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To gain better insight into the complexity theory of quantum annealing, we propose and solve
a class of spin systems which contain bottlenecks of the kind expected to dominate the runtime
of quantum annealing as it tries to solve difficult optimization problems. We uncover a noise
amplification effect at these bottlenecks, whereby tunneling rates caused by flux-qubit noise scale in
proportion to the number of qubits N in the limit that N →∞. By solving the incoherent annealing
dynamics exactly, we find a wide range of regimes where the probability that a quantum annealer
remains in the ground-state upon exiting the bottleneck is close to one-half. We corroborate our
analysis with detailed simulations of the performance of the D-Wave 2X quantum annealer on our
class of computational problems.

I. INTRODUCTION

Quantum Annealing (QA), a quantum heuristic for ap-
proximately solving NP-hard binary optimization prob-
lems, is already in commercial use [1–7] in machine learn-
ing and artificial intelligence applications. The algorithm
works by mapping Quadratic Unconstrained Binary Op-
timization (QUBO) problems to the problem of solving
for the ground state of a spin glass Hamiltonian. The
time-complexity of QA, however, that is, how the re-
quired resources for running the algorithm scale with
problem size, is still under investigation. The scaling be-
havior has been computed only for several optimization
problems [8–11].

A key benchmarking problem in QA is the question of
how an adiabatic quantum computer performs on spin
glass bottlenecks. Those are time intervals during the
annealing schedule where the gap shrinks exponentially
with problem size, see Fig. 1. A cascade of hard bot-
tlenecks was found [11] in the ordered phase of the an-
nealing process. Over a decade later, another work [8]
provided an exactly solvable spin glass system, where the
scaling of the gap at these bottlenecks was obtained via
analytical arguments, as opposed to the usual, numeri-
cal treatment. As a result, it is now understood that the
time-complexity of quantum annealing for large problems
is dominated by spin glass bottlenecks [1, 12–16]. There
are two general features of these bottlenecks, (i) an ex-
ponentially small gap as the system size N grows, and
(ii) a quantum tunneling event that flips O(N ) spins.

These features can be embedded in a simple model,
which can then be solved exactly (some properties are
accurately accessible only in the asymptotic limit of
N → ∞). To the best of our knowledge, there have
been no analytical studies of the effects of realistic
(i.e. longitudinal) qubit noise at bottlenecks of QA
in the presence of frustration, in the limit of large N
[17, 18]. In this study, we ultimately find that, at

FIG. 1. One-dimensional bottlenecks of quantum annealing.
The plot shows some exponentially-small gaps in the spec-
trum (obtained by exact diagonalization) of a 1+1 dimen-
sional N = 7 transverse-field Ising spin glass. Only one is a
bottleneck (i.e. involves the instantaneous ground state |GS〉,
shown in the inset). Multiqubit-tunneling at this bottleneck
is asymptotically proportional to the number of qubits N ,
magnifying annealing errors in the adiabatic limit. The fig-
ure shows instantaneous eigenenergies E of the Hamiltonian
in Eq. (1) as a function of B(t) for representative values of
Jj couplings in Eq. (3).

an annealing bottleneck, the effects of frustration on
multiqubit tunneling are washed-out in the large-N
limit, leaving behind a large-N noise amplification effect.
In particular, we find that tunneling rates in a wide class
of frustrated spin chains diverge as NM2, where M is a
suitably-defined bulk spontaneous magnetization. This
gives analytical confirmation of prior work, which has
found that the effective multiqubit noise spectral density
at an annealing bottleneck grows as the multiqubit
Hamming distance between the crossing states [19, 20].
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The rest of the paper is organized as follows. We intro-
duce and discuss basic properties of our exactly solvable
model of bottlenecks in QA in Section II. Section III con-
centrates on the effects of ambient noise at the QA bot-
tlenecks. We solve the Redfield equation to predict the
behavior of the annealing processor at the bottleneck at
finite temperature in Section IV. We conclude with the
main results in Section V.

II. A MINIMAL MODEL OF A SPIN GLASS
BOTTLENECK OF QA

We now search for the simplest class of Ising spin sys-
tems containing a spin glass bottleneck, where the mini-
mum gap decreases exponentially as the number of qubits
N → ∞. Note that spin glass bottlenecks with frustra-
tion are impossible to realize with mean-field-like prob-
lem Hamiltonians (i.e. problem Hamiltonians with all-
to-all interactions), thus motivating an investigation of
the one-dimensional case. Defining Pauli matrices σαj ,
α = x, z acting on sites j of a lattice, the one-dimensional
transverse-field Ising spin glass has Hamiltonian

Ĥ0(t) ≡ ĤP +B(t)
∑
j

σ̂xj . (1)

The parameter B(t) here represents a uniform transverse
magnetic field, and the problem Hamiltonian ĤP for the
one-dimensional Ising spin glass is

ĤP ≡ −
N∑
j=1

Jjσ
z
jσ

z
j+1, (2)

where here, Jj denotes a coupler connecting qubits j
and j + 1, and it is understood that the qubit in-
dices j are to be interpreted modulo N . The one-
dimensional transverse-field Ising model can be mapped
to free fermions [21], and is thus a good place to gain some
useful physical intuition about these bottlenecks. The
simplest one-dimensional annealing problem containing
a spin glass bottleneck is the Frustrated Ring, the one-
dimensional spin system depicted in Figure 2. The cou-
plings Jj for the Frustrated Ring are given as follows:

Jj =


JL j = n, n+ 1

−JR j = 2n+ 1

J otherwise
, (3)

here, 0 < JR < JL < J , and we make the total number
of qubits N ≡ 2n + 1 odd, to make the problem more
symmetric (and thus more amenable to an exact calcula-
tion). The Frustrated Ring is a minimal model of a spin
glass bottleneck, because, in one dimension, one must
modify at least three couplers in an otherwise uniform
graph to achieve a spin glass bottleneck; the Frustrated
Ring saturates this lower bound.

FIG. 2. The Frustrated Ring (c.f. Eq. (2)) is specified by the
above weighted graph. Links correspond to couplings between
sites represented by circles. It is a solvable 1D model of a
spin glass bottleneck of QA. Red (blue) circle denotes spin up
(down).

FIG. 3. Performance of the D-Wave 2X quantum annealer
on the Frustrated Ring benchmark (c.f. Figure 2). In the
regime 0 < JR < JL < J , JJR > J2

L (the region between
the two black curves), the annealing schedule of the Frus-
trated Ring contains a spin-glass bottleneck. Within the bot-
tleneck regime, the probability that the D-Wave 2X returns
the groundstate of the Ising Hamiltonian in Eq. (2) decreases
noticeably from ∼ 1 (yellow) to ∼ 0.4 (dark blue). Here,
N = 8, and the coupling J ≡ 1 in the bulk of the chain.

The Frustrated Ring is frustrated, and therefore has a
forced excitation in its groundstate. At zero transverse
field B(t) ≡ 0, there are two generic positions where this
excitation likes to reside: (i) at the antiferromagnetic
coupler JR (forming the frustrated groundstate |ΨR〉),
and (ii) at either of the two weak ferromagnetic cou-
plers JL (forming degenerate first-excited states |ΨL〉),
see Fig. 4. At a special value of the transverse-field Bb
within the ordered phase of the anneal, the |ΨR〉 states
and a pair of |ΨL〉 states form an avoided crossing with
a gap that scales as

∆min ∝
N→∞

(
J(J2

L − J2
R)

JR(J2 − J2
L)

)N
, (4)

which is exponentially small in N , as desired (see Fig. 5).
Representative performance of the D-Wave 2X quantum
annealer in the bottleneck regime, JJR > J2

L, is depicted
in Fig. 3. Since |ΨL〉 and |ΨR〉 differ by flipping half
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FIG. 4. Lowest energy states of the Frustrated Ring, at the
end of the annealing process. The green loop denotes a bond
that gives a positive contribution to the energy of the Hamil-
tonian in Eq. (2). In (a), |ΨR〉 is formed by violating the
anti-ferromagnetic bond JR. |ΨL〉 is obtained by violating
either of the two weak ferromagnetic bonds JL, as shown in
(b).

of the spins, the avoided crossing of these states has two
key features in common with spin glass bottlenecks: (i)
an exponentially small gap, and (ii) a quantum tunneling
event that flips O(N ) spins.

A. Annealing schedule

We now analyze the annealing schedule of the Frus-
trated Ring, and demonstrate that it runs in exponential
time (assuming completely coherent processor dynam-
ics). The first step in the analysis consists of reinter-
preting the system of interacting spins as a system of
non-interacting fermions. In this new description, the
global spin-flip symmetry becomes a symmetry (−1)NF ,
which counts the number of fermionic excitations modulo
2:

(−1)NF ≡
N∏
j=1

σ̂xj , [Ĥ0(t), (−1)NF ] = 0 . (5)

The appropriate fermionic operators γ̂1, γ̂2, · · · , γ̂2N are
Majorana fermions, i.e. they generate the Clifford alge-
bra

γ̂iγ̂j + γ̂j γ̂i ≡ 2δij . (6)

These Majorana fermions are written in terms of the orig-
inal spin operators via the Jordan-Wigner transformation

σ̂xj = −iγ̂2j−1γ̂2j ,

σ̂zj = (−i)j−1γ̂1 · · · γ̂2j−1 . (7)

In terms of the fermionic operators, the theory decouples
into two free theories:

Ĥ±0 (t) =− i
∑
j

J±j γ̂2j γ̂2j+1

+ iB(t)
∑
j

γ̂2j−1γ̂2j ,
(8)

where J±j ≡ Jj for j 6= N ; J±N ≡ ±JN , and Ĥ±0 (t)

denotes the annealing Hamiltonian Ĥ0(t) restricted to
the sector with an even and odd number of Majorana
fermions, respectively.

FIG. 5. (a) The low-energy spectrum of an N = 7 Frustrated
Ring computed for representative values of couplings Jj in
Eq. (1) and Eq. (3). Note the avoided crossing. (b) Due
to Z2 Ising symmetry, the annealing bottleneck consists of
two crossings, one occurring in each symmetry sector. In the
Frustrated Ring, the odd-parity crossing is gapless. However,
only the even-parity crossing is seen by the coherent annealing
dynamics (see [22] for details), and thus the even-parity gap
(see Eq. (28)) determines the QA time-complexity of this
problem.

1. Zero transverse field

The non-interacting theories may be diagonalized via
the Bogoliubov-de-Gennes formalism for all B(t). To di-
agonalize the theories at the end of the anneal (when the
transverse field is completely turned off), we form the
complex fermions

ĉ†j,± := γ2j + iγ2j+1, (9)

ĉj,± := γ2j − iγ2j+1. (10)

In terms of the complex fermions, both free theories take
the following diagonalized form at B = 0:

Ĥ±0 (t) =
B→0

∑
j

J±j c
†
j,±cj,± (11)
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J−j > 0 for all j, and so, in the odd-fermion sector, all
fermionic quasiparticles thus have positive energy at B =
0. The groundstate in this sector is

|Ψ−R〉 := c†N ,−|Ω−〉, (12)

Similarly, the two degenerate first-excited states in this
sector are produced by exciting the bonds JL at the left-
most portion of the graph:

|Ψ−L 〉 := c†N,−|Ω−〉, (13)

|Ψ−L′〉 := c†N+1,−|Ω−〉, (14)

where we have factored N = 2N + 1. The energies of the
above states are equal to the odd-parity vacuum energy,
plus the energy JR,L of the bond violated in each case, as
expected from examination of the diagonal form of the
Hamiltonian in Eq. (11). In the even-fermion sector, the
analysis is a bit more complicated, as the presence of an
antiferromagnetic bond means that when that bond is
violated, the spin chain loses energy. In the fermionic
picture, this is reflected by the fact that the fermionic
quasiparticle c†N ,+ has negative energy. Accordingly, the
groundstate in the even-fermion sector is just vacuum:

|Ψ+
R〉 := |Ω+〉. (15)

It is impossible to have a single fermionic excitation in
this sector. The next-lowest energy eigenstates thus have
two excitations each:

|Ψ+
L〉 := c†N ,+c

†
N,+|Ω+〉, (16)

|Ψ+
L′〉 := c†N ,+c

†
N+1,+|Ω+〉, (17)

where we have again factored N = 2N + 1. The energies
of the above states are equal to the even-parity vacuum
energy, plus the difference JL − JR. Again, here, the
quasiparticle c†N ,+ has negative energy, as it produces a
domain wall at the antiferromagnetic bond J+

N < 0.

2. Nonzero transverse field

We now make general comments about the above low-
lying spin chain eigenstates in the presence of a nonzero
transverse field B(t) > 0. In general, the diagonal form
Eq. (11) is now dependent on the transverse-field value
B(t). The odd-parity Hamiltonian Ĥ−0 (t) is simplest to
analyze, as all of its coupling constants are positive in the
limit B → 0, and thus all fermionic excitations (for suf-
ficiently small transverse field) still have positive energy.
For B > 0, the energies ε > 0 of these excitations will in
general have some non-trivial dependence on the trans-
verse field, leading to an energy dispersion curve ε(B).
For instance, for the right-most localized bound state,

εN ,±(B) ∼
B→0

∓JR, etc.. (18)

FIG. 6. The bonds JL support a pair of fermion bound states
c†L and c†L′ , shown in (a) with energies εL(B) and εL′(B)
shown in (b).

FIG. 7. The BdG-boundstate crossing (a) A fermion
bound state (a dressed 0-dimensional domain wall) tunnels
across the graph from left to right. It flips all of the qubits
along its way. (b) Bound-state energies as a function of B.
As external field B is lowered, the defect ĉ†R becomes energet-
ically favorable at Bb and the tunneling shown in panel (a)
takes place.

When any one of these dispersion curves crosses the hor-
izontal line ε(B) ≡ 0, the model becomes gapless. We
call the smallest transverse field at which this happens
Bc, i.e. the critical value of the transverse-field.

We then define B(t) < Bc to be the ordered phase of
the anneal, and the remaining regime B(t) > Bc to be the
paramagnetic phase of the anneal. In the ordered phase,
the Bogoliubov de-Gennes (BdG) equations centered on
the bond J−N ≡ JR may be solved exactly, producing
a fermion bound state ĉR exponentially localized at the
right-end of the graph, creating the odd-parity ground
state.

|Ψ−R〉 := ĉ†R,−|Ω−〉. (19)

Similarly, in the limit N → ∞, the BdG equations cen-
tered on the bond JL may also be solved exactly (see Ap-
pendix A), yielding two low-energy bound states ĉL, ĉL′
exponentially localized at the left-end of the graph, so
that the next-lowest energy states with odd-parity are

|Ψ−L 〉 := ĉ†L,−|Ω−〉, (20)

|Ψ−L′〉 := ĉ†L′,−|Ω−〉. (21)

The corresponding energies of the states Eqs. (19-21)
are ε−vac + ε−R, and ε

−
vac + ε−L , and ε

−
vac + ε−L′ respectively,

where ε−vac is the energy of the odd-parity vacuum state
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|Ω−〉. From the definition, it is then clear that, whenever
the energy dispersion curves ε−R(B) and ε−L (B) cross, the
corresponding spin-chain eigenstates Eqs. (19-20) cross
in energy.

In the even-parity sector, a similar picture emerges,
although the energy considerations are complicated by
the fact that some defects have negative energy in the
ordered phase, as the even-parity Hamiltonian Ĥ+

0 con-
tains a coupling constant J+

N ≡ −JR which is negative.
However, after some book-keeping, one can deduce the
three-lowest energy states in the even-fermion sector,
which we list below:

|Ψ+
R〉 := |Ω+〉, (22)

|Ψ+
L〉 := ĉ†R,+ĉ

†
L,+|Ω+〉. (23)

|Ψ+
L′〉 := ĉ†R,+ĉ

†
L′,+|Ω+〉. (24)

As in the odd-parity case, the corresponding energies of
the states Eqs. (22-24) are ε+vac, ε+vac + ε+L + ε+R, and
ε+vac+ε

+
L′+ε

+
R respectively, where ε+vac is the energy of the

even-parity vacuum state |Ω+〉. Again, this means that
when the energy dispersion curves |ε+R(B)| and ε+L(B)
cross, the corresponding spin-chain eigenstates Eqs. (19-
20) cross in energy. Here, we have taken the absolute
value of the energy of the right-localized defect ĉ†R,+, as
this defect has negative energy throughout the ordered
phase B(t) < Bc of the anneal.

The origin of the annealing bottleneck becomes clear
once one realizes that the level repulsion between εL, εL′
deflects the energy dispersion curve εL(B) of the ĉL-
defect downwards (see Figure 6), so that, for JJR > J2

L,
it crosses with the energy of the ĉR defect at a tunable
B ≡ Bb value of the transverse-field within the spin-glass
phase of the anneal:

Bb ≡
1

JR

(J2 − J2
L)(J2

L − J2
R)

J2 + J2
R − 2J2

L

< Bc . (25)

A rigorous derivation of the identity in Eq. (25) is
carried out in Appendix A. The level crossing produces
the situation in the odd-fermion sector depicted in
Figure 7, where a forced excitation (forced by parity
constraints) must quantum-mechanically tunnel from
left to right in the graph. A similar situation occurs
in the even-fermion sector, leading to a second level
crossing at B ≡ Bb. So, in total, at B = Bb, two pairs
of energy levels cross.

3. Scaling of the gap

The previous analysis was only exact in the limit
N → ∞. At finite N , in each parity sector, there will
be hybridization between boundstates localized at oppo-
site ends of the graph (due to finite-size effects), and so,
directly at the minimum gap region, the true fermonic

eigenmodes will sweep rapidly through a mixture of left-
and right-modes, producing an avoided (Landau- Zener)
crossing. For example, in the even-fermion sector, one
can define a Landau-Zener approach angle

tan 2θLZ(B) ≡ ∆(B)

ε+R(B)− ε+L(B)
,

where ∆(B) is defined as the (exponentially-small) over-
lap between the left- and right-localized even-partity
fermion boundstates. In terms of θLZ , the two lowest-
energy excitations become:

ĉ†0,+ = ĉ†R,+ sin θLZ + ĉ†L,+ cos θLZ , (26)

ĉ†1,+ = ĉ†L,+ sin θLZ − ĉ†R,+ cos θLZ . (27)

In contrast, the odd-parity bound states do not hybridize,
as they have different parities under spatial reflection j →
N − (j − 1) (see Appendix A), and the crossing there is
exact, for all N <∞. Therefore, at B = Bb, in the large-
N limit, there is a pair of crossings, with each crossing
occurring in a distinct eigenspace of (−1)NF , i.e. each
crossing is labelled by a distinct Z2 quantum number, see
bottom portion of Fig. 5. The scaling of the hybridization
of the even-parity boundstates at the bottleneck location
gives the inverse QA runtime

∆(Bb) ∝
N→∞

O
(
J(J2

L − J2
R)

JR(J2 − J2
L)

)N
, (28)

which is exponentially small in N , as desired. Note that
the spectral data in the odd-parity sector is irrelevant in
analyzing the time-complexity of the closed-system an-
nealing dynamics, as the odd-parity sector is never vis-
ited during the coherent evolution. This is because the
initial state of the QA protocol always has even spin-flip
parity (see, e.g. [22]), and spin-flip parity is conserved
throughout the annealing schedule.

III. ANALYSIS OF FLUX QUBIT NOISE AT
THE ANNEALING BOTTLENECK

In this section we turn our attention to the effects
of ambient flux qubit noise at a frustrated spin glass
bottleneck. In the D-Wave 2X quantum annealer,
fluctuations in onsite qubit flux bias form the dominant
source of noise [19, 20]. This flux bias noise is accurately
modelled by the following system-bath Hamiltonian:

ĤD-Wave ≡ Ĥ0 +

N∑
j=1

Q̂j σ̂
z
j + ĤB , (29)

Q̂j ≡
∑
u

λu(b̂j,u + b̂†j,u) , (30)

ĤB =
∑
j,u

~ωu(b̂†j,ub̂j,u + 1/2) , (31)
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FIG. 8. Probability of success vs. JL for the D-Wave 2X. The
plot shows probability P that the D-Wave 2X at Los Alamos
National Laboratory finds the optimal answer to the Frus-
trated Ring MAXCUT problem, as a function of the param-
eter JL of the Frustrated Ring for system size N = 6, 8, 10.
We considered the Frustrated Ring defined by the following
coupling parameters: J = 1, JR = 0.2 and 0.2 < JL < 0.5.
The simulation on D-Wave 2X was run with annealing time
tQA = 5 µs and temperature T = 15.5 mK. We find quali-
tative agreement of numerical Redfield simulations with the
D-Wave 2X.

where the bath operators {b̂j,u}u for each flux qubit sat-
isfy standard bosonic commutation relations [b̂j,u, b̂

†
j,u′ ] =

δu,u′ , and ωu is the frequency of mode u and λu sets the
interaction strength between that mode and its corre-
sponding qubit. For weak noise strength, the effects of
the flux bias fluctuations on the system dynamics are
uniquely characterized by the noise spectral density of
these fluctuations:

S(ω) ≡
∫ ∞

0

dteiωt〈eiHBt/~Q̂je−iHBt/~Q̂j〉 , (32)

which we assume to be identical for each qubit. For sim-
plicity, in this study we assume the spectral density of
the noise to be Ohmic:

S(ω) ≡ ~2 ηωe−ωτc

1− exp(−~ω/kBT )
(33)

at temperature T . Here, η characterizes the strength of
the fluctuations in the flux bias, and is typically measured
in macroscopic resonant tunneling experiments on the
individual qubits in the processing unit. For the D-Wave
2X annealer at NASA QuAIL, η was measured to be
∼ 0.24 in the regime B ≡ 0 [19]. We use this value of η
for our numerical simulations of the D-Wave 2X at Los
Alamos National Laboratory.

We treat the open-system dynamics specified by Eqs.
(29-31) in the Bloch-Redfield approximation, which, at
the qualitative level, closely predicts the probability P
that the D-Wave 2X machine returns a global minimum

of the Frustrated Ring MAXCUT problem:

P ≡ 〈00 · · · 0|ρ̂f |00 · · · 0〉+ 〈11 · · · 1|ρ̂f |11 · · · 1〉, (34)

where here, ρ̂f is the collective density matrix of the
qubits in the annealer at the end of the anneal, and
{000 · · · 0, 111 · · · 1} is the complete set of bit strings
which solve the Frustrated Ring MAXCUT problem.
The actual success probability observed in the D-Wave
2X quantum annealer, compared with the simulated
success probability (according to the Bloch-Redfield
simulation of the quantum processor) is plotted in Fig. 8.

Assuming the annealing processor is completely inco-
herent, i.e. the off-diagonal matrix elements of ρ̂ vanish
in the energy eigenbasis, then the Redfield master equa-
tion degenerates into a kinetic equation involving tunnel-
ing rates between instantaneous eigenstates. These are
given by Fermi’s golden rule as (c.f. [20]):

Γi→f =
1

2~2
S(ωi→f ) ·Oi→f , (35)

Oi→f ≡
N∑
j=1

|〈Ψi|σ̂zj |Ψf 〉|2 , (36)

where here, ωi→f is the gap frequency (Ei − Ef )/~ be-
tween the initial |Ψi〉 and final eigenstate |Ψf 〉. Directly
at the bottleneck in our frustrated spin system, we will
find this incoherent evolution to be analytically solvable
in the large-N limit. Symmetry simplifies the problem:
since σ̂z flips the Z2 quantum number corresponding to
spin-flip parity, the relevant form-factors that need to be
calculated are (assuming the temperature is sufficiently
low so that we can assume that the four-lowest levels are
populated during the evolution):

O0+→L− =
∑
j

|〈Ψ+
0 |σ̂zj |Ψ

−
L 〉|

2 , (37)

O0+→R− =
∑
j

|〈Ψ+
0 |σ̂zj |Ψ

−
R〉|

2 , (38)

O1+→L− =
∑
j

|〈Ψ+
1 |σ̂zj |Ψ

−
L 〉|

2 , (39)

O1+→R− =
∑
j

|〈Ψ+
1 |σ̂zj |Ψ

−
R〉|

2 . (40)

All other matrix elements vanish by symmetry, because
σ̂z mixes fermionic Z2 parity symmetry. To calculate the
transition rates, we expand them so that they are written
completely in terms of the basis {|Ψ−L 〉, |Ψ

−
R〉, |Ψ

+
L〉, |Ψ

+
R〉}

of crossing states:

O0+→L,R− =
∑
j

∣∣∣sin θLZ〈Ψ+
R|σ̂

z
j |Ψ−L,R〉

+ cos θLZ〈Ψ+
L |σ̂

z
j |Ψ−L,R〉

∣∣∣2 ,

(41)
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O1+→L,R− =
∑
j

∣∣∣cos θLZ〈Ψ+
R|σ̂

z
j |Ψ−L,R〉

− sin θLZ〈Ψ+
L |σ̂

z
j |Ψ−L,R〉

∣∣∣2 .

(42)

Some comments are in order. In general, tunneling due
to non-fermionizable (i.e. σ̂z) noise in a one-dimensional
quantum spin glass is analytically intractable due to the
fact that the interacting portion of the Hamiltonian in
Eq. (29) maps to a Jordan-Wigner string∑

j

σ̂zj Q̂j =
∑
j

(−i)j γ̂1 · · · γ̂2j−1

∑
u

λu(b̂j,u + b̂†j,u) .

(43)
Therefore, solving the full D-Wave dynamics even at the
perturbative, Markovian level is widely considered to be
analytically intractable [17, 18]. For example, one of
the tunneling matrix elements above involves an inner-
product of the form

〈Ψ+
R|σ̂

z
j |Ψ−R〉 = 〈Ω+|(−i)j γ̂1 · · · γ̂2j−1ĉ

†
R,−|Ω−〉 . (44)

The Jordan-Wigner string in the above equation means
that the matrix element evaluates to a determinant of
growing size. Furthermore, the parity-dependent bound-
ary conditions and broken translational invariance of the
model, make the attempts of obtaining the closed-form
solution futile. What is more, the perturbative treat-
ment of this matrix element is also ill-fated because of
the short radius of convergence of perturbation theory in
B in generic spin glasses (inevitably occurring at the first
closing of the gap). In this work, we treat the transverse-
field at the non-perturbative level by performing a field-
theoretic calculation (see Appendix B), leading to an an-
alytical understanding of flux qubit noise at a spin glass
annealing bottleneck.

A. Non-perturbative large-N calculation of
tunneling rates

We begin by computing the off-diagonal, i.e. |ΨL〉 →
|ΨR〉, matrix elements. These vanish in the large-N limit
as a consequence of Lieb-Robinson bounds [23]. For ex-
ample, we can factor

〈Ψ+
L |σ̂

z
j |Ψ−R〉 = 〈Ψ+

L(0)|σ̂zj (B)|Ψ−R(0)〉 , (45)

where σ̂zj (B) = Û†(B)σ̂zj Û(B), and the unitary Û(B) has
the general form

Û(B) ≡ T [e−i
∫B
0
dB′H̃(B′)] (46)

with H̃ defined in [23]. Now, suppose B < Bb is fixed.
Since Ĥ has a spectral gap which is at least O(1) for
all B′ < B, Û(B) is a constant-depth unitary circuit

FIG. 9. Noise amplification at a spin-glass bottleneck. Very
close to the annealing bottleneck, provided that the qubit in-
dex j is in the bulk of the chain, the noise matrix element
O

(j)
0→2 = θ(Bb − B)|〈Ψ+

0 |σ̂z
j |Ψ−L 〉|

2 + θ(B − Bb)|〈Ψ+
0 |σ̂z

j |Ψ−R〉|
2

(c.f. Eqs. (37-40)) approaches the predicted value of (1 −
(Bb/J)2)1/4/2 (dashed line). This is 1/2 the squared magne-
tization of the uniform quantum Ising chain. Therefore, the
corresponding transition rate (which is a sum over all qubits)
is O(N ). See text for details.

[24]. That is, σ̂zj (B), up to exponentially small correc-
tions constant in N , is supported on a region of constant
size. However, |Ψ+

L〉 and |Ψ
−
R〉 at B = 0 are separated by

∼ N/2 spin flips. Therefore, for any fixed B < Bb, the
matrix elements mixing |ΨL〉 with |ΨR〉 are exponentially
small in N , i.e.

〈Ψ+
R|σ̂

z
j |Ψ−L 〉 ∼N→∞ O(e−cN/2) , (47)

with c a constant. Within a sufficiently small neighbor-
hood of the crossing, we can assume the diabatic crossing
states |Ψ±L 〉 and |Ψ

±
R〉 to be approximately independent

of B (with the B-dependence of the true eigenstates due
to mixing within the subspace spanned by these cross-
ing states). Therefore, for B > Bb, sufficiently near the
crossing, the off-diagonal matrix elements are also expo-
nentially small. Via the exact same reasoning, we also
have the asymptotic behavior

〈Ψ−R|σ̂
z
j |Ψ+

L〉 ∼N→∞ O(e−c
′N/2) , (48)

for the other off-diagonal matrix element with c′ another
constant. Again, this follows from the fact that at B = 0
the state |Ψ−R〉 is separated from the state |Ψ+

L〉 by ∼ N/2
spin flips.

In summary, the off-diagonal contributions to multi-
qubit tunneling asymptotically vanish near the crossing
in the large-N limit. Therefore, provided that we are suf-
ficiently close to the crossing point so that neither tan θLZ
nor cot θLZ are exponentially small in N , we can ignore
these off-diagonal contributions. In this limit, the large-
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N tunneling form factors have the asymptotics

O0+→R− ∼
B→Bb

∑
j

sin2 θLZ |〈Ψ+
R|σ

z
j |Ψ−R〉|

2 , (49)

O0+→L− ∼
B→Bb

∑
j

cos2 θLZ |〈Ψ+
L |σ

z
j |Ψ−L 〉|

2 . (50)

with analogous expressions for O1+→R−,L− . To calculate
the simplified form factors given by Eqs. (49-50), we be-
gin with the following generic observation: for each time-
dependent annealing Hamiltonian H0(t) specified in Eq.
(1), let H̃0(t) denote the annealing Hamiltonian obtained
by flipping the sign of JN . Upon taking the Jordan-
Wigner transformation (c.f. Eq. (8)), we then have the
following relations:

H±0 (t) = H̃∓0 (t) . (51)

These relations are completely general and hold for any
quantum spin glass on a 2-regular graph. Crucially, if
H0 is frustrated, H̃0 lacks frustration, and thus perhaps
easier to characterize. For the Frustrated Ring, we can
use the above relation to obtain a complete solution to
the incoherent tunneling rates (c.f. Eqs. (37-40)) in the
large-N limit.

Indeed, in Appendix B, we derive the following crucial
identities relating low-lying eigenstates of the Frustrated
Ring benchmark with those of its ferromagnetic counter-
part H̃:

〈Ψ+
R,L|σ

z
j |Ψ−R,L〉 = −〈Ψ̃−R,L|σ

z
j |Ψ̃+

R,L〉+O(e−κR|j−jR|) ,

(52)

here, jR is the position of the antiferromagnetic coupler
JR, and κR is the wavenumber of the boundstate ĉ†R.
Note that these errors are localized at the position of
the JR-coupler, and thus do not grow if we sum over all
qubits in the graph.

To summarize, by the replacements |Ψ±L,R〉 → |Ψ̃
±
L,R〉,

we can relate our frustrated tunneling form factors to
those in an unfrustrated spin system H̃ (c.f. Eq. 51), at
the cost of inducing an error which does not grow with
the total number of qubits N . We thus have

O0+→R− ∼
N→∞

∑
j

sin2 θLZ |〈Ψ̃+
R|σ

z
j |Ψ̃−R〉|

2, (53)

O0+→L− ∼
N→∞

∑
j

cos2 θLZ |〈Ψ̃+
L |σ

z
j |Ψ̃−L 〉|

2, (54)

with analogous expressions for O1+→R−,L− . Note that
the above asymptotics are not valid unless the expres-
sions in Eqs. (53-54) are asymptotically greater than
O(1); we will find that this is the case (c.f. Eqs. (58-
59)), so that our calculation is self-consistent. The
frustration-free version (H̃0) of our problem is much eas-
ier to solve: in particular, any frustration-free spin sys-
tem is gauge-equivalent to a ferromagnet via a local Z2

FIG. 10. Analytical description of a spin glass bottleneck of
quantum annealing. Very close to the bottleneck, the mul-
tiqubit tunneling rate Γ0→2 = θ(Bb − B)Γ0+→L− + θ(B −
Bb)Γ0+→R− (black) is given exactly by the analytical expres-
sion (58-59) (red). We utilize this analytical understanding
to probe the dynamics of a finite-temperature anneal through
this region.

gauge-transformation of the form

Û(g) ≡
∏
j

(σxj )gj , (55)

with gj ∈ {0, 1}. In fact, we find that the matrix elements
in Eqs. (53-54) are related to the spontaneous magnetiza-
tion of the ferromagnetic spin chain H̃. Indeed, at B = 0,
we have

〈Ψ̃+
R|σ̂

z
j |Ψ̃−R〉 = 1 , (56)

〈Ψ̃+
L |σ̂

z
j |Ψ̃−L 〉 ∼ sgn(j) . (57)

Therefore, at zero transverse field, the above matrix ele-
ments have the physical meaning of being the local mag-
netization of each state (in Eqs. (56-57), we have im-
plicitly re-indexed the qubits from j = −n, · · · , 0, · · · , n,
where N = 2n+ 1). Exact analytical expressions for the
matrix elements in Eqs. (56-57) in the more general case
B > 0 can be obtained by performing a field-theoretic
calculation in the corresponding two-dimensional classi-
cal Ising model (see Appendix B). There, we find that
the absolute values of the magnetizations in Eqs. (56-
57) approach the bulk value M ≡ (1− (B/J)2)1/8. Note
thatM is equal to the bulk spontaneous magnetization of
a quantum Ising chain with uniform ferromagnetic cou-
pling J [25]. A transfer matrix argument in Appendix
B is used to show that this convergence is exponentially
fast in the distance from the JL, JR defects. We confirm
this prediction with exact diagonalization for N up to 23
sites, see Fig. 9.

As a result, the multiqubit tunneling rates at the spin
glass bottleneck have the following large-N asymptotic
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form:

Γ0+→L− ∼
N→∞

S(ω0+→L−)
NM2

2~2
cos2 θLZ , (58)

Γ0+→R− ∼
N→∞

S(ω0+→R−)
NM2

2~2
sin2 θLZ , (59)

which is O(N ), with similar expressions for Γ1+→L−,R− .
Again,M ≡ (1−(Bb/J)2)1/8, the bulk value of the spon-
taneous magnetization of the one-dimensional transverse-
field Ising model, sets the coefficent of scaling. The
above expressions are in excellent agreement with exact-
diagonalization for N up to 23 sites, as shown in Fig. 10.

The physical implications of Eqs. (58-59) above are
clear: in the Landau-Zener formalism, at t = −∞,
(sin θ, cos θ) = (0, 1), and then, at t = ∞, we have
that (sin θ, cos θ) = (1, 0). Therefore, at t = ±∞, the
transition rate is predominantly the exponentially-small
|ΨL〉 → |ΨR〉 cross-terms (which were neglected in deriv-
ing (58-59)), and the approximation breaks down. How-
ever, at the bottleneck t ∼ 0, the transition rate quickly
reaches a peak which is asymptotic to NM2/2, times
the noise-spectral density evaluated at the minimum gap
frequency.

IV. LARGE-N LIMIT OF QUANTUM
ANNEALING THROUGH THE BOTTLENECK

AT FINITE-TEMPERATURE

The simple analytical formulae (58-59) demonstrate
the existence of a linear O(N ) tunneling peak near a
quantum annealing bottleneck, and establish the rela-
tion of the scaling coefficient to a suitably defined bulk
spontaneous magnetization, M , in our benchmark spin
system. Using these asymptotics, we can rigorously ana-
lyze the effects of flux-bias noise on a quantum annealing
chip at a spin glass bottleneck, in the limit that the num-
ber of qubits tends to infinity.

Assuming that the annealing processor is fully inco-
herent, the density matrix ρ of the system is diagonal in
the eigenbasis {|Ψ+

0 〉, |Ψ
+
1 〉, |Ψ

−
R〉, |Ψ

−
L 〉} of the coherent

portion Ĥ0 of the quantum annealing Hamiltonian (29):

ρ̂ = P+
0 |Ψ

+
0 〉〈Ψ

+
0 |+ P+

1 |Ψ
+
1 〉〈Ψ

+
1 |

+ P−R |Ψ
−
R〉〈Ψ

−
R|+ P−L |Ψ

−
L 〉〈Ψ

−
L | .

(60)

Under those assumptions, the density matrix satisfies in-
coherent time-evolution in terms of rates of the form Γi→j

∂tP
+
0 =ΓL−→0+P−L + ΓR−→0+P−R

−
∑

L−,R−

Γ0+→R−,L−P
+
0 , (61)

constituting a kinetic equation of Pauli type. Via Eqs.
(58-59), the multiqubit tunneling rates in the above equa-
tion can then be computed exactly in the large-N limit,
within a sufficient radius of the crossing point such that

FIG. 11. Freezing of annealing dynamics after a spin glass
bottleneck. The plots show ground state population PGS ≡
P+
0 + P−R as a function of dimensionless annealing parame-

ter s = t/tQA for two temperatures of the annealing chip,
T = 15.5 mK in panel (a) and T = 1.55 mK in panel (b). At
typical operating temperatures of the D-Wave 2X, both PL

and PR are nontrivial (c.f. Frustrated Ring depicted in panel
(a)) but at low-temperatures, PR is negligible (c.f. Frustrated
Ring depicted in panel (b)). In both regimes however, we note
that nontrivial population transfer occurs directly at the bot-
tleneck and then stops completely, making bottleneck physics
particularly relevant to the performance of the quantum an-
nealer. In the simulations, we considered anN = 8 Frustrated
Ring defined by (JR, JL, J) = (0.2, 0.24, 1) and assumed an-
nealing time tQA = 5 µs. The insets show tQAΓ0→2 (c.f. Eqs.
(58-59)) as a function of s.

the approximation (49-50) is valid. It is thus convenient
to define a tunneling region ti < t < tf within which this
assumption holds. In this case, the instantaneous gap
is much smaller than the temperature, and the Ohmic
noise spectral density S(ω) defined in (33) saturates at
its low-frequency value S(ω) ≡

~ω/kBT→0
S(0). Therefore,

in the tunneling region ti < t < tf , the incoherent master
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equation Eq. (61) takes the rather symmetric form

∂P+
0

∂t
∼
N→∞

S(0)NM2

2~2
(P−L cos2 θLZ + P−R sin2 θLZ − P+

0 ) ,

∂P+
1

∂t
∼
N→∞

S(0)NM2

2~2
(P−L sin2 θLZ + P−R cos2 θLZ − P+

1 ) ,

∂P−R
∂t

∼
N→∞

S(0)NM2

2~2
(P+

0 sin2 θLZ + P+
1 cos2 θLZ − P−R ) ,

∂P−L
∂t

∼
N→∞

S(0)NM2

2~2
(P+

0 cos2 θLZ + P+
1 sin2 θLZ − P−L ).

(62)

The above master equation represents the open-system
dynamics of a fully incoherent quantum annealing pro-
cessor at the spin glass bottleneck, in the limit N →∞.
We can vectorize the density matrix populations by defin-
ing P ≡ [P+

0 , P
+
1 , P

−
R , P

−
L ]T . The kinetic equation (62)

then takes the following matrix form:

∂P
∂t

=
S(0)NM2

2~2

(
τ̂x1
(
sin2 θLZ + τ̂x2 cos2 θLZ

)
− 14×4

)
P .

(63)

where here, we have introduced a pseudospin

τ̂x1 ≡
(

0 1
1 0

)
⊗ 12×2, (64)

τ̂x2 ≡ 12×2 ⊗
(

0 1
1 0

)
. (65)

The matrix representation Eq. (63) manifestly diago-
nalizes the Liouvillian for the effective classical master
equation (61), allowing us to solve for the density ma-
trix at all times. We begin by defining (anti-)symmetric
combinations of the populations via

Pτ1τ2 ≡ (P+
0 + τ2P

+
1 ) + τ1(P−R + τ2P

−
L ). (66)

Equivalently, Pτ1τ2 represents the projection of the vec-
torized density matrix P onto an arbitrary eigenspace
of the time-dependent Liouvillian (63), with τ1, τ2 ∈
{+1,−1} denoting the eigenvalues under application of
τx1 , τ

x
2 , respectively. In this eigenbasis, the ground state

population upon exiting the crossing is given by

PGS(tf ) ≡ (P−R + P+
0 )
∣∣∣
t=tf

=
1

2
(1 + P+−(tf )) . (67)

The ground state population (67) upon exiting the
crossing can be computed analytically with arbitrary
initial conditions. In particular, defining an effective
rate Γeff(t) ≡ S(0)M2 cos2 θLZ(B(t))/2~2 which sets the
timescale of the multiqubit dynamics, we then have

PGS(tf ) ∼
N→∞

1

2

(
1 + e−2N

∫ tf
ti

Γeff(t) dtP+−(ti)

)
. (68)

Since this prediction only gives the ground-state
population upon exiting the bottleneck region, the

above analytical formula is relevant provided that
PGS(t = tf ) = PGS(t = tQA) ≡ P (c.f. Eq. (34)). This
is the case, e.g. if the density matrix stops evolving
non-trivially after the bottleneck (so-called freeze-out,
see e.g. [26–28]). Crucially, we witness this stoppage of
evolution in numerical simulations of the Redfield master
equation in the range 1.55− 15.5 mK, as shown Fig. 11.
As we can see, up to N = 10 (the performance limit of
our simulations), population transfer is nontrivial and
limits the performance of the quantum annealer.

We now focus on a specific set of initial conditions,
supposing that the four populations in the density matrix
are pairwise thermalized. Before the crossing point, we
have E−L −E

+
0 � 1 and E−R −E1 � 1. Also, the rates in

the annealing process are larger earlier in the annealing
(due to larger transverse-field B). It is thus reasonable
to assume that, entering the crossing (i.e. at t = ti), the
density matrix populations satisfy

P−L − P
+
0 � 1, P−R − P

+
1 � 1. (69)

Since the levels in each pair correspond to states with
the fermionic excitation localized at the same location,
this is a reasonable assumption to make. In this limit,
P+,−(ti) → 0, and so the success probability (68) is
asymptotic to one half.

V. DISCUSSION

In this paper we proposed and analytically solved a
model that exhibits the effects of frustration on bottle-
necks of quantum annealing. By investigating a simple
class of one-dimensional annealing bottlenecks, we are
able to rigorously extract the scaling of tunneling rates
caused by longitudinal qubit noise, in the large-N (i.e.
complexity-theoretic) limit. In conclusion, in our model,
we have found that the effective noise spectral density at
an annealing bottleneck is O(N ), which is of the order of
the Hamming distance between the crossing states. This
exact result provides analytical confirmation of and is
in agreement with results obtained in [19, 20]. Further-
more, in spite of the non-integrability of the flux bias
noise (c.f. (44)), by treating the transverse-field B at
the non-perturbative level, we were able to extract the
scaling coefficient accurate to all orders in the transverse-
field and elucidate its relation to spontaneous magneti-
zation. Finally, we have confirmed using Redfield-type
simulations that the ground-state occupation PGS upon
exiting a spin glass bottleneck is especially pertinent for
the performance of a quantum annealer, and so we have
identified a range of temperatures where our analytical
scaling formula should directly predict the annealing per-
formance, in the limit of completely incoherent system
dynamics. In the future, we will investigate the effects
of including coherences, i.e. off-diagonal elements of the
density matrix, on the open-system dynamics. This will
allow us to gain more nuanced insight into the scaling
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performance of combinatorial optimization and sampling
problems on near-term quantum annealers.
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Appendix A: Exact diagonalization of the Frustrated
Ring

In this Appendix we systematically and rigorously
solve for the bound states of the Frustrated Ring, de-
riving their crossing properties and quantum numbers.
Our starting point is the free-fermion representation of
the one-dimensional transverse-field Ising spin glass:

Ĥ±0 (t) = −i
N∑
j=1

J±j γ̂2j γ̂2j+1 + iB(t)

N∑
j=1

γ̂2j−1γ̂2j , (A1)

where J±j ≡ Jj for j 6= N and J±N ≡ ±JN . Ĥ±0 (t)
denotes the quantum annealing Hamiltonian restricted
to the sector with an even and odd number of fermions
respectively. Note that the representation (A1) of the
Frustrated Ring as a pair of free fermion models is a
two-fold redundant description, with each free fermion
theory being valid only in its corresponding parity sector
(the sector with an even number of fermions is called the
Ramond sector, and the sector with an odd number is
called the Neveu-Schwarz sector).

The vector space of all quadratic polynomials in Ma-
jorana fermions, i.e. all expressions of the form

Ĥ =
∑

1≤i<j≤2N

λij γ̂iγ̂j , (A2)

form a closed Lie algebra isomorphic to spin2N , i.e. the
Lie algebra of the Spin group Spin(2N ). It is well-known
that this Lie algebra is isomorphic to so2N , i.e. the Lie
algebra of real, 2N × 2N antisymmetric matrices. The
isomorphism is given by

Ĥ =
∑

1≤i<j≤2N

λij γ̂iγ̂j 7→ HBdG ≡
(

λij
−λij

)
. (A3)

This maps a free-fermion model to its corresponding Bo-
goliubov de-Gennes (BdG) Hamiltonian. The Bogoliubov

de-Gennes Hamiltonian is a much more lucid representa-
tion of a free-fermion model, because the physical data
of interest, namely, the quasiparticle operators expressed
in the Majorana basis, are given by the eigenvectors of
this matrix, and the quasiparticle dispersion corresponds
to the eigenvalues. The BdG representation of the one-
dimensional transverse-field Ising spin glass is

H±BdG =



0 B(t) ±JN
−B(t) 0 J1

−J1
. . .

. . . JN−1

−JN−1 0 B(t)
∓JN −B(t) 0


(A4)

In the particular case of the Frustrated Ring, after a
change-of-basis

Γ̂2j ≡ iγ̂2j , Γ̂2j−1 ≡ γ̂2j−1 , (A5)

the matrices specified by (A4) admit a Z2 symmetry.
It reverses the order of the basis elements, correspond-
ing to the reflection symmetry of the Frustrated Ring
(Jj → JN−(j−1)). As is standard, the symmetry splits
our eigenvalue problem into two subspaces, indexed by
the eigenvalue under reversion (which we denote by µ).
The symmetric subspace (i.e. µ = 1) is N -dimensional,
with basis

Γ̂+
j ≡ Γ̂j + Γ̂2N−(j−1) , (A6)

whereas the antisymmetric subspace (i.e. µ = −1) is also
N -dimensional, with basis

Γ̂−j ≡ Γ̂j − Γ̂2N−(j−1). (A7)

Under this splitting, the pair of BdG Hamiltonians (A4)
take the block-diagonal form

HσBdG ∼
(

Hσ,+BdG 0N×N
0N×N Hσ,−BdG

)
, (A8)

where

Hσ,µBdG =


−σµJR B(t)
B(t) 0 −J

−J
. . .

. . . 0 −JL
−JL µB(t)

 . (A9)

Where, here, σ = ±1 denotes fermion parity. As out-
lined in the main body of the text, we now find exact
low-energy solutions to the BdG equations in the limit
N →∞. In this limit, we can treat the BdG boundstate
problem as a pair of semi-infinite bound state problems,

Hσ,µBdGψσ,µ = εσ,µψσ,µ. (A10)

http://dx.doi.org/ 10.1103/PhysRevA.92.052323
http://dx.doi.org/ 10.1103/PhysRevA.92.052323
http://dx.doi.org/10.1038/nature10012
http://dx.doi.org/10.1007/978-0-8176-4620-2_1
http://dx.doi.org/10.1007/978-0-8176-4620-2_1
http://dx.doi.org/10.1017/CBO9780511622540
http://dx.doi.org/ 10.1103/RevModPhys.36.856
http://dx.doi.org/ 10.1103/PhysRev.85.808
http://dx.doi.org/ 10.1103/PhysRev.85.808
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The first such problem looks for a boundstate localized
at the right end of the graph:

ψRσµ ≡



ασµ
βσµ

e−κσµασµ
e−κσµβσµ
e−2κσµασµ
e−2κσµβσµ

...


, (A11)

where here, ασµ, βσµ are written so that it is clear that
they only depend on σ and µ through their product.
This is because, in the limit N → ∞, the decay of the
mode (A11) means that the matrix element µB(t) in the
bottom-right corner of (A9) does not enter the eigenvalue
problem (A10). Similarly, we can solve the left-localized
eigenvalue problem:

ψLµ ≡



αµ
βµ

e+κµαµ
e+κµβµ
e+2κµαµ
e+2κµβµ

...


. (A12)

Again, here, αµ, βµ are written so that it is clear that they
are independent of σ. This is because, in the limit N →
∞, the decay of the mode (A12) means that the only
matrix element containing σ (the matrix element in the
upper-left corner of (A9)) does not enter the eigenvalue
problem (A10).

Substituting the ansätze (A11-A12) into the eigenvalue
problem (A10), and letting

e−λ ≡ α/β

parametrize the ratio of α to β, we get two main types
of equations: bulk conditions, and boundary conditions.
The equations in the bulk give

ε = e−λ(B − Je+κ), , (A13)

ε = e+λ(B − Je−κ) . (A14)

From Eqs. (A13-A14), we get the dispersion relation, as
well as (after some hyperbolic trigonometry) some useful
bulk identities involving λ:

ε2 = J2 +B2 − 2JB coshκ , (A15)

B2 = ε2 + J2 − 2Jε cosh(λ− κ) , (A16)

tanhλ =
J sinhκ

J coshκ−B
. (A17)

For the boundary conditions, we get different conditions
at opposite ends (as would be expected; c.f. (A9)): for
the right-localized boundstate ansätz (A11), the bound-
ary conditions are

Beλ = ε+ σµJR , (A18)

whereas, for the left-localized boundstate ansätz (A12),
the boundary conditions are

Be−λ = ε− J2
L

ε− µB
. (A19)

The right-boundary condition (A18) generically yields
one solution, ψRσµ for each value of the product σµ. When
σµ = +1, we denote this solution as ψR+, and when
σµ = −1, we denote this solution as ψR−. For B → 0,
these solutions have the limiting form

ψR± ∼
B→0


1
0
0
...

 . (A20)

Similarly, the left-boundary condition (A19) generically
yields two solutions for each value of µ. For B → 0, the
solution whose eigenvalue is least in magnitude limits to

ψLµ ∼
B→0


...
0
0
1
µ

 , (A21)

whereas, for B → 0, the solution whose eigenvalue is
greatest in magnitude limits to

ψL
′

µ ∼
B→0


...
0
0
1
−µ

 . (A22)

In summary, putting together both the left- and right-
eigenvalue problems, there are six subgap states in total
for the Frustrated Ring benchmark.

To write down the quasiparticle/quasihole excitations
corresponding to a given boundstate, we simply contract
the boundstate vector with the Gamma matrices. This
is succinctly captured by the Feynman slash notation,
which is the standard physics notation for such expres-
sions:

6 ψ ≡
2N∑
j=1

ψj γ̂j . (A23)

with ψj the components of the BdG eigenvector in the
original basis γ̂j (c.f. (A4)). Having enumerated the sub-
gap states in equations (A20-A22), we must now phys-
ically identify them as localized excitations in our frus-
trated spin system. To do this, we define

Ĥ±0 ∼
B→0

N∑
j=1

J±j ĉ
†
j,±ĉj,±. (A24)
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Cross-matching with Eqs. (A20-A22), we get, in the µ =
+1 sector:

6 ψR± ∝
B→0

ĉ†2n+1,±, (A25)

6 ψL+ ∝
B→0

ĉn,± + ĉn+1,±, (A26)

6 ψL
′

+ ∝
B→0

ĉ†n,± − ĉ
†
n+1,±, (A27)

where here, we have factored N ≡ 2n + 1. Similarly, in
the µ = −1 sector, we get

6 ψR± ∝
B→0

ĉ2n+1,∓, (A28)

6 ψL− ∝
B→0

ĉ†n,± + ĉ†n+1,±, (A29)

6 ψL
′

− ∝
B→0

ĉn,± − ĉn+1,±. (A30)

This concludes the main exposition of the boundstate
problem for the Frustrated Ring. In the following sec-
tions, we will apply this knowledge to derive all identities
used in the main text.

a. Definitions of spin-glass excitations used in the main
text

Our analysis thus culminates in our first result, which
is to give a precise definition of the excitations used in the
main text: the identities (A25-A30) derived in the pre-
vious subsection physically motivate the following defini-
tions at B = 0:

c†R,±|B=0 ≡ ĉ†2n+1,± , (A31)

c†L,±|B=0 ≡ ĉ†n,± + ĉ†n+1,± , (A32)

c†L′,±|B=0 ≡ ĉ†n,± − ĉ
†
n+1,± . (A33)

We can now use (A25-A30) to analytically continue the
above definitions to non-zero transverse-field B 6= 0, by
simply tracking the BdG boundstates as they evolve:

ĉ†R,±(B) :=
∑
j

(ψR+)jΓ̂
±
j , (A34)

ĉ†L,±(B) :=
∑
j

(ψL−)jΓ̂
−
j , (A35)

ĉ†L′,±(B) :=
∑
j

(ψL
′

+ )jΓ̂
+
j . (A36)

Eqs. (A34-A36), along with the definition of the BdG
eigenvectors (A11-A12), give a mathematically precise
notion of these excitations existing throughout the
ordered phase B < Bc.

Armed with Eqs. (A34-A36), we can now prove that,
in the Frustrated Ring benchmark, the crossing in the
odd-parity sector is exact, whereas the even-parity cross-
ing is not. It suffices to look at the positive-energy cross-
ing, as states with energies of opposite sign cannot cross

in the spin glass phase B < Bc (by definition). For
σ = +1, the only right-localized boundstate with pos-
itive eigenvalue is the quasihole

ĉR,+. (A37)

By taking the adjoint of (A34), we see that this excitation
consists only of µ = −1 Gamma matrices, as (c.f. A5-A7)

(Γ̂+
j )† ∝ Γ̂−j . (A38)

In contrast, for σ = −1, the only right-localized bound-
state with positive eigenvalue is the quasiparticle

ĉ†R,−. (A39)

Again, the reversion quantum number for this boundstate
satisfies µ = +1, which follows from direct inspection of
(A34). On the other hand, on the left-hand-side of the
graph, the positive-energy excitation

ĉ†L,± (A40)

has reversion number µ = −1 (c.f. (A35)). Crucially,
this quantum number is insensitive to the value of σ,
as σ does not show up in the left-boundary condition
(c.f. (A19)). In summary, therefore, when σ = −1,
the left- and right-boundstates with positive energy
have differing reversion quantum number µ, and thus
cannot hybridize. In contrast, when σ = +1, the left-
and right-boundstates with positive energy are both
antisymmetric (µ = −1) under reversion, and can thus
hybridize. The analysis for the case of the negative
energy crossing proceeds in the exact same fashion.

b. Location of crossings, and scaling of the gap

We now derive the conditions for the existence of a spin
glass bottleneck in the Frustrated Ring annealing sched-
ule, as well as compute its locationB ≡ Bb. Furthermore,
we analytically calculate the scaling of the gap at the bot-
tleneck location. To obtain the crossing point of the left-
and right-bound state energies, we set them equal to each
other, i.e. εRσµ = εLµ ≡ εb. We will deal with both cross-
ings at the same time: from the discussion in the pre-
vious paragraph, we have that the left-localized bound-
state involved in the positive-energy crossing has µ = −1
for both the even and odd-crossing, so the left-localized
boundstate involved in the positive-energy crossing is al-
ways

ψL−. (A41)

For the right-localized boundstate involved in the
positive-energy crossing, from the discussion in the pre-
vious paragraph, the value of µ depends on the fermion
parity σ. However, we can compute the product σµ =
−1, which is the same in both cases. Therefore, the
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right-localized boundstate involved in the positive-energy
crossing is

ψR−. (A42)

Furthermore, we note that these states have the same
energy ε ≡ εb, so by the dispersion relation (A15), we
have that these crossing states have equal and opposite
κ ≡ ±κb. Therefore, by (A17), the states also have equal
and opposite λ ≡ ±λb. Thus, at the crossing, these states
therefore satisfy the boundary conditions

Bbe
λb = εb − JR , (A43)

Bbe
λb = εb −

J2
L

εb +Bb
, (A44)

which yield the identity

εb +Bb =
J2
L

JR
. (A45)

Combining this with one of the bulk equation (A13)
yields

eκb−λb =
JR
J
. (A46)

Lastly, we can also consider using the bulk equation
(A16). The triplet of equations (A45), (A46) and (A16),
considered together, yield the bottleneck location, as well
as the crossing energy (e.g., using Solve in Mathematica):

Bb =
1

JR

(J2 − J2
L)(J2

L − J2
R)

J2
R + J2 − 2J2

L

, εb =
1

JR

J2
RJ

2 − J4
L

J2
R + J2 − 2J2

L

.

(A47)

Note that JJR > J2
L is thus a necessary condition for the

crossing point to exist. Also, crucially, the bottleneck
location is independent of σ, and thus happens in the
same location for both the even- and odd-fermion sectors.
Using expressions for Bb and εb to solve for coshκb, we
obtain

κb = log
JR(J2 − J2

L)

J(J2
L − J2

R)
, (A48)

which determines the scaling of the hybridization of the
boundstates, ∆min ∼ O(e−κbN ). The location and the
value of the gap can be tuned by adjusting the parameters
of the model.

Appendix B: Field-theoretic calculation of the
tunneling matrix elements

a. Relation to the corresponding ferromagnetic problem

We now turn to the relations used in the text, which
transform a calculation in a transverse-field Ising spin
glass to one in a corresponding ferromagnetic model H̃.

We then take advantage of this transformation to calcu-
late the tunneling rates exactly via the quantum-classical
correspondence. Indeed, recall that the transverse-field
Ising chain maps to two free fermion models H± (c.f.
(A1)) (Ramond/Neveu-Schwarz), leading to an unphys-
ical doubling of the number of eigenstates. In our cal-
culations up to this point, we have only considered the
low-energy states

|Ψ−R〉 = c†R,−|Ω−〉 , |Ψ
−
L 〉 = c†L,−|Ω−〉 , (B1)

|Ψ+
R〉 = |Ω−〉 , |Ψ+

L〉 = c†L,+c
†
R,+|Ω+〉 , (B2)

and have implicitly discarded the low-energy states

|Ψ̃+
R〉 ≡ |Ω−〉 , |Ψ̃+

L〉 ≡ c
†
R,−c

†
L,−|Ω−〉 , (B3)

|Ψ̃−R〉 ≡ c
†
R,+|Ω+〉 , |Ψ̃−L 〉 ≡ c

†
L,+|Ω+〉 , (B4)

as they are not genuine eigenstates of the original spin
chain Hamiltonian (they have the wrong parity). How-
ever, utilizing the identity H± = H̃∓ (H̃ is the ferromag-
netic modification of the original frustrated Hamiltonian;
see Eq. (51) in the main text, c.f. Figure 12 for a de-
piction of this modification for the case of the Frustrated
Ring), we can reinterpret the unphysical states of H as
physical states for H̃:

|Ψ̃+
R〉 = |Ω̃+〉 , |Ψ̃+

L〉 = c̃†R,+c̃
†
L,−|Ω̃+〉 , (B5)

|Ψ̃−R〉 = c̃†R,−|Ω̃−〉 , |Ψ̃
−
L 〉 = c̃†L,−|Ω̃−〉 , (B6)

with similar relations for the remaining (i.e. bulk) eigen-
states. Therefore, one can interpret the general situation
in the following way: when one diagonalizes H+ and H−
in (A1), yielding two full sets of fermonic Fock states,
half unphysical, it is actually valid to say that one ob-
tains two full sets of physical spin chain eigenstates, one
for the original spin chain, and the remaining set corre-
sponding to the eigenstates of its frustration-free version.

Now, consider the central problem encountered in the
main text, namely, that of computing

〈Ψ+
R|σ

z
j |Ψ−R〉, 〈Ψ+

L |σ
z
j |Ψ−L 〉. (B7)

Naively, we can try to take advantage of the above ob-
servation and convert the matrix elements in our glassy
problem H into matrix elements in our ferromagnetic
problem H̃. Indeed, substituting, we get

〈Ψ+
R|σ

z
j |Ψ−R〉 = 〈Ω+|σzj c

†
R,−|Ω−〉

= 〈Ω̃−|σzj c̃R,+|Ω̃+〉, (B8)

〈Ψ+
L |σ

z
j |Ψ−L 〉 = 〈Ω+|cL,+cR,+σzj c

†
R,−|Ω−〉

= 〈Ω̃−|c̃L,−c̃R,−σzj c̃
†
R,+|Ω̃+〉. (B9)

Unfortunately, all of these matrix elements are between
unphysical states, suggesting that one must pass excita-
tions across the σz operator, to amend the situation.
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In general, since σz, when written-out in terms of γ̂-
matrices, is an element of the Pin group Pin(2N ) (see
[29] for a standard reference), passing σz past a fermionic
excitation will rotate that excitation by an orthogonal
matrix [29], producing a new fermionic excitation:

6 ψ′ ≡ σzj 6 ψσzj , (B10)

where

ψ′ = Rjψ , (B11)

with Rj ∈ O(2N) a rotation matrix. Utilizing this fact,
we have

〈Ψ+
R|σ

z
j |Ψ−R〉 = 〈Ω+|σzj c

†
R,−|Ω−〉

= 〈Ω̃−|Rj [c†R,−]σzj |Ω̃+〉, (B12)

〈Ψ+
L |σ

z
j |Ψ−L 〉 = 〈Ω+|cL,+cR,+σzj c

†
L,−|Ω−〉

= 〈Ω̃−|c̃L,−σzjRj [cR,+]c̃†L,+|Ω̃+〉 (B13)

where in deriving (B13), we have utilized the fact that
R2
j = 12N×2N . Computing the rotation Rj ∈ O(2N )

implemented by σzj is straightforward. In particular, by
writing everything out in terms of γ̂ matrices, we find,
that, for i < 2j − 1 < 2N − i,

Rj(Γ̂µi ) = −Γ̂−µi , (B14)

i.e. Rj flips the reversion-symmetry quantum number.
From this, due to the localized nature of the R-bound
states, we obtain our desired result:

Rj(c†R,±) = Rj
(∑

i

(ψR±)iΓ̂
+
i

)
= −

∑
i

(ψR±)iΓ̂
−
i +O(e−κj)

= − cR,∓ +O(e−κj) , (B15)

which is essential to derive the main results of the paper.
Substituting the identity (B15) into Eq.’s (B12-B13)
and comparing with Eqs. (B5-B6), we get the relations
Eqs. (52) used in the main text:

〈Ψ+
R|σ̂

z
j |Ψ−R〉 = −〈Ψ̃−R|σ̂

z
j |Ψ̃+

R〉+O(e−κ|j−jR|), (B16)

〈Ψ+
L |σ̂

z
j |Ψ−L 〉 = −〈Ψ̃−L |σ̂

z
j |Ψ̃+

L〉+O(e−κ|j−jR|). (B17)

b. Field-theoretic treatment of the ferromagnetic problem

We now give exact expressions for the matrix elements
given in Eqs. (B16-B17), involving eigenstates of the
ferromagnetic Hamiltonian H̃. We begin by calculating

FIG. 12. “Unwinding” the Frustrated Ring. Passing an
excitation from the left to the right of the qubit noise operator
restores parity. More specifically, it removes frustration from
the relevant matrix element, effectively restoring the gap. The
left panel shows the spectrum of original Frustrated Ring.
The bottleneck is removed by flipping the sign of JN , as shown
in the right panel. See text for details.

the matrix element corresponding to the ferromagnetic
groundstate:

〈Ψ̃+
R|σ

z
j |Ψ̃−R〉 . (B18)

Since the frustration-free model is globally gapped in the
ordered (i.e. ferromagnetic) phase B < Bc, there are no
crossings involving the groundstate manifold (See Figure
12), and

|Ψ+
GS〉 ≡ |Ψ̃

+
R〉 , (B19)

|Ψ−GS〉 ≡ |Ψ̃
−
R〉 , (B20)

span the degenerate ground state manifold in the ther-
modynamic limit of infinite-chain length N → ∞. We
begin by showing that the quantity we wish to compute,
is really the spontaneous magnetization of our quantum
spin chain, in disguise. Since the model is completely
ferromagnetic (as we have removed frustration), if we
perturb the model with an appropriately-aligned longi-
tudinal field, i.e. define

H̃0(h) ≡ H̃0 +
h

N

N∑
j=1

σ̂zj , (B21)

then the groundstate degeneracy is broken. Here, the
external field is scaled as ∼ O(1/N ) in order to ensure
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the perturbation is bounded in the thermodynamic limit
N → ∞. Since the perturbation mixes fermion par-
ity, simple degenerate perturbation theory in the ground-
state manifold Eqs. (B19-B20) yields that the perturbed
ground-state, in the limit h→ 0+, is

|Ψ(0)
GS〉 ≡ lim

h→0+
lim
N→∞

|ΨGS(h)〉 (B22)

= lim
N→∞

1√
2

(|Ψ̃+
R〉+ |Ψ̃−R〉). (B23)

The reason we consider this perturbation of the
frustration-free model is because this allows us to relate
our transition matrix element to the spontaneous mag-
netization of this model. Indeed, since σ̂zj mixes fermion
parity,

lim
N→∞

〈Ψ̃+
R|σ̂

z
j |Ψ̃−R〉

= lim
N→∞

1

2
(〈Ψ̃+

R|+ 〈Ψ̃
−
R|)σ̂

z
j (|Ψ̃+

R〉+ |Ψ̃−R〉)

= 〈Ψ(0)
GS |σ̂

z
j |Ψ

(0)
GS〉. (B24)

To compute this spontaneous magnetization, we write

lim
N→∞

〈Ψ̃+
R|σ̂

z
j |Ψ̃−R〉 = lim

h→0+
lim
N→∞

〈ΨGS(h)|σ̂zj |ΨGS(h)〉

= lim
h→0+

lim
N→∞

lim
T→0

Tr[e−H̃0(h)/T σ̂zj ].

(B25)

This allows us to probe this matrix element using the
quantum-classical correspondence: we begin by defining
a partition function via

ZN ,h ≡ lim
T→0

Tr[e−H̃0(h)/T ]. (B26)

As is standard, to obtain the correspondence with a clas-
sical model, we apply the Suzuki-Trotter transformation
with a time-step τc > 0 to the partition function, pro-
ducing a family of effective actions {S[τc]}τc>0 describing
(classical) stochastic fluctuations of an Ising spin system
on a cylindrical spacetime lattice. After a straightfor-
ward manipulation, one gets [30]:

ZN ,h =
∑

{sjτ=±1}

e−S[τc,h] . (B27)

Here, τc � 1 is a UV cutoff defining a non-perturbative
renormalization group flow in imaginary time [31]. For
small values of the UV cutoff, the action of the statistical
field theory simplifies to [30]:

S[τc, h] ∼
τc→0

∑
j, τ∈τcZ

(Jj [τc]sjτsj+1,τ + J⊥[τc]sjτsj,τ+τc

+H[τc]sj,τ ) , (B28)

where the coupling constants in our theory have the fol-
lowing dependence on the cutoff (for small values of the
cutoff):

J⊥[τc] ≡ ln tanh(Bτc), H[τc] ≡ τch/N ,
Jj [τc] ≡ τcJj .

Thus, we have

lim
N→∞

〈Ψ̃+
R|σ̂

z
j |Ψ̃−R〉 = lim

α→0+
lim
N→∞,
H=α/N

lim
N⊥→∞

〈sj,τ 〉H ,

(B29)

which is exactly Yang’s definition (as reviewed in [32])
of the spontaneous magnetization of the two-dimensional
classical Ising model (B28). Following [32], we denote this
with the shorthandMj , so that Eq. (B29) is equivalently
stated as

lim
N→∞

〈Ψ̃+
R|σ̂

z
j |Ψ̃−R〉 = Mj , (B30)

where it is understood that we are applying Yang’s def-
inition of the spontaneous magnetization to the action
Eq. (B28), which lacks translational symmetry in the
spatial direction.

In the case that the weights in our MAXCUT problem
are uniform in absolute value, i.e. when |Jj | ≡ J for all
j, then the two-dimensional Ising model corresponding
to the ferromagnet H̃ is uniform, and we can cite Yang’s
result [33] here for the exact matrix element, which is
independent of j:

Mj = M, M ≡ (1− k−2)1/8 . (B31)

Here, k is called the spectral parameter, and has the fol-
lowing exact form [29]:

k ≡ sinh J [τc] sinhJ⊥[τc] . (B32)

In this (uniform) case, we can calculate the spectral pa-
rameter in the UV limit of our field theory, in which
case we get the ratio J/B coming from the quantum spin
chain:

k = sinhJ [τc] sinhJ⊥[τc]

∼
τc→0

J [τc]e
−J⊥[τc] ∼

τc→0

J

B
. (B33)

In other words, in the uniform case |Jj | ≡ const, the
matrix element in the spin chain comes out to, in the
large-N limit:

lim
N→∞

〈Ψ̃+
R|σ̂

z
j |Ψ̃−R〉 = (1− k−2)1/8 , (B34)

for all B(t) < J (i.e. the ordered phase for the ferromag-
netic problem).
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c. Transfer matrix calculation

In the Frustrated Ring, the couplings are non-uniform.
However, the broken translation invariance in the spin
chain is due to the modification of only 3 couplers,
namely the couplers

Jn = Jn+1 ≡ JL,
J2n+1 ≡ JR. (B35)

(Note that here, we are using the values of these couplers
in the ferromagnetic version H̃ of our model). Due to the
finite correlation length in the classical model, the effect
of local changes to the coupling constants in the theory
is washed-out in the thermodynamic limit, when we sum
the spontaneous magnetization over all sites j. That is,
we can expect the behavior

N∑
j=1

M2
j ∼
N→∞

NM2. (B36)

where, here, M ≡ (1 − k−2)1/8 is the result for the
uniform chain. To demonstrate the asymptotic result
Eq. (B36), we must demonstrate a boundary effect
in the classical model. To do this, we calculate the
local spontaneous magnetization using the row transfer
matrix.

Indeed, consider computing the spontaneous magne-
tization (representing the tunneling matrix element in
the frustrated spin system) using Yang’s algorithm (as
reviewed in [32]), but now applied to the row transfer
matrix, as opposed to the column transfer matrix:

Mj = lim
α→0+

lim
N→∞

lim
N⊥→∞,
H=α/N⊥

〈sj,τ 〉H

= lim
α→0+

lim
N→∞

lim
N⊥→∞,
H=α/N⊥

Tr[T [J1;H] · · · σ̂zτ · · ·T [JN ;H]]

Tr[T [J1;H] · · ·TN [JN ;H]]
.

(B37)

Here, the row transfer matrix is (see, e.g. [29])

T [Jl;H] ≡
(∏

τ

eJ⊥[τc]σ̂
z
τ σ̂

z
τ+1+Hσ̂zτ

)
·
(∏

τ

eJl[τc](1 + e−2Jl[τc]σ̂xτ )

)
. (B38)

The spectral parameter for this transfer matrix when
H ≡ 0 can be calculated, and comes out to

kl = sinhJl[τc] sinhJ⊥[τc]

∼
τc→0

Jl[τc]e
−J⊥[τc] ∼

τc→0

Jl
B
. (B39)

Note that, since the model is no longer translation-
invariant, this spectral parameter is now dependent on

the qubit location l ∈ {1, · · · ,N}. We can then pro-
ceed with the calculation, letting d denote the distance
between the site j (where we are calculating the local
spontaneous magnetization), and the nearest defect (e.g.
the JL or JR coupler):

Mj = lim
α→0+

lim
N→∞

lim
N⊥→∞,
H=α/N⊥

Tr[T [J ;H]dσ̂zτT [J ;H]N−dT [JL;H]2T [J ;H]NT [JR;H]]

Tr[T [J ;H]NT [JL;H]2T [J ;H]NT [JR;H]]

with N ≡ n − 1 equal to the bulk chain length. We
can now see the emergence of a boundary effect in the
classical model (and thus, by the quantum-classical
correspondence, in the quantum ferromagnet H̃ as well):
letting |Ψ+〉 denote the maximal eigenvector of T [J ;H],
we have, by analogous arguments to Eqs. (B19-B23),
the following limiting behavior:

lim
α→0+

lim
N⊥→∞
H=α/N⊥

|Ψ+〉 =
1√
2

(|Ψ+
0 〉+ |Ψ−k=0〉) , (B40)

where here, |Ψ+
0 〉 and |Ψ

−
k=0〉 are the even- and odd-parity

maximal-eigenvectors of T [J ;H ≡ 0] (following the no-
tation of [32]). Therefore, we can write

lim
α→0+

lim
N⊥→∞
H=α/N⊥

T [J ;H]d = |Ψ+〉〈Ψ+|+O(e−d∆) , (B41)

where, here, ∆ is the spectral gap for the unperturbed
transfer matrix T [J ;H ≡ 0], which sets the correlation
length in the spatial direction of the lattice. Using Eqs.
(B40-B41), we have

Mj =
〈Ψ+|σ̂zτ |Ψ+〉
〈Ψ+|Ψ+〉

+O(e−∆d) , (B42)

where we have used the fact that, for large N ,
N − d → ∞, where N ≡ n − 1 is the bulk chain length.
According to [32], the leading-order term in the above
expression comes out to

〈Ψ+|σ̂zτ |Ψ+〉
〈Ψ+|Ψ+〉

= (1− k−2
0 )1/8, (B43)

where k0 is the spectral parameter for the bulk transfer
matrix T [J ;H ≡ 0], which is simply J/B. Therefore,
in total, at a distance d away from either the right- or
left-end of the chain,

〈Ψ̃−R|σ̂
z
j |Ψ̃+

R〉 ∼N→∞M +O(e−∆d) . (B44)

This bulk convergence behavior is confirmed by exact
diagonalization with up to N = 23 sites, see Figure 9 in
the main text. The other tunneling matrix

〈Ψ̃+
L |σ̂

z
j |Ψ̃−L 〉 (B45)



19

can be computed similarly: one begins by noting that
|Ψ+
L〉 is related to |Ψ+

R〉 by applying two quasiparticle
operators (and the same is true for the relationship be-
tween |Ψ−L 〉 and |Ψ

−
R〉). Since these operators are local-

ized at opposite locations of the graph, their product gets
mapped, under the Jordan-Wigner transformation, to a
string of spin flips

∏
j σ

x
j between the centers jL and jR

of the corresponding bound state wave functions. There-
fore, because conjugation by a product of spin flips only
has the potential to flip the sign of the magnetization,
the tunneling form factors corresponding to (B45) has
the exact same asymptotics (a tunneling form factor is
given by the squared absolute value of a matrix element
of the type considered above).
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