. Illustration of the solutions for |Λi/o| along with the smoothing functions in Eq. (F24) that ensures well-behaved

control fields. Parameters: (a) γ=30ΩG, γL =0, τe =τG. (b) γL =10−5ΩG.

Appendix G: Input Pump Fields for Absorption and Emission

The resonator modes that couple to the pump fields are identical and the Hamiltonian associated with those modes
is

Ĥpump
n = i~

√
γp
∆t

2∑
m=1

(
p̂†mŴn − p̂mŴ †n

)
+ ~χ3p̂

†
1p̂1p̂

†
2p̂2 +

1

4
~χ3

2∑
m=1

(
p̂†mp̂m − 1

)
p̂†mp̂m. (G1)

The temporal shape of the input pump functions can be found by considering their equations of motion

α̇1 =
(
− Γp

2
− iχ3

[ |α1|2

2
+ |α2|2

])
α1 +

√
γpξ1 (G2a)

α̇2 =
(
− Γp

2
− iχ3

[
|α1|2 +

|α2|2

2

])
α2 +

√
γpξ2. (G2b)

In Section III we assumed that |α1|= |α2|, so we can write Λ = χ3α
∗
2α1 = |Λ| exp(iφ) =χ3r

2
α exp[i(φ1 − φ2)], where

α1 = rα exp(iφ1) and α2 = rα exp(iφ2) with φ=φ1 − φ2. The goal is to determine the complex-valued input fields, ξ1
and ξ2, such that Eq. (G2) yields the correct intra-cavity control fields α1 and α2. Let us write the pump fields in
polar form: ξn=qn exp(iψn), and substitute into Eq. (G2)

α̇n =
(
ṙα + iφ̇nrα

)
eiφn =

(
− Γp

2
− i3

2
χ3r

2
α

)
rαe

iφn +
√
γpqne

iψn . (G3)

Separating equations for the real and imaginary parts yields

ṙα = −Γp
2
rα +

√
γpqn cos(ψn − φn) (G4a)

φ̇n = −3

2
χ3r

2
α +
√
γp
qn
rα

sin(ψn − φn). (G4b)

Let us guess that q1 =q2 =q and ψ1 − φ1 =−(ψ2 − φ2). Since φ=φ1 − φ2, we have

φ̇ = φ̇1 − φ̇2 =
√
γp
q

rα

[
sin(ψ1 − φ1)− sin(ψ2 − φ2)

]
= 2
√
γp
q

rα
sin(ψ1 − φ1) (G5)

Re-arranging Eqs. (G4a) and (G5), we have

1

2

rαφ̇(
ṙα +

Γp
2 rα

) = tan(ψ1 − φ1), ⇒ ψ1 − φ1 = arctan

[
1

2

rαφ̇(
ṙα +

Γp
2 rα

)]. (G6)

Using the identity cos[arctan(x)]=1/
√

1 + x2, we find q from Eq. (G4a)

ṙα +
Γp
2
rα =

√
γpq

1√
1 + 1

4

(
rαφ̇

ṙα+
Γp
2 rα

)2
, ⇒ q =

1
√
γp

√(
ṙα +

Γp
2
r
)2

+
φ̇2r2

α

4
. (G7)
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Using the identity sin[arctan(x)]=x/
√

1 + x2, we may insert Eq. (G6) into Eq. (G4b) to obtain

φ̇1 = −3

2
χ3r

2
α +
√
γp
q

rα

[1

2

rαφ̇(
ṙα +

Γp
2 rα

)] 1√
1 + 1

4

(
rαφ̇

ṙα+
Γp
2 rα

)2
= −3

2
χ3r

2
α +

φ̇

2
(G8a)

φ̇2 = −3

2
χ3r

2
α −

φ̇

2
. (G8b)

Integrating Eq. (G8), and inserting into Eq. (G6), we find

ψ1(t) = −3

2

∫ t

0

|Λ(s)|ds+
φ(t)

2
+ arctan

[
1

2

rαφ̇(
ṙα +

Γp
2 rα

)] (G9a)

ψ2(t) = −3

2

∫ t

0

|Λ(s)|ds− φ(t)

2
− arctan

[
1

2

rαφ̇(
ṙα +

Γp
2 rα

)]. (G9b)
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