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Distilling precise estimates from noisy intermediate scale quantum (NISQ) data has recently at-
tracted considerable attention [1]. In order to augment digital qubit metrics, such as gate fidelity, we
discuss analog error mitigability, i.e. the ability to accurately distill precise observable estimates, as
a hybrid quantum-classical computing benchmarking task. Specifically, using Rabi oscillations as a
test program, we characterize single qubit error rates on IBM’s Poughkeepsie superconducting quan-
tum hardware, incorporate control-mediated noise dependence into a generalized rescaling protocol,
and analyze how noise characteristics influence Richardson extrapolation-based error mitigation.
Our results identify regions in the space of Hamiltonian control fields and circuit-depth which are
most amenable to reliable noise extrapolation, as well as shedding light on how low-level hardware
characterization can be used as a predictive tool for uncertainty quantification in error mitigated
NISQ computations.

I. INTRODUCTION

Quantum information processing technologies promise
to offer dramatic speedups for a variety of computational
tasks [2]. It has, however, been clear for some time that
environmental interactions and control errors pose a sig-
nificant barrier to the coherent operation of a quantum
computer. While quantum error correction [3] is the de-
facto (i.e. only known scalable) solution to suppressing
the effects of information corrupting processes, error cor-
rection schemes are infeasible on present NISQ devices
due to the overwhelming qubit overhead, lack of feedfor-
ward control, and gate fidelity requirements. Due to the
growing availability and the exciting prospects of pro-
grammable NISQ information processing devices, these
constraints have forced researchers to consider new meth-
ods for improving computational results. A variety of
alternative schemes, broadly referred to as quantum er-
ror mitigation (QEM), have recently been introduced [4–
8], with some having been demonstrated at small scales
[1, 9–11].

Recent QEM progress leads to the natural question of
how to determine fundamental scalability and precision
limitations of each method. While tomographic map-
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pings [2, 12–14] and randomized benchmarking [15] serve
as good digital gate measures, with well understood scal-
ings, similar metrics for defining the limits and precision
of hybrid quantum-classical computations using QEM
as a central component are underdeveloped. We there-
fore introduce mitigability as a hybrid quantum-classical
benchmark which will provide insight into the fundamen-
tal limits of NISQ algorithm performance.

While mitigability can be defined and characterized
for any QEM strategy, this work focuses on error elimi-
nation by extrapolation at the analog-level by stretching
microwave gate pulses [1]. Analog control theory is cen-
tral to the development of high fidelity quantum opera-
tions [16–18] but in our approach analog control systems
are used to amplify quantum noise. The amplified noise
levels can then be used both to characterize quantum
hardware and as input for data post-processing QEM
schemes. In this regard, QEM mitigability serves as a
hybrid benchmark in the analog domain, with direct im-
plications on the performance of quantum processors in
the hybrid quantum-classical computational paradigm.

The remainder of our work is organized as follows. In
Sec. II we review the method of extrapolation to the
noiseless limit followed and define mitigability in terms of
an estimator error. Sec. III details our use of Rabi pulse-
stretching for extrapolation which naturally leads us to
discuss amplitude dependent noise rescaling in Sec. IV.
In Sec. V we perform an experimental analysis on a rep-
resentative set of analog, single qubit operations imple-
mented on the IBM Poughkeepsie device using the Open-
Pulse control framework [19]. Lastly we analyze our re-
sults and conclude by discussing the future research di-
rections necessary to more accurately predict the perfor-
mance and quantify the resource cost of error mitigated
NISQ computations.
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II. ERROR REMOVAL BY EXTRAPOLATION

Consider a quantum circuit UI unitarily evolving an
initial state ρ0 to an ideal logical state ρI . In the presence
of unitary and stochastic errors, the final state ρ(ε) differs
from ρI and can be expressed as a function of the noise
parameters ε = (ε1, ..., εn). In order to simplify analysis
let us assume all error sources may be represented by a
single effective noise parameter ε. Richardson’s deferred
approach to the limit [20] (i.e. noiseless extrapolation)
has recently been proposed [5] and implemented [1, 9, 10]
as a NISQ-era QEM technique to construct a noiseless es-
timator for an observable 〈A〉 given a set of states {ρ(εi)}
with effective error rates {εi}.

To see how Richardson extrapolation reduces the ef-
fects of noise, we follow Ref. 5 and assume that ρ(ε) can
be Taylor-expanded about the ideal logical state ρI in
powers of ε when ε� 1. The expansion reads

ρ(ε) =

∞∑
k=0

∂kε ρ(ε)|ε=0

k!
εk = ρI +

∞∑
k=1

ρ(k)(0)εk (1)

where ρ(k) =
∂kε ρ(ε)|ε=0

k! represents the matrix coefficients

given by the kth-order derivative with respect to ε and
ρ(0)(ε) = ρI . It follows that expectation values may
likewise be expanded as 〈A〉(ε) =

∑∞
k=0〈A〉(k)εk where

〈A〉(k) = Tr[Aρ(k)] at each order.

Extrapolation involves increasing the error rate by
n factors {ai}, so that {εi} = {aiε}, and evaluat-
ing the corresponding expectation values 〈A〉(aiε). We
may take a0 = 1 to represent the original data point.
For each ai the expectation value is expanded with re-
spect to the rescaled error rates aiε, so that 〈A〉(aiε) =∑∞
k=0〈A〉(k)(aiε)

k. Imposing normalization,
∑
i bi = 1,

and a set of eliminator constraints,
∑
i bia

k
i = 0 ∀k ∈

(1, n − 1), one may construct a noiseless estimator
through the linear combination

〈A〉E =

n−1∑
i=0

bi〈A〉(aiε)

= 〈A〉I
n∑
i=0

bi +

∞∑
k=1

〈A〉(k)εk
n∑
i=0

bia
k
i

= 〈A〉I +O(εn) (2)

where 〈A〉I = Tr[AρI ] and 〈A〉E is the estimated ex-
pectation value. If each ai-factor expectation value
is obtained independently the estimator variance be-
comes the weighted sum of the individual variances
Var[〈A〉EstI ] =

∑
i b

2
iVar[〈A〉(aiε)]. The estimator error

∆A = |〈A〉I − 〈A〉E | is an obvious target metric which
quantifies the effectiveness of noiseless extrapolation and
the validity of its underlying assumptions.
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FIG. 1. (a) Observed Rabi period τ as a function of the drive
pulse amplitude Γ. The data closely matches the expected
τ(Γ) = aΓb with b = −1 inverse power law. The least squares
fit is inverted to program Rabi oscillations at various stretch
factors. (b) Rabi oscillation amplitude decay as a function of
time for Rabi Periods of τ = 15 (red circles) and τ = 25 (blue
triangles) where our time units are in terms of the OpenPulse
default dt = 3.55ns. (c) The amplitude dependent component
of the relaxation rate γ(Γ) = γ̃(Γ)−1/T1 as a function of drive
amplitude Γ. The effective relaxation rate γ̃(Γ) is determined
by fitting an exponential decay to continuous Rabi flopping
at various driving amplitudes. Blue diamonds (orange stars)
shows data obtained for qubit 0 (12) and the solid (dashed)
lines correspond to fits with coefficients specified in the legend.

III. RABI STRETCHING

Extrapolation based on analog pulse stretching [1],
which goes beyond digital gate repetition methods [9, 10],
has recently been realized. Assume the quantum dynam-
ics are described by a generic master equation ∂tρ(t) =
−i[H(t), ρ(t)] + εL[ρ(t)] with the first commutator term
representing unitary Hamiltonian evolution and the lat-
ter component representing some undesirable noisy dy-
namics. The authors of Ref. 5 have shown that a set of
states ρ(aiε) with stretched error rates ai = c may be
generated contingent upon εL being invariant under a
time rescaling of the form t→ t′ = t/c and independent
of Hamiltonian rescaling, i.e. H(t)→ H ′(t′) = H(t/c)/c.

Let us restrict ourselves to the minimal model of sin-
gle qubit operations. Then, working within the qubit’s
rotating reference frame the Hamiltonian consists of only
a single driving term H = Γσx. Next, we consider single
qubit logical circuits consisting of M of Rabi oscillations.
That is, two evolutions are logically equivalent if both re-
alize M Rabi flops. This circuit could also be interpreted
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as an M X-gate bit-flip circuit in a digital setting.
We now consider the details of programming Rabi

oscillations at desired periodicities. Beginning in |0〉,
the probability of the excited state |1〉 to be popu-
lated at time t is given by the Rabi formula |c1(t)|2 =

Γ2

Γ2+∆2 sin2 ωt where Γ will be the driving amplitude

specified in OpenPulse [19], ∆ = ω12 − ωD ≈ 0 is
the driving-qubit frequency detuning, and the Rabi fre-
quency ω = 2π/τ =

√
Γ2 + ∆2 is directly proportional to

the driving amplitude under a resonant drive. By fitting
the observed Rabi oscillations to a sinusoid for a range
of driving amplitudes we are able to determine a quanti-
tative relationship between Rabi period and drive ampli-
tude. The fitted power law τ(Γ) = aΓb closely matches
the theoretically predicted inverse proportionality as il-
lustrated in panel (a) of Fig. 1. Due to OpenPulse con-
straints at the time of writing (i.e. without a digitiz-
ing discriminator as in an OpenPulse level 2 measure-
ment [19]) we report the magnitude of Rabi oscillations
in terms of a state dependent phase difference observed
in heterodyne measurement θ10 = θ|1〉− θ|0〉 [21] as illus-
trated in Fig. 1 (b).

IV. AMPLITUDE DEPENDENT NOISE
RESCALING

Recent extrapolation demonstrations have assumed
that the error rate per unit time is invariant under pulse
stretching [1, 5]. In this setting, additional errors accu-
mulate due to a longer evolution and the modified noise
factor increases linearly in the temporal stretch factor.
In our continuously-driven Rabi flopping experiments we
observe that this is generally not the case. This can be
seen in Fig 1 panel (b) where we have plotted θ10 at
M = 5, 20, and 40 oscillations (from left to right) for
Rabi periods of τ = 15 red (circles) and τ = 25 (blue tri-
angles). By the 40th (rightmost data) cycle the τ = 15
evolution has decayed further than the τ = 25 experiment
despite a significantly more rapid evolution. By continu-
ously driving Rabi oscillations at a fixed amplitude and
fitting the decay to an exponential function, we recover
an effective Γ-dependent relaxation rate γ̃(Γ). We model
the generalized relaxation rate as γ̃(Γ) = 1/T1 + γ(Γ)
and subtract out the bare T1 relaxation rate (determined
by exciting the |1〉 state and allowing it to relax without
continuous driving) in order to determine the drive de-
pendence of the noise. The amplitude dependent compo-
nent, suspected to arise from leakage into the transmon’s
|2〉 state, is well described by a linear fit as illustrated in
Fig. 1 panel (c).

Let us now consider a generalized, drive dependent
noise expansion parameter. Using τi = ciτ0, with
τ0 the bare Rabi periodicity, we integrate the error
rate per unit time for duration of the program writing

ε(M, τi(Γ), T1) =
∫Mτi

0
dtγ̃(T1, τi(Γ)) = Mτi ∗ (1/T1 +

γ(Γ)). Here ε(M, τi(Γ), T1) represents the error accumu-
lated after M Rabi cycles generated by a driving term

Γi = (τ0/aci)
b and T1 is the bare relaxation time. While

we have loosened the assumption of Hamiltonian inde-
pendence, the time-translation invariant noise assump-
tion remains.

V. RESULTS

We are now in a position to investigate the effectiveness
of QEM by pulse stretching on different qubits. To do
so, we consider five logical programs which are indexed
by and consisting of M ∈ (5, 20, 40, 80, 160) Rabi oscilla-
tions. For each M we take the initial noisy program to
evolve with a Rabi periodicity of τ0 = 10dt (dt = 3.55ns
by default in OpenPulse), a similar timescale to that of
a digitized Xπ/2 gate [19].

Next, we run additional M Rabi flop experiments in
which the Rabi periodicities are stretched by factors
of ci = (1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5). The top panels in
Figs. 2, 3 plot the Rabi oscillation decay, as indexed by
the legend starting with M = 5 (blue triangles – top left)
to M = 160 (purple circles – bottom right), as a func-
tion of the computed noise factors. The amplitude de-
pendent noise factors ε(M, τi(Γ), T1) can now be inserted
into Eq. 2 in order to solve for the bi weights which satisfy
the normalization and elimination constraints.

Before implementing the rescaling protocol we briefly
examine the Rabi oscillation’s dependence on the noise
factor ε(M, τi(Γ), T1) as illustrated in the top panels of
Figs. 2, 3. First, note that the M = 5, 20, 40 cycles ap-
proximately linear decay (modulo the outlying M = 5
data point in Fig 3 (a) for which our automated fit er-
rored) and the M = 80, 160 cycle’s non-linear behaviour
serves to qualitatively delineate the length of programs
for which first and higher order expansions are appro-
priate. Indeed, the more linear behavior for the M = 80
data for qubit 12 compared with qubit 0 suggests that its
error rate is lower, better controlled, and therefore that
qubit 12 is a better choice for QEM by extrapolation.

Regarding the M = 80, 160 cycles data, practical
considerations hamper high polynomial order estimates.
This is mainly due to the rapid accumulation of statistical
errors arising from the estimator variance Var[〈A〉EstI ] =∑
i b

2
iVar[〈A〉(aiε)]. Assuming the variance of each noisy

estimate is equal, the total number of samples must be
increased by a multiplicative factor of

∑
i b

2
i in order to

reduce the final estimator variance to that of the orig-
inal estimates. Multiplicative factors ranging from 168
(quadratic elimination) to 6.5E6 (seventh order elimina-
tion) make variance reduction by additional sampling,
which scales poorly as N−1/2 where N is the number of
samples, impractical in light of device drift coupled with
limited sampling per job submission in a cloud access
model. Due to this rapid variance growth we simply uti-
lize 1024 shots per noisy estimate and focus our attention
on the performance and convergence of linear extrapola-
tions.

Note that the baseline θ10 is determined by compar-
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FIG. 2. (a) Rabi oscillation IQ phase difference θ10 for
qubit 0 as a function of the noise factor ε(M, τi(Γ), T1). The
time rescaled expectation values are indexed by the number
of cycles as indicated by the legend. (b) Estimator error from
a linear extrapolation utilizing increasing numbers of data
points. Error bars represent the relative increase in the esti-
mator standard deviation.
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FIG. 3. Rabi phase difference (a) and estimator error (b) as
in Fig. 2 but for qubit 12. Note the increase in linearity and
the reduced range for the noise factors.

ing the phase difference between |1〉, as generated by a
single Xπ pulse taken from the default pulse library, and
the initial |0〉 state as illustrated by the solid horizontal
lines in Fig. 1 (b). We now compute the estimator error,
∆θ01 = |〈θ01〉I − 〈θ01(ε)〉E |, as a function of the dataset
sizeD. Qubit 0’s shortest programs (M = 5) show no dis-
cernible relaxation effects and linear extrapolation, with
a slope m ≈ 0, converges near the ∆θ ≈ 11 as seen in
Fig. 2 (b). Qubit 12’s estimate is initially thrown off by
the outlier, yet converges to within 10% of the noiseless
limit as the data-set size increases. With the exception
of M = 160 the linear extrapolations for higher values of

M converge to within 20, 30% for qubit 0 but to within
10− 20% for qubit 12 as seen in panel (b) in Figs. 2,3.

In contrast to high order extrapolations, using a lin-
ear extrapolation but increasing the number of samples,
i.e. the data set size D, the variance can be substan-
tially reduced. The linear extrapolations, utilizing mul-
tiple stretched logically equivalent programs of M Rabi
flops and the standard error, due to statistical sampling
and bi-weighting, are provided in the bottom panels of
Figs. 2, 3. Overall, we see that qubit 12 performs signif-
icantly better than qubit 0 over the entire range of M -
cycles over which linear extrapolation converges. These
results shed light on the physical origins of single qubit
extrapolation and should be considered when selecting
the best of qubits for a given program and QEM method-
ology.

VI. CONCLUSION

In this work we have explored the concept of bench-
marking qubit performance with respect to an analog
extrapolation-based error mitigation strategy. In con-
trast with previous single qubit metrics such as fidelity,
mitigability measures noise properties that are central to
the removal of quantum noise in post processing. This
opens a future research avenue to a device-wide bench-
marking protocol in order to determine the optimal set of
qubits (including benchmarking the mitigability of two-
qubit gates) for a given algorithm on various qubit plat-
forms. While outside the scope of the current work, we
anticipate further mitigability investigations to provide
insight into the physical mechanisms generating spatially
and temporally correlated noise which, in turn, will im-
prove noise reduction techniques.

An important use case for mitigability is as a diagnos-
tic tool identifying which extrapolation orders are well-
conditioned given circuit-dependent noise. Then, contin-
gent upon one’s resource budget, e.g. in terms of num-
ber of calls, one may constrain a computation to a given
depth and estimate the total hybrid quantum-classical
resource cost for a target accuracy at a given extrap-
olation order. Future programs should be executed on
spatially localized sets of qubits which conform with the
domain algorithm and minimize the expected ∆A in or-
der to maximize post-processed estimator accuracy. We
also note that it will be interesting to correlate the re-
sults of such an analysis with fidelities and other device
information provided by hardware vendors.
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