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We present a photonic integrated circuit architecture for a quantum programmable gate array
(QPGA) capable of preparing arbitrary quantum states and operators. The architecture consists of a
lattice of phase-modulated Mach-Zehnder interferometers, which perform rotations on path-encoded
photonic qubits, and embedded quantum emitters, which use a two-photon scattering process to im-
plement a deterministic controlled-σz operation between adjacent qubits. By appropriately setting
phase shifts within the lattice, the device can be programmed to implement any quantum circuit
without hardware modifications. We provide algorithms for exactly preparing arbitrary quantum
states and operators on the device and we show that gradient-based optimization can train a sim-
ulated QPGA to automatically implement highly compact approximations to important quantum
circuits with near-unity fidelity.

I. INTRODUCTION

There has been growing interest in universal photonic
devices which can be dynamically reconfigured to imple-
ment any linear optical transformation to a set of co-
herent optical modes. [1–4] These devices are often im-
plemented as a mesh of phase-modulated Mach-Zehnder
interferometers (MZIs) which can be configured progres-
sively [1] or simultaneously [5] to apply arbitrary uni-
tary transformations to an input vector of spatial modes.
Such devices have a wide range of applications in classi-
cal information processing [4, 6–10], and integrated uni-
versal photonic circuits provides an especially promising
hardware platform for high-throughput, energy-efficient
machine learning. [11–14]

These devices also have promising applications in
quantum information processing: recent demonstrations
of boson sampling [15], quantum transport dynamics [16],
photonic quantum walks [17], counterfactual communica-
tion [18], and probabilistic two-photon gates [19] have all
been performed on this type of programmable photonic
hardware. Photonic systems offer a range of unique ad-
vantages over other substrates for quantum information
processing: optical quantum states have long coherence
times and can be maintained at room temperature, since
they interact very weakly with their environment; pho-
tonic qubits are optimal information carriers for distant
nodes within quantum networks; and MZIs provide sim-
ple, high-fidelity implementations of single-qubit opera-
tions which can be integrated into a photonic chip.

However, photonic quantum computation poses sev-
eral intrinsic difficulties. The non-interacting nature of
photons makes implementing deterministic multi-photon
quantum gates a challenge; many existing proposals [20]
and demonstrations [19] of linear optical quantum com-
puting rely on non-deterministic “heralded” gates, or en-
code multi-qubit quantum states in exponentially many
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spatial modes [21]. Since photons must propagate at
the speed of light, photonic quantum processing must
be done along the path of the photon by sequential
optical components, making complex quantum circuits
prohibitively large to implement with free-space optics.
These systems and even some integrated photonic circuits
also often suffer from a lack of reconfigurability, as the
design of task-specific optical circuity must be modified
to perform different computations. [22]

Here we describe a photonic lattice architecture for
a reconfigurable and universal quantum programmable
gate array (QPGA) which can implement any quantum
operation, in principle deterministically and with perfect
fidelity in the case of ideal physical components. Our de-
sign is similar to a universal linear optical component
[2], but employs nonlinear interactions from precisely
placed quantum emitters to enable an N -qubit state to
be encoded using O(N) number of spatial modes. The
proposed device can be programmed to implement any
quantum circuit decomposed into one- and two-qubit
gates performed by physical lattice components on an
integrated photonic circuit. Phase-modulated MZIs ap-
ply arbitrary single-qubit operations to qubits which are
path-encoded by single photons in a superposition of
pairs of waveguides and two-photon scattering processes
induced by strongly-coupled quantum emitters imple-
ment controlled gates between adjacent qubits.

We provide exact algorithms in Section III for obtain-
ing the appropriate phase shifter parameters to prepare
arbitrary quantum states and operators on-chip. In Sec-
tion IV, we discuss how optimization techniques from
machine learning can be used to automatically discover
high-fidelity approximations to desired quantum opera-
tions which are significantly more compact than their
explicitly-decomposed exact representations.

II. PHOTONIC QUANTUM PROGRAMMABLE
GATE ARRAYS

The concept for a photonic quantum programmable
gate array is shown in Fig. 1a, and the equivalent logical
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Figure 1. The architecture for the quantum programmable gate array shown at various levels of detail. (a) Physical layout of
a four-qubit QPGA with a depth of four layers. Each logical qubit is path-encoded by a single photon in a pair of waveguides,
with the parity of which waveguide represents |0〉 and |1〉 depending on the parity of the qubit index. (b) A quantum circuit
diagram depicting the logical representation of the operator performed by the QPGA in the first panel. The “switch” symbols
between two-qubit operations indicate that the connectivity of the gates can be reconfigured without changing the physical
chip architecture. Solid control dots indicate cσz, while open dots indicate cσz. (c) A single unit cell within the lattice. The
ζ, ξ, θ, φ phase shifters are continuously variable trainable parameters, while η = 0, π

2
determines the connectivity of the cσz

gates between neighboring qubits. The pink dots represent quantum emitters embedded a distance a between two dichroic
reflectors, depicted as blue and red rectangles, which selectively reflect light at frequencies ω and ω′, respectively. The delay
lines are matched in length to ω′ and terminate in reflectors. (d) Four-level energy structure of the quantum emitters embedded
in the waveguides.

quantum circuit is depicted in Fig. 1b. The architecture
consists of a set of waveguide pairs which each contain
single photon pulses. A lattice of phase-modulated MZIs
perform single-qubit rotations, and circulators, MZIs,
and embedded four-level systems (4LS) collectively im-
plement two-qubit controlled-σz (cσz) gates between ad-
jacent qubits. By choosing suitable phase shifter parame-
ters, arbitrary multi-qubit quantum states and operators
can be implemented from single-qubit and cσz primitives
within the lattice, as discussed in Section III. In the fol-
lowing subsections, we discuss the mechanisms of each
component of the architecture in greater detail.

A. Single-qubit operations

Qubits are implemented as temporally separated sin-
gle photons, each injected into a pair of waveguides at a
frequency ω and with a long pulse length τ � ω−1. All
physical gates within the device conserve photon occu-
pancy within waveguide pairs. A chip designed to pro-
cess N -qubit states has 2N number of waveguides, and

the computational basis {|0〉 , |1〉} of each qubit is repre-
sented by the photon occupancy of the top and bottom
waveguide in each pair, with parity alternating with qubit
index as shown in Fig. 1a.

Single-qubit gates are implemented with a standard
approach using phase-modulated MZIs. An MZI with
four phase shifters in the configuration shown in the up-
per half of Fig. 1c can apply any operation U ∈ U(2) to
its inputs, which suffices to implement arbitrary single-
qubit gates. [1, 19, 20] Assuming the photons are spec-
trally narrow about ω (see Appendix A for a more com-
plete treatment of arbitrary photon spectra), the trans-
formation implemented by the MZI on the input modes
takes the form:

U(ζ, ξ, θ, φ) = RζξHR
θ
0HR

φ
0

=
1

2

(
eiζ 0
0 eiξ

)(
1 1
1 −1

)(
eiθ 0
0 1

)(
1 1
1 −1

)(
eiφ 0
0 1

)
=

1

2

[
ei(ζ+φ)

(
eiθ + 1

)
ei(ξ+φ)

(
eiθ − 1

)
eiζ
(
eiθ − 1

)
eiξ
(
eiθ + 1

) ]
,

(1)
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where H is the Hadamard operator1 and Rφ1

φ2
denotes

a phase shift of φ1 applied to the top waveguide and
φ2 to the bottom. Here, and for the rest of this paper,
successive matrices are left-multiplied to be consistent
with circuit diagrams.

B. Two-photon gates

In addition to arbitrary single-qubit gates, the QPGA
needs to be able to implement two-qubit entangling op-
erations in order to be a universal quantum device. This
is accomplished by nonlinear interactions between two
photons scattering off of a pair of quantum emitters em-
bedded within the waveguides. The emitters could be
implemented by quantum dots coupled to photonic crys-
tal waveguides [23–25] or plasmonic nanowires [26], dia-
mond vacancy centers [27–29], or many other experimen-
tal setups. There have been many proposals for imple-
menting two-qubit gates using scattering-based processes
[30–34]; the scattering dynamics discussed in this section
are adapted from the scheme described by Zheng et al.
[35], with the notable difference that spatial modes rather
than momentum states form the computational basis for
the physical qubits. In this section we show that this
scattering process implements a cσz operation up to lo-
cal phase shifts.2

Consider an arbitrary two-qubit logical input state
|Ψ〉 = α |11〉 + β |10〉 + γ |01〉 + δ |00〉. The state con-
sists of two photons superpositioned over two pairs of
waveguides shown in Figure 1. Define bosonic operators

â
[q]†

0,d , â
[q]†

1,d which create a photon for qubit q with direc-

tion d ∈ {L,R} in the |0〉 and |1〉 waveguide, respectively.
The corresponding two-photon physical input state |ψ〉
just before (1a, 1b) is:

|ψ〉 = αâ
[1]†

1,Râ
[2]†

1,R |∅〉+ βâ
[1]†

1,Râ
[2]†

0,R |∅〉

+ γâ
[1]†

0,Râ
[2]†

1,R |∅〉+ δâ
[1]†

0,Râ
[2]†

0,R |∅〉 ,
(2)

where |∅〉 denotes the vacuum state (not to be confused
with the computational |0〉 state).

Consider the lower half of Figure 1c. Two circulators
at (1a, 1b) direct the |1〉 modal component of each pho-
ton into the waveguides at (2a, 2b). The photons pass

1 Whether to use H = 1√
2

[
1 1
1 −1

]
or B = 1√

2

[
1 i
i 1

]
to represent

the beamsplitter operation is somewhat a matter of convention,
with classical optics tending to prefer the latter and quantum
information often using the former. They are equivalent up to a
phase shift of ζ, θ by π/2.

2 Lattice cells of inverted parity (see Figure 1a) actually implement
cσz , such that σz is applied only to |00〉, but the dynamics are
the same, so for brevity we discuss only one parity here.

through an MZI at (3) which has a transfer matrix3:

T (η) = R
π/2
0 HRη0HR

π/2
0 =

1

2

(
−eiη − 1 ieiη − i
ieiη − i eiη + 1

)
(3)

Define bosonic operators b̂top†

d , b̂bot†
d , which create a

photon with frequency ω in direction d at (4a, 4b), re-
spectively.4 The transfer matrix acts only on the |1〉 com-
ponent of each photon, so we can relate the operators:(

â
[1]†

1,R

â
[2]†

1,R

)
= T (η)

(
b̂top†

R

b̂bot†
R

)
,

(
â

[1]†

1,L

â
[2]†

1,L

)
= T ᵀ(η)

(
b̂top†

L

b̂bot†
L

)
,

(4)

while â
[q]†

0,d are unaffected. Using the relations described
in Eq. 4, the input state after propagating through the
MZI at (4a, 4b) is:

|ψ〉 = eiη
α

2
sin η

(
(b̂top†

R )2 − (b̂bot†
R )2

)
|∅〉

− eiηα cos η b̂top†

R b̂bot†
R |∅〉

− eiη/2
(
β cos

η

2
â

[2]†

0,R + γ sin
η

2
â

[1]†

0,R

)
b̂top†

R |∅〉

− eiη/2
(
β sin

η

2
â

[2]†

0,R − γ cos
η

2
â

[1]†

0,R

)
b̂bot†
R |∅〉

+ δâ
[1]†

0,Râ
[2]†

0,R |∅〉 .

(5)

The b̂† photons propagate down the waveguides from (4a,
4b) until they interact with the embedded quantum emit-
ters at (5a, 5b), while we assume the system acts trivially

on the â
[q]†

0,R photons.

We now consider the sections between (4a) to (6a) and
(4b) to (6b). We will show that the two-photon state,
upon passing through these sections, will gain a π phase
shift applied only to the first term of |ψ〉 in Eq. 5, and
thus a cσz operation is implemented on the input state
|Ψ〉. To show this, we first consider the dynamics of the
photons in the section between sites (4a) to (6a) within
a single isolated waveguide; the lower waveguide between
(4b) and (6b) behaves identically. For simplicity, while
we consider each waveguide in isolation, we drop the

b̂{top,bot} superscripts and omit the â
[q]†

0,R operators.
The regions of interest are shown in the middle of Fig.

1c, which contain quantum emitters with the four-level
energy structures shown in Fig. 1d. The energy level of
each state |i〉 is Ωi; we assume that Ω4−Ω3 = Ω2−Ω1 =
ω, and denote ω′ ≡ Ω3 − Ω2. The quantum emitters
at (5a, 5b) are placed a distance a between a pair of
narrow-band filters, which are reflective at frequencies ω

3 The π/2 phase shifts are necessary to conserve photon number
within each waveguide pair by making the round-trip transfer
matrix T (η)ᵀT (η) diagonal.

4 The b̂top
†
, b̂bot

†
notation was chosen to avoid confusion with the

qubit indices or basis states â
[q]†

{0,1}.
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and ω′, respectively, and transparent otherwise. Reflec-
tors terminate the ends of the waveguides at (6a, 6b);
the waveguides between the ω′ filters and the reflectors
form a delay line with a length which is a multiple of 2π

ω′ .

The real-space Hamiltonian that describes the coupling
of such an atom to the waveguide without the filters is
given by [35–37]:

H =
~
i

∫
dx

[
vg b̂
†
R(x)

∂

∂x
b̂R(x)− vg b̂†L(x)

∂

∂x
b̂L(x) + vr ĉ

†(x)
∂

∂x
ĉ(x)

]
+ ~

4∑
n=1

Ωn|n〉〈n|

+ ~
∫
dx δ(x)

[(√
Γvg
2
b̂†R(x) +

√
Γvg
2
b̂†L(x) +

√
Γ′vr ĉ

†(x)

)
(|1〉〈2|+ |3〉〈2|+ |3〉〈4|) + H.c.

]
. (6)

Here, the first term describes the free waveguide dynam-
ics, the second term describes the embedded four-level
system shown in Fig. 1d, and the third term is the inter-
action Hamiltonian. The decay rate into the waveguide
is Γ, the coupling Γ′ describes the extrinsic loss of the
excited states to degrees of freedom outside the waveg-
uide, which is modeled as emission into a reservoir by
the ĉ†, ĉ operators, and vg {vr} is the group velocity of
the photons in the waveguide {reservoir}. The transition
frequencies ω, ω′ obey |ω − ω′| � Γ.

The scattering dynamics can be summarized by four
steps occurring simultaneously in the top and bottom
waveguides. (1) Photon A at frequency ω causes the
atom, which is initialized in state |1〉, to partially transi-
tion from |1〉 → |3〉 with an amplitude of |3〉 correspond-
ing to the photon occupancy in the waveguide. This
emits an auxiliary photon A′ with frequency ω′, which
is reflected by one of the narrow-band mirrors and trav-
els down the delay line. (2) While photon A′ is in the
delay line, photon B, also at frequency ω, is injected into
the system. Interaction with the |1〉 component of the
atomic states results in the transition |1〉 → |3〉 and re-
leases an auxiliary photon B′ with frequency ω′ down
the delay line, while interaction with the |3〉 component
imparts a π phase shift onto B and reflects it back into
the waveguide. (3) Photon A′ arrives back at the 4LS
after traversing the delay line. By time reversal argu-
ments, sending the output photon A′ back into the atom
retrieves photon A, which exits the inner cell through its
original waveguide. (4) Photon B′ arrives back at the
4LS, retrieving photon B as in step 3.

A conceptual animation depicting the two-photon scat-
tering process in a QPGA cell can be found in the supple-
mentary materials. We now discuss each step in greater
detail. Derivations of the reflection coefficients and out-
put states can be found in Appendix B.

Step 1. At time t = 1, photon A with frequency ω and
state |ψin

1 〉 = αA |ω〉+βA |∅〉 is incident on the 4LS, which
is initialized to the state |1〉. From calculations detailed
in Appendix B, the output state is:

|ψout
1 〉 = αA (r11 |ω〉 ⊗ |1〉+ r13 |ω′〉 ⊗ |3〉) + βA |∅〉 ⊗ |1〉 ,

(7)

where the amplitudes r11 and r13 are:

r11 = e2iωa
Γ′ − Γ

(
e2iω′a − e−2iωa

)
−Γ′ + Γ (e2iω′a + e2iωa − 2)

, (8)

r13 =
Γ
(
e2iωa − 1

) (
e2iω′a − 1

)
−Γ′ + Γ (e2iω′a + e2iωa − 2)

. (9)

If the boundary condition that

a =
nπ

ω + ω′
for some n ∈ N (10)

is satisfied, then in the strong-coupling limit (Γ/Γ′ →
∞), r11 = 0 and r13 = −1, so |ψout

1 〉 = −αA |ω′〉 ⊗ |3〉 +
βA |∅〉 ⊗ |1〉. Thus, the atom transitions from |1〉 → |3〉,
stores the input photon, and releases an auxiliary A′ pho-
ton at frequency ω′ into the delay line.
Step 2. At time t = 2, photon B with state |ψin

2 〉 =
αB |ω〉 + βB |∅〉 is incident on the 4LS. After scattering,
the output state is:

|ψout
2 〉 = αBr11αAr11 |ω〉 ⊗ |ω〉 ⊗ |1〉

+ αBr13αAr11 |ω′〉 ⊗ |ω〉 ⊗ |3〉
+ αBR3αAr13 |ω〉 ⊗ |ω′〉 ⊗ |3〉
+ αBr11βA |ω〉 ⊗ |∅〉 ⊗ |1〉
+ αBr13βA |ω′〉 ⊗ |∅〉 ⊗ |3〉
+ βB |∅〉 ⊗ |ψout

1 〉 ,

(11)

where the states are ordered as (photon B ⊗ photon A ⊗
atom), and where the reflection amplitude of the resonant
|3〉 → |4〉 → |3〉 transition is:

R3 =
Γ′e2iωa + Γ

(
1− e2iωa

)
−Γ′ − Γ (1− e2iωa)

. (12)

As before, if the condition of Eq. 10 is satisfied, then
R3 = −1 = eiπ, so photon B gains a π phase. For
simplicity, in the rest of this section, we focus on the
case where Eq. 10 holds. Substituting the on-resonance
coefficients of r11 → 0, r13 → −1, and R3 → −1 the
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output state at the end of step 2 is:

|ψout
2 〉 = αBαA |ω〉 ⊗ |ω′〉 ⊗ |3〉 − αBβA |ω′〉 ⊗ |∅〉 ⊗ |3〉
− βBαA |∅〉 ⊗ |ω′〉 ⊗ |3〉+ βBβA |∅〉 ⊗ |∅〉 ⊗ |1〉 .

(13)

Step 3. At time t = 3, photon A′ has traveled down
the delay line, which has a length which is a multiple
of 2π

ω′ , and is returning to the atom. Its frequency ω′

is resonant with the |3〉 ↔ |2〉 transition, and the re-
flection coefficients r33 and r31 have expressions which
are identical to Eqs. 8 and 9, respectively, except with
ω, ω′ exchanged, such that when a = nπ

ω+ω′ , we have that
r33 = 0 and r31 = −1.

The state of the returning A′ photon is |A′〉 =
−αA |ω′〉 + βA |∅〉, and it only interacts with the |∗〉 ⊗
|ω′〉 ⊗ |3〉 components of the system state, mapping
|∗〉 ⊗ |ω′〉 ⊗ |3〉 7→ −1 · |∗〉 ⊗ |ω〉 ⊗ |1〉. Therefore, the
system state at the end of step 3 is:

|ψout
3 〉 =− αBαA |ω〉 ⊗ |ω〉 ⊗ |1〉 − αBβA |ω′〉 ⊗ |∅〉 ⊗ |3〉

+ βBαA |∅〉 ⊗ |ω〉 ⊗ |1〉+ βBβA |∅〉 ⊗ |∅〉 ⊗ |1〉 .
(14)

Step 4. At time t = 4, photon B′ is returning to the

4LS from the delay line. The reflection coefficients are the
same as in step 3, and photon only interacts nontrivially
with the |ω′〉⊗|∗〉⊗|3〉 components of |ψout

3 〉, so the final
output state is:

|ψout
4 〉 =− αBαA |ω〉 ⊗ |ω〉 ⊗ |1〉+ αBβA |ω〉 ⊗ |∅〉 ⊗ |1〉

+ βBαA |∅〉 ⊗ |ω〉 ⊗ |1〉+ βBβA |∅〉 ⊗ |∅〉 ⊗ |1〉 .
(15)

At the end of the gate operation, the emitter is re-
stored to its original |1〉 state and is disentangled from
photons A and B, and the two-photon state acquires a π
phase shift only on the component corresponding to the
presence of both A and B. Thus, the gate operation in
the computational basis of spatial modes is:

U =

(
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

)
, (16)

which is exactly the quantum controlled-σz gate.
We now return to describing the evolution of the state

where we left off at Eq. 5. Using the |B〉 ⊗ |A〉 ⊗ |4LS〉
ordering from Eqs. 11-15, we rewrite this equation to
describe the states of the top and bottom photon-photon-
4LS systems:

|ψtop〉 = +eiη
α

2
sin η |ω〉 ⊗ |ω〉 ⊗ |1〉 −

(
eiηα cos η + eiη/2β cos

η

2

)
|ω〉 ⊗ |∅〉 ⊗ |1〉

− eiη/2γ sin
η

2
|∅〉 ⊗ |ω〉 ⊗ |1〉+ δ |∅〉 ⊗ |∅〉 ⊗ |1〉 , (17)

|ψbot〉 = −eiη α
2

sin η |ω〉 ⊗ |ω〉 ⊗ |1〉 − eiη/2β cos
η

2
|ω〉 ⊗ |∅〉 ⊗ |1〉

−
(
eiηα cos η + eiη/2γ cos

η

2

)
|∅〉 ⊗ |ω〉 ⊗ |1〉+ δ |∅〉 ⊗ |∅〉 ⊗ |1〉 . (18)

The photons scatter off of the quantum emitters, pro-
ducing ancillary photons which travel down the delay
lines and back and release the original photons, but with
a π phase shift applied to the |ω〉 ⊗ |ω〉 ⊗ |1〉 component
of the state where both photons are present. Thus, the
first term changes sign for each of Eqs. 17 and 18, and
the output state when the photons finally return to the
MZI in Figure 1c, at (4a, 4b) is:

|ψ〉 = eiη
α

2
sin η

(
−(b̂top†

L )2 + (b̂bot†
L )2

)
|∅〉

− eiηα cos η b̂top†

L b̂bot†
L |∅〉

− eiη/2
(
β cos

η

2
â

[2]†

0,L + γ sin
η

2
â

[1]†

0,L

)
b̂top†

L |∅〉

− eiη/2
(
β sin

η

2
â

[2]†

0,L − γ cos
η

2
â

[1]†

0,L

)
b̂bot†
L |∅〉

+ δâ
[1]†

0,Râ
[2]†

0,R |∅〉 ,

(19)

where we assume that the photons described by the â
[q]†

0,R
operators in Eq. 5 have been reflected and now travel in
the L direction.

Propagating this state through the MZI at (3) one last
time using |ψout〉 = T ᵀ(η) |ψ〉, we obtain the final output
state at (2a, 2b):

|ψout〉 = e2iηα cos(2η)â
[1]†

1,L â
[2]†

1,L |∅〉

− e2iη α

2
sin(2η)

(
(â

[1]†

1,L)2 − (â
[2]†

1,L)2
)
|∅〉

+ eiηβâ
[1]†

1,L â
[2]†

0,L |∅〉

+ eiηγâ
[1]†

0,L â
[2]†

1,L |∅〉

+ δâ
[1]†

0,L â
[2]†

0,L |∅〉 .

(20)

The output photons propagate to the circulators at (1a,
1b) and are reinjected back into their original waveguides.
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In order to preserve photon numbers between waveguide
pairs, the second term in Eq. 20 must be zero, since

(â
[1]†

1,L)2 and (â
[2]†

1,L)2 correspond to injection of two pho-
tons into the same waveguide. This fact constrains η to
phase shifts which are multiples of π

2 .
We note the gate action of the entire system at η = 0

is identity and the action at η = π
2 is the cσz operation,

up to a phase shift of π2 which can be included in the ζ, ξ
phase shifters at the subsequent column in the lattice:

U(η = 0) =

(
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
= 1 (21)

U(η =
π

2
) =

(
1 0 0 0
0 i 0 0
0 0 i 0
0 0 0 1

)
=
(
R
π/2
0 ⊗R0

π/2

)
cσz. (22)

To summarize the results of this section, the photons
are directed by circulators through an MZI and toward
the scattering sites. Depending on the value of η, the
four-level systems either interact with one (η = 0) or two
(η = π

2 ) photons, and they impart a π phase shift onto
the two-photon component of the state they receive. The
photons retrace their path and return to their original
waveguides to be operated on by the next column of gates
in the lattice.

C. Fidelity and fault tolerance

The calculations in the previous sections have shown
that in an ideal case, our photonic architecture can per-
fectly implement arbitrary single-qubit operators and
cσz. However, this makes some assumptions about the
construction of the device. Namely, we assume that
waveguides are lossless, that photons are injected with
frequency ω and vanishing spectral width δω → 0, and
that the excited states of the scattering systems are loss-
less with Γ′ → 0, such that the Purcell enhancement
factors are large, with P = Γ/Γ′ →∞.

In reality, photons would have finite spectral width and
the local emitters would have finite Purcell factors, mean-
ing the QPGA would implement logical operators with
fidelity below unity. As photons propagate through the
imperfect gates implemented by the physical circuit, the
errors will in general accumulate to render very deep cir-
cuits useless. However, this can be addressed by a vari-
ety of error-correcting methods. The errors which could
occur in a physical implementation of this circuit can
broadly be classified into three types: spectral unitary
errors from the MZIs, depolarizing errors from the scat-
tering sites, and photon loss from the quantum emitters
and waveguides.

MZIs acting on photons with finite spectral width (and
dispersive effects in the waveguides) can reshape the pho-
ton pulse and transmit a portion of the pulse to the
top and bottom waveguides which differs from the tar-
get amount. The photon is not lost to or entangled with
the environment, so this error can be represented by a
unitary operation Ũ with a characteristic error ε which

acts as Ũ |ψin〉 =
√

1− ε |ψtarg〉+ε |ψtarg
⊥ 〉, where |ψtarg

⊥ 〉 is
some state orthogonal to the desired output state |ψtarg〉.
[38] This error can, in principle, be trained around us-
ing the gradient-based circuit optimization approach dis-
cussed in Section IV. However, as shown in Appendix
A, the fidelity of the MZIs can be quite high even for
short pulses (a 1ns pulse has infidelity of 10−10), so the
dominant source of error would come from the scattering
operations.

The infidelity in the two-photon gates F−1 = 1 −
| 〈ψA, ψB , ψ4LS| cσABz ⊗ 14LS |ψA, ψB , 1〉 |2 introduced by
finite excitation loss and spectral width results in a
photon-photon-emitter state which is not fully entangled
during operation nor fully disentangled at the end of the
operation. If we trace out the degrees of freedom of the
four-level system, we obtain a mixed two-photon output
state which is the desired output state, but with a prob-
ability p = F−1 of applying a second σz operation which
undoes the original gate action. This corresponds to the
well-studied quantum depolarizing error model [39–41],
which describes quantum gates as being faulty by ran-
domly applying Pauli operators with some effective er-
ror probability per gate (EPG). [41, 42] Fault tolerance5

requires an EPG below a certain threshold pth, usually
estimated as pth ≈ 10−4 [45, 46], but for some architec-
tures and scenarios as high as pth ≈ 10−2 [42]. In this
system, the EPG approaches zero as the Purcell factor
tends to infinity, with P = 40 yielding a 6% infidelity.
[35]

Photon leakage from the waveguide or from sponta-
neous emission from the scattering sites represents the
dominating error mechanism in this design and can be
completely and efficiently corrected using concatenated
coding [30, 47] or by using one of the Bose-Chaudhuri-
Hocquenghem family of codes [48] to correct for erasure
errors [49]. Such codes allow for loss thresholds per gate
above 1.7% [50] and possibly as high as 5% [49], corre-
sponding to Purcell factors of P ≈ 100 to P ≈ 30. [35]

Relatively small QPGAs which do not employ error
correction may already be feasible to implement. If one
assumes current realistic values for silicon waveguide loss
of 0.3 dB/cm [51], quantum emitters with a Purcell fac-
tor of P = 80 [52], and a unit cell path length of 500 µm,
then photon loss is about 4% per unit cell. Thus, the
total loss could be kept below 50% for a circuit as large
as 16 layers, which is sufficient to perform high-fidelity
approximate quantum Fourier transforms on four qubits.
(see Figure 7). This estimate ignores the optical circula-
tors, the details of which are not critical to the design,
and which currently have comparatively high losses of

5 It should be noted that while cσz and Clifford gates have fault
tolerant constructions, it has been shown that no single error
correcting code has transversal implementations for all gates re-
quired for universal and classically non-simulable circuits [43],
necessitating additional constructions if other gates are to be
included. [44]
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around 3-6 dB [53, 54], which would bring the loss per
unit cell to about 50%. With some modification to the
QPGA design, one can conceive a similar device which
performs the same function but does not require opti-
cal circulators, e.g. by using a single unit cell to emu-
late a large gate array while storing many photon pulses
in a large ring. However, with rapid experimental in
waveguide-cavity systems and nonreciprocal on-chip de-
vices, larger-scale QPGAs may be feasible to implement
in the foreseeable future.

III. EXACT QUANTUM STATE AND
OPERATOR PREPARATION

Having established how the design presented in Sec-
tion II acts on physical photonic qubits, we now discuss
how the idealized logical model of the device can be pro-
grammed to prepare quantum states and to implement
quantum operators. We assume no error in the device
here and describe algorithms to implement the desired
actions with perfect fidelity, albeit sometimes using cir-
cuits of great depth. In reality, finite device errors may
make the more compact approximate circuit decompo-
sitions discussed in Section IV more relevant than the
exact decompositions presented in this section.

A. Universality of the design

The MZIs in the lattice can implement any single-qubit
gate by parameterizing it through the ζ, ξ, θ, φ phase
shifts. The nonlinear interactions between waveguide
pairs implements cσz, which can be used in conjunction
with H to implement a controlled-NOT (cσx) gate6 as
cσx = (1 ⊗ H)cσz(1 ⊗ H). [41] Since the set of single-
qubit operations and cσx gate comprises a universal gate
set [55], the device is universal, such that a sufficient
number of layers can be used to implement an arbitrary
multi-qubit gate.

Phase shifter parameters which implement various
common single- and two-qubit quantum gates are de-
tailed in Appendix C. Notably, two-qubit gates can have
differing cσz parities, meaning that some require an even
or odd number of successive cσz gates to implement. This
would be problematic in an architecture with fixed cσz
connectivity, as aligning circuit elements within a fixed
lattice would be impossible; this necessitates a mecha-
nism such as the η-shifted MZI described by Eq. 3 which
can toggle the gate action between qubits.

6 Due to the nearest-neighbor connectivity of the architecture, cσx
between non-adjacent qubits must be implemented with a se-
quence of SWAP gates, which can in turn be implemented using
three cσx gates. [41]

B. State preparation

Arbitrary quantum states can be prepared on a lattice
with nearest-neighbor connectivity using a circuit based
on Ref. [56] consisting of a sequence of multi-controlled
single-qubit rotations. Although the general worst-case
complexity of this algorithm is O(n22n), an important
class of quantum states, including Dicke states [57] and
general symmetric states [56], can be efficiently prepared
using such a lattice with a depth which is polynomial in
the number of qubits.

Suppose we have a state |ψ〉 =
∑
q∈{0,1}n αq |q〉 with

αq ∈ C which we would like to prepare. Let ξx for x ∈
{0, 1}k and 1 ≤ k ≤ n denote the projection of |ψ〉 onto
the computational basis vector |x〉, tracing over all qubits
subsequent to k:

ξx =
∑

x′∈{0,1}n−k
〈x, x′|ψ〉 . (23)

For each string x of length k, define a k-ly controlled
single-qubit rotation operator Ux1···xk acting on qubit k+
1 which maps:

Ux1···xk |x1 · · ·xk〉 |0〉 =
ξx1···xk0

ξx1···xk
|x1 · · ·xk〉 |0〉

+
ξx1···xk1

ξx1···xk
|x1 · · ·xk〉 |1〉 .

(24)

Each k-controlled operation can be implemented on the
nearest-neighbor architecture of the lattice with O(k2)
depth in the lattice using the implementation depicted
in Figure 4.10 of Ref. [41].

The brute-force algorithm for preparing |ψ〉 is the ap-
plication of 2n of these operations, as shown in the circuit
diagram of Figure 2.

It can be shown by induction that after
the first k rotations, the resulting state is∑
x1···xk∈{0,1}k ξx1···xk |x1 · · ·xk〉, so after all 2n op-

erations, the output state is:∑
x1···xn∈{0,1}n

ξx1···xn |x1 · · ·xn〉 =
∑

q∈{0,1}n
αq |q〉 = |ψ〉 .

(25)
Although this algorithm is not efficient for arbitrary

quantum states, it is capable of efficiently preparing
many interesting and important states. For example, an
n-qubit GHZ state can be prepared on a nearest-neighbor

|0i U • • • · · · • •

|0i U0 U1 • • · · · • •

|0i U00 U01 U10 U11 · · · • •
.
.
.

.

.

.

|0i · · · •

|0i · · · U11···0 U11···1

<latexit sha1_base64="EteghIvnbcgbrMtJooK2YTOkHgE="></latexit>

Figure 2. State preparation algorithm to map |0〉⊗n 7→ |ψ〉
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lattice using n layers by setting U = H, applying singly-
controlled cσx between successive qubits, and discarding
all other Ux1x2···xk operators.

C. Implementation of general quantum operators

Arbitrary U(2n) operations can be exactly imple-
mented on the lattice using a nullification algorithm sim-
ilar to the decomposition routines for classical optical
meshes presented in Refs. [1, 3]. A more in-depth treat-
ment of this problem can be found in Ref. [58].

In linear algebra, QR factorization decomposes any
unitary matrix as U = QR, where R is diagonal and
unitary and Q is a product of two-level Givens rotations
[58, 59], which are operations acting trivially on all but
two basis vectors |m〉 , |n〉:

Gm,n(θ, φ) = eiφ cos θ|m〉〈m| − sin θ|m〉〈n|
+ eiφ sin θ|n〉〈m| + cos θ|n〉〈n|.

(26)

For any unitary matrix U , there exist values of θ, φ
which “nullifies” a target element in row m or n of U .
[3] Let Gjm,n denote the Givens rotation to nullify the
element of U in row m, column j against the element in
row n, column j. It can be shown [58] that after applying
O(4n) Givens rotations, we obtain an identity matrix:2n−1∏

j=1

2n∏
m=j+1

G2n−j
m,m−1

U = 1. (27)

The operations G2n−j
m,m−1 do not correspond to any stan-

dard quantum gates, but if the basis vectors are permuted
to be ordered in the reflected binary code [60], then the
Givens rotations between adjacent vectors |m〉 , |m− 1〉
can be written as a product of (n−1)-ly controlled single-
qubit rotations [61], each of which can be performed with
a lattice depth of O(n2). Thus, the target operator U can
be implemented as:

U =

2n−1∏
j=1

2n−j∏
m=j

G
γ(j)†

γ(2n−m+1),γ(2n−m), (28)

where γ(j) denotes the index j in reflected binary order-
ing. The permutation for each of the O(4n) Givens ro-
tations requires O(n3) cσx gates, so the worst-case com-
plexity is O(n34n).

As with state preparation, although implementing the
most general quantum operators is hard, many important
quantum operators, such as the quantum Fourier trans-
form, may be efficiently implemented using a lattice of
polynomial depth.

IV. GRADIENT-BASED CIRCUIT
OPTIMIZATION

In the previous section we discussed preparation of ar-
bitrary quantum states or operators by obtaining appro-

priate phase shifter values to implement an exact de-
composition of the desired operation using only single-
qubit and nearest-neighbor cσz gates. In this section, we
demonstrate a method, building on our previous work
for classical MZI networks [13, 14] and on work for
continuous-variable quantum neural networks [62], of au-
tomatically discovering high-fidelity approximate decom-
positions of a target operator using a gradient-based op-
timization approach. As shown in Section IV A 4, these
“learned” implementations of quantum operators are of-
ten far more compact than an explicit decomposition, al-
lowing for lattices with a fraction of the physical depth.

Let Uil = U(ζil, ξil, θil, φil) denote the operation de-
scribed by Eq. 1 acting on qubit i performed by a single
MZI in layer l of the lattice. Each layer of the lattice
refers to the column of MZIs implementing Uil and a
subsequent column of cσi,jz gates between qubits i and j.

Because the strength of the cσz interaction is not a
continuous variational parameter (since the only valid
settings are η = 0 (off) or η = π

2 (on), as discussed in
Section II B), in our numerical experiments, we employ
a checkerboard-style connectivity where half of the cσz
gates are disconnected, as shown in Figure 3. In a given
layer, the cσz gates are applied to each pair of adjacent
qubits with an offset determined by the parity of the layer
index. Additionally, we implicitly embed logical σx gates
in the single-qubit operators preceding and following two-
qubit gates in odd layers, such that Ui,n 7→ Ui,nσx and
Ui,n+1 7→ σxUi,n+1 for odd n; this transforms the cσz
gates applied in odd layers into cσz gates without adding
to the depth of the lattice.

The operation performed on anN -qubit quantum state
by a lattice of depth L with this connectivity scheme is
given by:

U~Θ =

L∏
l=1

 ⊗
i∈C(l)

cσi,i+1
z ·

N⊗
i=1

U(ζil, ξil, θil, φil)

 , (29)

where ~Θ denotes all free parameters {ζil, ξil, θil, φil} in
the lattice, where the set of cσz connections is C(l) =
{1, 3, 5, · · · , 2dN2 e−1} [C(l) = {2, 4, 6, · · · , 2bN2 c}] for odd
[even] l, and where left-multiplication and padding with
identity are implicit.

Let F(ψ̃, ψ) = |〈ψ̃|ψ〉|2 denote the fidelity between

|q1i • U11 U12 • U13 U14 • U15 U16

|q2i • U21 • U22 • U23 • U24 • U25 • U26

|q3i • U31 • U32 • U33 • U34 • U35 • U36

|q4i • U41 • U42 • U43 • U44 • U45 • U46

|q5i U51 • U52 U53 • U54 U55 • U56

<latexit sha1_base64="k0Kz1ojntT1sdtCSoVCGvk21BKE="></latexit>

Figure 3. Fixed connectivity scheme employed in training.
The cσz operators in odd columns are implicitly constructed
by embedding σx operations before and after physical cσz
gates.
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states |ψ̃〉 and |ψ〉. To implement a target operator Û , the

optimization routine finds a set of parameters ~Θ which

maximizes the average fidelity F = | 〈ψin| U†~ΘÛ |ψin〉 |2
over a “training set” of input states {ψin}. The algo-
rithm computes the gradient ∇~ΘF of the fidelity over
the training states with respect to the phase shift pa-

rameters and iteratively updates ~Θ by a step size η as
~Θ 7→ ~Θ + η∇~ΘF over the course of the training. In the
case of operator implementation, {ψin} are an ensemble
of uniformly randomly sampled state vectors, while for

state preparation, {ψin} = {|0〉⊗N}.

A. Simulations

In the following subsections we present a series of nu-
merical experiments in which a simulated logical model
of a QPGA is trained to implement a variety of quan-
tum states and operators. The numerical model was pro-
grammed using a custom backend built with TensorFlow
[63], and the source code for all experiments in this paper
is available at github.com/fancompute/qpga.

For operator preparation simulations, we generate the
training set {ψin} of random n-qubit state vectors by ran-
domly choosing 2n component magnitudes uniformly be-
tween [0, 1), then renormalizing the state vector and as-
signing each component a random phase between [0, 2π).
The number of training samples is empirically chosen,
but always greatly exceeds 2n. The corresponding target
output states are produced by running the input states
through an explicitly constructed quantum circuit sim-
ulated using the SQUANCH Python framework [64]. For
state preparation simulations, the training set is simply

the zero state input |0〉⊗N and the corresponding sin-
gle output state is directly compared against the target
state.

For all simulations, we used the checkerboard connec-
tivity scheme described in the previous section. We ini-
tialized all ζ, ξ, θ, φ phase shifters uniformly from [0, 2π),
optimized the gate array using the Adam optimizer [65]
with learning rate annealing, and performed the training
on an NVIDIA Tesla K80 GPU.

1. GHZ state preparation

Greenberger–Horne–Zeilinger (GHZ) states [66] are
maximally-entangled multi-qubit states of the form
1√
2
(|00 · · · 0〉+|11 · · · 1〉) and have important applications

in quantum information and quantum cryptography. [67]
Figure 4 shows the optimization progress of a four-

qubit GHZ state. We simulated a small four-qubit QPGA
with a fixed depth of 20 layers. (As noted in Section III B,
a 4-qubit GHZ state can be exactly implemented using
only 4 circuit layers, but we use the same simulated 20-
layer device with the checkerboard cσz connectivity for
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Figure 4. Optimization of a quantum circuit to prepare a
four-qubit GHZ state. (Top) Evolution of the output state

|ψ̃〉 over the course of training. The vertical axis represents

the magnitude of the projection 〈ψ̃|bj〉 of the output state
onto each computational basis state |bj〉. (Bottom) Fidelity
between the output state and target state over the course of
training, reaching a maximum value of F ≈ 99.94%. The
shared horizontal axis indicates iterations during training.

all simulations in this section.) For visualization pur-
poses, we used a low learning rate and only displayed
the first 100 iterations of training. Using a deeper lat-
tice with longer training, arbitrarily high fidelities can be
reached.

The stochastic nature of the initialization and opti-
mization routines means that the training converges non-
deterministically. Shallower circuits have fewer varia-
tional parameters to optimize and fewer layers to al-
low entanglement to propagate between nearest-neighbor
qubits, which can result in a final fidelity which is far from
unity. Deeper circuits have more parameters to optimize
but require greater computational resources to simulate
(and experimentally would have more pronounced phys-
ical errors if this were being considered). The number of
layers in the circuit was empirically chosen to be a small
depth which would consistently reach F ≈ 1.

Due to the uniform initialization of the phase shifters
in the lattice, the model initially outputs a random, non-
maximally entangled quantum state lacking any apparent
structure. As the optimization routine proceeds, the lat-
tice produces states which have increasingly large |0000〉
and |1111〉 components, with the relative phase between
these components approaching 0, while the other com-
ponents of the output state have vanishing amplitudes.
After 100 iterations, the model generates a state match-
ing the target state with 99.94% fidelity.

2. Random state preparation

As discussed in Section III B, states with certain struc-
tures and symmetries are easier to prepare than general
quantum states. To demonstrate the generality of the
gradient-based circuit optimization routine, we use it to

https://github.com/fancompute/qpga
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|〈ψ̃
|ψ
〉|2

F = 0.992

Figure 5. Training a 20-layer QPGA to prepare an ensemble
of randomly sampled four-qubit states. Fidelities between the
output and target states are shown over the course of each
optimization. The average fidelity at the end of training is
F = 99.2%.

prepare a sample of random quantum states.7 The states
are generated by choosing 2n component magnitudes and
phases uniformly, as described at the beginning of Sec-
tion IV A. We choose n = 4 qubits and fix a depth of 20
layers; the fidelities between the output states and target
states over the course of training is shown in Figure 5.
The results show that a QPGA of this depth is sufficient
to create an arbitrary 4-qubit state with high fidelity.

3. Quantum Fourier transform

The quantum Fourier transform is an important op-
erator which plays a key role in many quantum com-
puting algorithms, especially the eigenvalue estimation
routine. [41] The quantum Fourier transform operating
on n qubits takes the form:

UQFT =
1

n

n−1∑
j=0

n−1∑
k=0

e2πijk/n|j〉〈k|. (30)

For this simulation, we compare the trainable circuit
against the exact circuit implementation of the QFT,
which has a complexity of O(n2) (although the QFT can
be approximated to within an inverse polynomial in n
using only O(n log n) gates [68]).

Figure 6 shows the optimization of a QPGA to imple-
ment a quantum Fourier transform on four input qubits.
The explicit decomposition of the QFT circuit requires 57
layers8, but a trained QGPA with only 20 layers achieves
a near-unity fidelity of F = 99.94%.

7 While the gradient-based circuit decomposition method will not
bypass the exponential complexity of approximating general
quantum states and operators (see Ref. [41], section 4.5.4), it is
still informative to show that the method can implement states
without specific structure.

8 We train against the explicit circuit provided in Ref. [41], Fig.
5.1, but additionally add bn

2
c SWAP gates, since the output

qubits in the Fourier basis are otherwise in reverse order.

4. Circuit compactness analysis

In the previous sections, we have shown that gradient-
based circuit optimization can produce high-fidelity
operators which are significantly more compact than
their explicitly-decomposed counterparts and are imple-
mentable on QPGAs with significantly fewer layers. To
better characterize this, we performed a search over qubit
number and circuit depth to find trained circuits which
match the target operator to within some specified fi-
delity threshold. We used the quantum Fourier trans-
form as the target operator for this benchmark due to
its prevalence and complexity. The results are plotted in
Figure 7.

To perform the compactness analysis, we iteratively
trained QPGAs of increasing depth to implement an n-
qubit QFT to a desired fidelity threshold, chosen to be
F > 99.9%. Multiple optimization routines were run at
each depth since training does not converge determin-
istically due to random initialization and the potential
for getting stuck in a local maxima, which is more pro-
nounced at larger qubit numbers.9 We note that the
final gradient-based QFT implementations typically re-
quire only 1/4 to 1/3 as many layers as their explicitly
decomposed counterparts.

V. CONCLUSION

In this paper we have presented a photonic architec-
ture for a quantum programmable gate array capable of
implementing arbitrary quantum states, operators, and
computations. The architecture, presented in Section II,
extends universal programmable optics to the quantum
domain by employing two-photon interactions from quan-
tum emitters embedded in the waveguides. This allows
for deterministic multi-qubit gates which use a number of
waveguides that is linear in the number of qubits. The de-
sign parameterizes arbitrary quantum circuits as a lattice
of single-qubit gates implemented by phase-modulated
Mach-Zehnder interferometers and two-qubit cσz gates
with variable connectivity implemented by a scattering
process described in Section II B. By setting phase shifter
parameters to implement appropriate single-qubit op-
erations and to enable two-photon interactions where
needed, the lattice can be dynamically programmed to
implement any quantum circuit without hardware mod-
ifications.

In Section III, we showed that the logical system imple-
mented by the QPGA is computationally universal: any
quantum operation can be mapped onto a corresponding

9 For circuits with many qubits, more sophisticated initialization
routines which take the locally-connected structure of the ar-
chitecture into account such as Haar initialization [13] may be
necessary to ensure a reasonable chance of convergence.
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Ũ10

−π

+π
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Figure 6. Optimization of a 20-layer QPGA to prepare a quantum Fourier transform on the four input qubits. (Top) The

operators Ũi implemented by the QPGA after i training epochs. Each square array represents the magnitude (relative to the
maximum element) and phase of the projection of the operator onto the lexicographically-ordered computational basis states,

encoded in the respective size and hue of the squares. The final Ũ50 is visually indistinguishable from Û . (Bottom) Fidelity
between the implemented and target operator over the course of training. The final fidelity is F = 99.94%. An animated
version of this figure showing the training of the implemented operator can be found in the supplementary materials.
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Figure 7. Required circuit depths to implement a quantum
Fourier transform for a range of qubit numbers using explicit
decomposition (top solid line, blue) and using gradient-based
decomposition (bottom solid line, orange) which achieves a
fidelity above 99.9%. Relative compactness of explicit vs.
gradient-based decompositions is depicted by the red dotted
line. The approximate decompositions are significantly more
compact than the explicitly constructed circuits.

set of phase shifter parameters given a sufficiently large
lattice. We described an explicit algorithm for preparing
arbitrary quantum states on the lattice which are efficient
for some subclasses of quantum states, and we discussed
how QR decomposition can map U(2n) unitaries onto a

series of controlled rotations in the lattice.
In Section IV, we showed how gradient-based optimiza-

tion techniques prevalent in machine learning can be used
to automatically implement high-fidelity approximations
to desired quantum operations. We trained simulated
QPGAs with fixed cσz connectivity to prepare a vari-
ety of important quantum states and operators, and we
showed that these approximate circuit implementations
are often significantly more compact than their explicitly-
decomposed counterparts.

While this work is purely theoretical, there has been
tremendous recent experimental progress in both of the
key technologies required to realize this device: pro-
grammable photonic processors [4, 8–11, 16, 69–71] and
strongly coupled quantum emitters [23–29, 52]. The
ongoing advancements in these technologies may allow
for feasible near-future implementation of the device de-
scribed in this paper.
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Appendix A: Phase-modulated interference for photons with arbitrary spectra

Consider a Mach-Zehnder interferometer with four phase shifters in the arrangement presented in Figure 1c. Let the

operators â†1(ω), â†2(ω) represent creation operators for the top and bottom waveguides, respectively, acting on a single
frequency mode ω. Consider an input state to the MZI representing a single logical qubit in the state α |0L〉+ β |1L〉:

|ψin〉 =

∫
dω φ(ω)

(
αâ†1(ω) + βâ†2(ω)

)
|∅〉 . (A1)

The phase shifters in the MZI act by imparting a time delay τ on the creation operators, mapping â†(ω) 7→ â†(ω)eiωτ .
(Here we make the approximation that the phase shifter imparts an equal time delay across the range of frequencies of
the photon, e.g. has a constant refractive index.) Let {τζ , τξ, τθ, τφ} ≡ {ζ, ξ, θ, φ}/ω0 denote the effective time delays
imparted by the four phase shifters, where ω0 denotes the 4LS resonance frequency ω in the main text. The idealized
action of the MZI on photons of zero spectral width described in Eq. 1 is RαβHR

θHRφ. In the case of finite spectral
width, the transformation maps:

[
â†1(ω)

â†2(ω)

]
← 1

2

[
ei(τζ+τφ)ω

(
eiτθω + 1

)
ei(τξ+τφ)ω

(
eiτθω − 1

)
eiτζω

(
eiτθω − 1

)
eiτξω

(
eiτθω + 1

) ] [
â†1(ω)

â†2(ω)

]
. (A2)

Thus, the output state of the MZI is:

|ψout〉 =
1

2

∫
dω φ(ω)

[(
αei(τζ+τφ)ω

(
eiτθω + 1

)
+ βei(τξ+τφ)ω

(
eiτθω − 1

))
â†1(ω)

+
(
αeiτζω

(
eiτθω − 1

)
+ βeiτξω

(
eiτθω + 1

))
â†2(ω)

]
|∅〉 . (A3)

Define coefficients C0(ω) ≡ 1
2 (αei(τζ+τφ)ω

(
eiτθω + 1

)
+ βei(τξ+τφ)ω

(
eiτθω − 1

)
) and C1(ω) ≡ 1

2 (αeiτζω
(
eiτθω − 1

)
+

βeiτξω
(
eiτθω + 1

)
). Then the output state is |ψout〉 =

∫
dω φ(ω)(C0(ω)â†1(ω) + C1(ω)â†2(ω)) |∅〉. Define projection

operators P̂0, P̂1 which map physical wavefunctions to logical state vectors:

P̂0 =

∫
dω |0L〉 〈∅| â1(ω) (A4)

P̂1 =

∫
dω |1L〉 〈∅| â2(ω) (A5)
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To obtain the fidelity of the physical output state against the target logical output state |ψtarg〉 = CL0 |0〉+CL1 |1〉,
we evaluate the inner product between the states by expanding in terms of the complete basis 1 = P̂0 + P̂1:

F = |〈ψtarg|ψout〉|2

=

∣∣∣∣(CL∗0 〈0L|+ CL∗1 〈1L|
) ∫

dω φ(ω)
(
C0(ω)â†1(ω) + C1(ω)â†2(ω)

)
|∅〉
∣∣∣∣2

=

∣∣∣∣(CL∗0 〈0L|+ CL∗1 〈1L|
) (
P̂0 + P̂1

)∫
dω φ(ω)

(
C0(ω)â†1(ω) + C1(ω)â†2(ω)

)
|∅〉
∣∣∣∣2

=

∣∣∣∣∫ dω φ(ω)
(
CL∗0 C0(ω) + CL∗1 C1(ω)

)∣∣∣∣2 .
(A6)

The fidelity of the output state will depend on the phase shifter values. We numerically simulate the output
wavefunctions for a large sample of ζ, ξ, θ, φ across a range of spectral widths and plot the results in Figure 8.
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Figure 8. Infidelities of the output state of a Mach-Zehnder interferometer for a range of spectral distributions. We assume an
input wavefunction of |ψin〉 =

∫
dω gδt(ω) 1√

2
(â†1(ω) + â†2(ω)) |∅〉, where gσ(ω) is a Gaussian with a spectral width of σ = δω

ω0

and a pulse length of δt = 1
2δω

periods of the central frequency ω0. We compute the output wavefunction for an ensemble of
1000 values of ζ, ξ, θ, φ sampled uniformly from [0, 2π) across 250 values of σ and plot the maximum, minimum, and average
infidelity (defined as 1−F) for each case, depicted as the bottom, middle, and top lines, respectively.

Appendix B: Derivation of reflection coefficients

In this section, we derive the reflection coefficients presented in Section II B, using a similar treatment of the problem
as in Ref. [35]. To simplify the derivation, we replace the Hamiltonian in Eq. 6 with an ad-hoc Hamiltonian:

Had-hoc =
~
i

∫
dx

[
b̂†R(x)

∂

∂x
b̂R(x)− b̂†L(x)

∂

∂x
b̂L(x)

]
+ ~

4∑
n=2

(
Ωn −

iΓ′

2

)
|n〉〈n|

+ ~
∫
dx
√

Γ/2 δ(x)
[(
b̂†R(x) + b̂†L(x)

)
(|1〉〈2|+ |3〉〈2|+ |3〉〈4|) + H.c.

]
, (B1)

where we have also set vg = vr = 1. With this approach, the Hilbert space contains only waveguide and atom
states, without the environmental reservoir. This ad-hoc approach is known to produce correct scattering matrices
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for single-photon (and temporally-separated multi-photon) interactions, and is thus suitable for our purposes, but it
should be noted that the direct substitution of Ω→ Ω− iΓ′/2 in the Hamiltonian rather than in the scattering matrix
will yield incorrect results for temporally overlapping two-photon scattering. [36]

Step 1. Consider the dynamics of a single quantum emitter in the device, from sites (4a) to (6a) in Fig. 1c. Photon
A at frequency ω = Ω12 = Ω34 is incident on the atom, which is initialized in state |1〉. The stationary state of the
system is:

|ψ1〉 =

∫
dx
[
φ1R(x)b̂†R(x) + φ1L(x)b̂†L(x)

]
|∅〉⊗ |1〉+e2 |∅〉⊗ |2〉+

∫
dx
[
φ3R(x)b̂†R(x) + φ3L(x)b̂†L(x)

]
|∅〉⊗ |3〉 , (B2)

where the amplitude of the φ wavepackets correspond to the component of the photon which is in the spatial mode
being considered. [35, 37] Using the Schrodinger equation H |ψ1〉 = ~ω |ψ1〉, where H is given in Eq. B1, and defining

a coupling constant V ≡
√
vgΓ/2 we obtain: (

−i d
dx
− ω

)
φ1R(x) + V δ(x)e2 = 0, (B3a)(

+i
d

dx
− ω

)
φ1L(x) + V δ(x)e2 = 0, (B3b)(

−i d
dx
− ω′

)
φ3R(x) + V δ(x)e2 = 0, (B3c)(

+i
d

dx
− ω′

)
φ3L(x) + V δ(x)e2 = 0, (B3d)

− iΓ
′

2
e2 + V (φ1R(0) + φ1L(0) + φ3R(0) + φ3L(0)) = 0. (B3e)

Defining k ≡ ω/c and k′ ≡ ω′/c = Ω32/c, and following the treatment in Ref. [37] and [35], we assume a solution
ansatz of:

φ1R(x) = e+ikx (θ(−x) + β1Rθ(x)) , (B4a)

φ1L(x) = e−ikx (α1Lθ(−x) + β1Lθ(x)) , (B4b)

φ3L(x) = e−ik
′x (β3Lθ(−x)) , (B4c)

φ3R(x) = e+ik′x (β3Lθ(−x) + α3Rθ(x)) , (B4d)

where θ is the Heaviside function with θ(0) ≡ 1
2 . Here, β coefficients describe parts of the wavefunction between

the relevant reflector and the 4LS, while α coefficients describe parts which are outside the 4LS (the input/output
waveguide for the ω photon and the delay line for the ω′ photon). The reversal of direction of x for φ1 and φ3 is due
to the opposite orientation of the reflectors for ω and ω′, respectively. The reflective boundary conditions at x = ±a
means that:

φ1R(a) + φ1L(a) = 0 = φ3L(−a) + φ3R(−a). (B5)

Using this and substituting equations B4 into B3 gives us the solution:

r11 = α1L = e2iωa

iΓ′

2 − iΓ
2

(
e2iω′a − e−2iωa

)
− iΓ′2 + iΓ

2 (e2iω′a + e2iωa − 2)
, (B6)

r13 = α3R =

iΓ
2

(
e2iωa − 1

) (
e2iω′a − 1

)
− iΓ′2 + iΓ

2 (e2iω′a + e2iωa − 2)
. (B7)

Step 2. We now send in the second photon B, also of frequency ω, which will scatter off of the |1〉 component of
the 4LS state in the same manner as the first photon. We assume that the temporal separation of photons A and B
is much greater than the decay timescale of the excited |2〉 , |4〉 states, and since ω is off resonance from the |3〉 ↔ |2〉
transition at ω′, then B will interact with the |3〉 ↔ |4〉 transition only. The single photon scattering eigenstate for
the |3〉 component of the 4LS state then takes the form:

|ψ2〉 =

∫
dx
[
φ3R(x)b̂†R(x) + φ3L(x)b̂†L(x)

]
|∅〉 ⊗ |3〉+ e4 |∅〉 ⊗ |4〉 . (B8)
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As before, applying the ad-hoc Hamiltonian to H |ψ2〉 = ~ω |ψ2〉, we obtain equations of motion:(
−i d
dx
− ω

)
φ3R(x) + V δ(x)e4 = 0, (B9a)(

+i
d

dx
− ω

)
φ3L(x) + V δ(x)e4 = 0, (B9b)

− iΓ
′

2
e4 + V (φ3R(0) + φ3L(0)) = 0. (B9c)

Assuming a solution ansatz of

φ3R(x) = e+ikx (θ(−x) + β3Rθ(x)) , (B10a)

φ3L(x) = e−ikx (α3Lθ(−x) + β3Lθ(x)) , (B10b)

where k is defined as before, and imposing reflective boundary conditions that φ3R(a) + φ3L(a) = 0, we obtain the
reflected amplitude to be:

R3 = α3L =
iΓ′

2 e
2iωa + iΓ

2

(
1− e2iωa

)
− iΓ′2 − iΓ

2 (1− e2iωa)
. (B11)

Step 3. The A′ photon of frequency ω′ has traveled down the delay line and back and is incident on the 4LS, which
is in some superposition of |1〉 and |3〉. The photon is far off-resonance from the |1〉 ↔ |2〉 transition, so will only
interact with the |3〉 ↔ |2〉 transition. Using the same approach as before, we obtain reflection amplitudes which are
analogous to Eqs. B6 and B7, except with ω and ω′ switched:

r33 = e2iω′a

iΓ′

2 − iΓ
2

(
e2iωa − e−2iω′a

)
− iΓ′2 + iΓ

2 (e2iωa + e2iω′a − 2)
, (B12)

r31 =

iΓ
2

(
e2iω′a − 1

) (
e2iωa − 1

)
− iΓ′2 + iΓ

2 (e2iωa + e2iω′a − 2)
. (B13)

Step 4. The B′ photon of frequency ω′ has returned to the 4LS, which is in some different superposition of |1〉 and
|3〉. As before, the photon only interacts with the |3〉 ↔ |2〉 transition, and has identical reflection coefficients as step
3.



18

Appendix C: Implementations of common quantum gates

Operator Matrix representation ζ ξ θ φ

Identity 1 =
(

1 0
0 1

)
0 0 0 0

Hadamard H = 1√
2

(
1 1
1 −1

)
5π
4

3π
4

π
2

π
2

Pauli-X σx =
(

0 1
1 0

)
π π π 0

Pauli-Y σy =
(

0 −i
i 0

)
3π
2

π
2

π 0

Pauli-Z σz =
(

1 0
0 −1

)
0 π 0 0

Rotation-X Rx(θ′) = cos θ
′
2
1− i sin θ′

2
σx −2θ′ −2θ′ θ′ 0

Rotation-Y Ry(θ′) = cos θ
′
2
1− i sin θ′

2
σx −2θ′ − π

2
−2θ′ θ′ π

2

Rotation-Z Rz(θ
′) = cos θ

′
2
1− i sin θ′

2
σz − θ′

2
θ′
2

0 0

Phase shift Rφ′ =
(

1 0

0 eiφ

)
0 φ′ 0 0

Table I. A table of phase shifter parameters which implement various common single-qubit gates on the phase-modulated MZIs
depicted in Figure 1c.

Operator Symbol Decomposition Required cσz layers

Identity
I • I • I

I • I • I
0, 2, 4, · · ·

Controlled-NOT
• I • I

H • H
1

Controlled-phase
•

Rφ

Rφ/2 • I • I

Rz(φ)H • HRz(−φ2 )H • HRz(
φ
2

)
2

Controlled-Ua
•

U

Rφ • I • I

Rz(α)Ry( θ
2
)H • HRy(− θ

2
)Rz(−α+β2 )H • HRz(

β−α
2

)
2

SWAP ×
×

H • H • H •

H • H • H •
3

a We decompose U via Euler angles as U = eiφRz(α)Ry(θ)Rz(β).

Table II. Construction of common multi-qubit gates by embedding single-qubit operations in a lattice of cσz gates. Because the
phase-modulated MZIs can implement any single-qubit operator, gate decompositions may be terminated with either with cσz
gates or with single-qubit gates, as the first layer of single-qubit operators of subsequent gates can implicitly include the final
single-qubit operators of the previous logical gate. All quantum circuit diagrams in this paper were typeset using the QCircuit

LATEXpackage. [72]
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