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Optical lattices are typically created via the ac-Stark shift, which are limited by diffraction to
periodicities ≥ λ/2, where λ is the wavelength of light used to create them. Lattices with smaller
periodicities may be useful for many-body physics with cold atoms and can be generated by stro-
boscopic application of a phase-shifted lattice with subwavelength features. Here we demonstrate
a λ/4-spaced lattice by stroboscopically applying optical Kronig-Penney(KP)-like potentials which
are generated using spatially dependent dark states. We directly probe the periodicity of the λ/4-
spaced lattice by measuring the average probability density of the atoms loaded into the ground
band of the lattice. We measure lifetimes of atoms in this lattice and discuss the mechanisms that
limit the applicability of this stroboscopic approach.

PACS numbers: 37.10.Jk, 32.80.Qk, 37.10.Vz

I. INTRODUCTION

Ultracold atoms trapped in periodic optical potentials
provide wide-ranging opportunities to study many-body
physics in highly controllable systems [1, 2]. In all cases,
the characteristic single-particle energy scale is set by
the recoil energy, ER = h2/(8md2), where m is the mass
of the atom and d is the spatial period of the lattice.
Although temperatures in such systems can be quite
low, it is still challenging to reach temperatures well
below the relevant many-body physics energy scales,
which can be exceedingly small. Increasing the recoil
energy can potentially increase both single-particle and
many-body energy scales through tighter confinement,
which may aid in creating systems well into the regime
where many-body ground state physics is observable. An
inherent obstacle to smaller lattice spacing is the optical
diffraction limit, which prevents lattice periodicities
below d = λ/2, where λ is the wavelength of the light
forming the lattice. Several approaches to move beyond
the diffraction limit have been proposed and some
realized based on multiphoton effects [3–5], rf-dressed
adiabatic potentials [6–8], and trapping in near-field
guided modes with nanophotonic systems [9–12].

Here we report the realization of a recently pro-
posed Floquet-based approach [13–15] to create small-
period lattices, specifically λ/4-spaced lattices, by time-
averaging a modulated lattice potential that has sub-
wavelength features. We load atoms into the ground
band of this time-dependent lattice and measure their
average probability density |ψavg(x)|2 with nanoscale res-
olution [16–18], to confirm the subwavelength nature of
the lattice. We study the lifetime of atoms in the lat-
tices over a range of modulation (Floquet) frequencies
ωF = 2π/T , where T is the period of a complete cycle,
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FIG. 1. The stroboscopic approach to create a time-averaged
effective potential with a lattice spacing of λ/4 by dynamically
pulsing KP potentials with λ/2 spacing.

to determine the frequency range over which the time-
averaged approach works.

Creating an effective time-averaged potential requires
that the time-dependence of the lattice be motionally
diabatic [19–21], namely that T is much smaller than
the motional time scale of the atoms. Time-averaging
a dynamically applied lattice potential cannot create an
effective potential landscape with higher spatial Fourier
components than the underlying progenitor lattice. This
implies that in order to create landscapes with subwave-
length periodicity, one must time-average a potential
that itself has subwavelength features [13]. In this work,
we make use of the Kronig-Penney(KP)-like potential to
generate the desired potential landscapes [14, 15]. Such
a KP potential is implemented via the dark state as-
sociated with a three-level Λ-system [22–24]. The spin
adiabaticity required to maintain the dark state during
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FIG. 2. (a) The stroboscopically applied potential, shown
here for Ωc0 = 500Γ and Ωp = 50Γ, is composed of KP barri-
ers on top of a sinusoidal potential. The dotted line represents
the potential shifted by λ/4. (b) The time-averaged effec-
tive potential Veff(x). (c) The black points are the measured
|ψavg(x)|2 of atoms in Veff(x). Number fluctuations between
realizations result in number uncertainties of 5%. The black
line is the calculation based on independently measured lat-
tice parameters. The grey line is the calculated |ψavg(x)|2 in
the lattice before the relaxation during the measurement. (d)
The micromotion dynamics at different time within a Floquet
period. The blue(red)-shaded areas represent regions in which
|ψ(x, t)|2 is higher(lower) than |ψavg(x)|2, which is shown as
a solid black line.

the stroboscopic cycle imposes additional constraints, as
discussed below.

There are multiple ways to implement time-averaging
with a KP lattice [14, 15]. The particular approach
that we adopt, optimized for our experimental condi-
tions, is shown in Fig.1. Periodic potentials with λ/2
spacing but subwavelength structure are stroboscopically
applied to the atoms to create the desired potential land-
scape. Specifically, atoms are subjected to a KP potential
for half of the Floquet cycle T/2; the potential is then
ramped down to zero and its position is shifted by half of
the lattice spacing λ/4; the shifted potential is ramped
on again and held for another half cycle, before being
ramped off and its position is restored.

Two factors must be considered to ensure that time-
averaging is an effective description of the system. First,
motional diabaticity sets a lower bound on the Floquet
frequency ωF , beyond which the band structure becomes

unstable and severe heating limits the lifetime. Second,
the dark-state nature of the KP lattice sets an upper
bound to ωF . As the KP potential is a scalar gauge po-
tential arising from a spatially varying dark state [22–24],
switching on and off such a potential requires atoms to
adiabatically follow the spatio-temporal dark state at all
times. We ensure this adiabatic following by carefully de-
signing the pulse shapes of our light fields (Appendix C),
implementing stimulated Raman adiabatic passage (STI-
RAP) [25]. Losses occur at high ωF , as the atom’s dark-
state spin composition fails to adiabatically follow the
rapid changes in the light fields. In the following sec-
tions, we show that a frequency window that simulta-
neously satisfies both requirements exists and that there
are momentum-dependent loss channels arising from the
Floquet-induced coupling with higher excited bands for
particular momenta.

II. EXPERIMENT

We work with fermionic 171Yb atoms that have a
well isolated Λ-system (Appendix A), consisting of two
ground states |g1〉, |g2〉 and an excited state |e〉 cou-
pled by laser light with λ = 556 nm. We use the
methods outlined in Refs. [24, 26–29] to generate and
optically control this well isolated Λ-system. A con-
trol field Ωc(x, t) = Ωc1e

ikx + Ωc2(t)e−i(kx+φ(t)), where
k = 2π/λ and φ(t) is the relative phase difference be-
tween the two fields, which couples |g2〉 and |e〉, is com-
prised of two counterpropagating lattice beams. The
maximum value of Ωc2(t) is constrained to be equal to
Ωc1 = Ωc0/2, in which case it gives rise to a standing wave
Ωc0 e

−iφ(t)/2 cos (kx+ φ(t)/2). We control the strength
and the position of the KP potential using Ωc2(t) and
φ(t) (Appendix C). A homogeneous probe field Ωpe

iky,
coupling |g1〉 and |e〉, travels perpendicular to the con-
trol beams. The resulting spatially dependent dark state
gives rise to a KP lattice of narrow subwavlength bar-
riers [22–24], plus an additional sinusoidal potential due
to the light shifts caused by states outside the three-level
system (Appendix A) as shown in Fig. 2(a).

Stroboscopically applying the lattice with different
strengths and positions requires accurate and high band-
width control of the amplitude and phase of the lasers
coupling the three states, which we implement using
dynamic control over the rf fields driving acousto-optic
modulators (AOMs) [16]. We note that the spin adi-
abaticity condition depends significantly on the pulse
shape [14] in addition to the Floquet frequency, and con-
trol of the pulse shape within a Floquet period is criti-
cal [16]. We use arbitrary waveform generators that can
control the rf amplitude and phase with a resolution of
8 ns and 4 ns respectively. However, we are limited by
the bandwidth of the AOMs, which we measure to be 50
ns. This is a factor of 8 times smaller than the smallest
half-period of 400 ns that we have used in this study.

For typical experimental values of Ωc0 = 500 Γ and
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Ωp = 50 Γ, where Γ = 2π × 182 kHz is the inverse
lifetime of |e〉, the KP barrier has a minimum width of
0.02 λ and a maximum height ≈ 100ER, where ER/h =
h/(2mYbλ

2) = 3.7 kHz, mYb is the mass of a 171Yb
atom, and the sinusoidal potential has a depth ≈ 145ER,
Fig. 2(a). Time-averaging this lattice applied at two po-
sitions results in an effective potential Veff(x) shown in
Fig. 2(b), which includes the effect of the pulse shapes,
with an effective barrier height ≈ 7ER. (The sinusoidal
component of the potential averages to a spatially invari-
ant offset.)

III. MEASUREMENT

We apply this lattice to≈ 2×105 Yb atoms at an initial
temperature of 0.3 µK that have been optically pumped
into |g1〉. To load the atoms into the ground band of
Veff(x), we adiabatically increase the depth of the stro-
boscopically applied lattices in 200 µs (typically ∼80 Flo-
quet cycles) described in details in Appendix B. After the
loading stage, we measure the ensemble-averaged prob-
ability density |ψ(x, t)|2 of atoms in the ground band of
Veff(x) using a nanoresolution miscroscopy technique [16]
with FWHM resolution of 25 nm. We also measure
the momentum distribution of the atoms via absorption
imaging after time-of-flight (TOF).

A. Probing wavefunction density in the
stroboscopic lattice

Figure 2(c) shows |ψ(x, t)|2 averaged over a Floquet
period T = 2.4µs (ωF = 2π × 410 kHz) for atoms in
Veff(x) with a λ/4 lattice spacing, and Fig. 2(d) shows
|ψ(x, t)|2 at different times within a Floquet cycle. By
averaging the data over a Floquet period, we eliminate
the effect of micromotion and obtain the averaged wave-
function density |ψavg(x)|2 (dotted trace in Fig.2(c)) in
the ground band of the effective potential. The black
curve represents the ground-band probability density cal-
culated from the time-averaged potential including the
quasimomentum averaging, the effect of finite resolution
of the microscope, and the relaxation of the wavefunction
during the measurement. The good agreement between
the data and calculation shows that time-averaging is a
good description of the effective potential. The calcu-
lated wavefunction in the lattice before the relaxation
during the measurement is plotted in grey. We resolve
the micromotion in real space within a Floquet period by
comparing |ψ(x, t)|2 with |ψavg(x)|2 (Fig.2(d)). The blue
(red)-shaded areas represents regions in which |ψ(x, t)|2
is higher (lower) than |ψavg(x)|2. We observe that mi-
cromotion has the same time-periodicity as the Floquet
drive, as expected.

(a) 
175 

150 

75 

50 

(b) 
200 

150 

-30

-30

-20

Scaled density ( a. u.) 

-10 0 10 

-20 -10 0 10 

20 30 

20 30 

125

100

L2 L1

R1

100

50

0

L2 L1

R1

FIG. 3. (a) Integrated TOF column density at different Flo-
quet frequencies ωF . The atomic populations at high mo-
menta indicate the presence of avoided crossings. The widths
of the populations at avoided-crossings are primarily due to
the physical dimensions of the atomic cloud. (b) The Floquet
frequency ωF is plotted versus the center momentum of the
populations in (a) determined using Gaussian fits. Different
series of avoided crossing are labeled and colored (L1: green,
L2: red, R1: blue) and their fitted quadratic functions are
drawn in solid lines respectively. The error bars are 1 stan-
dard deviation of the Gaussian fits.

B. Momentum-dependent loss channels

A characteristic feature of a Bloch-Floquet bandstruc-
ture is the existence of avoided crossings at particular lat-
tice momenta arising from coupling with high-lying states
[30], which for large Floquet frequency are approximately
plane waves with high momenta. We measure the mo-
mentum distribution of the atoms in Veff(x) at different
ωF by taking an absorption image after ramping down
the lattice in 100 µs followed by a TOF of 3 ms. The
atomic populations at high momenta in Fig.3(a) indicate
the mixing of low momentum and high momentum states
due to the presence of avoided crossings in our system.
We use a Gaussian fit to determine the center momentum
of the populations with respect to the ground band. The
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Floquet frequency ωF is plotted against the center mo-
mentum (Fig.3(b)) for the three most prominent peaks
(L1: green, L2: red, R1: blue). To first order, the avoided
crossings can be understood as arising from the crossing
of Floquet dressed high-lying bands, which are shifted
in energy by integral multiples of ωF , and the low-lying
occupied bands of Veff(x), which are relatively flat. To
determine the integral multiple of ωF for the band cou-
pling, we fit the peak positions with a quadratic function
h̄ωF = (p− p0)2/N + h̄ω0, where p is the momentum, N
is an integer, p0 and ω0 are fitting parameters, and the
momentum and energy are in units of h̄k and ER. For
the L1 series, a good agreement with the data is found
for N = 1, indicating this series is due to coupling be-
tween bands with an energy difference of h̄ωF . For the
L2 and R1 series, N = 2 gives the best fit, indicating
second order coupling between bands that differ in en-
ergy by 2h̄ωF . (The other visible peaks do not extend
over a sufficient range to accurately determine their cur-
vatures.) The fraction of atoms in the high momentum
states decreases at higher Floquet frequency, suggesting
weaker coupling to higher bands. The asymmetry in the
avoided crossings with respect to p = 0 is due to the
fact that we are driving just the Ωc2 control beam, which
gives rise to a vector gauge potential [14].

The 171Yb atoms are nearly non-interacting (s-wave
scattering length is −3a0, where a0 is the Bohr radius),
so they are not likely to thermalize during the short load-
ing and unloading sequence. However, the observed low-
momentum component of the TOF distribution is con-
sistent with the width of the ground band Brillouin zone
for the λ/4-spaced stroboscopic lattice, which is twice as
large as the ground band width of the progenitor λ/2 lat-
tice. Given that the Fermi momentum at our density is
of order the recoil momentum of the progenitor lattice,
the filled ground band in the λ/4 lattice indicates that
the effective temperature is higher than the ground band
width but not a significant fraction of the band spacing.

C. Lifetime study

In order to determine the range of usable Floquet fre-
quencies for the stroboscopic scheme, we study the life-
time at different ωF under different Rabi frequency con-
figurations as shown in Fig. 4. We determine the lower
bound on ωF by studying the motional diabaticity of
atoms in just a stroboscopically applied ac-Stark-shift
lattice. This is done by setting Ωp = 0, which decou-
ples the spin degree of freedom from the dynamics with
Ωc1 = 250Γ, while Ωc2(t) is pulsed to a maximum value
of 250Γ(Appendix C). At low ωF , the atoms are affected
by the turning on and off, and phase shifting of the sinu-
soidal ac-Stark-shift potential, which causes heating and
loss (green squares in Fig.4). We determine the upper
bound on ωF by studying the reduction in the fidelity of
STIRAP as a function of ωF for a spatially homogeneous
dark state. This is done by setting Ωc1 = 0, Ωp = 80Γ,

FIG. 4. Lifetimes of atoms at different ωF under different
Rabi frequency configurations. Green squares: Ωc0 = 500Γ
and Ωp = 0, where the spin degree of freedom is decoupled and
the loss is due solely to failure of motional diabaticity at low
ωF . Red triangles: Ωc1 = 0, Ωc2 = 250Γ and Ωp = 80Γ, where
the spatial potential is homogeneous and the loss is due solely
to the failure of spin adiabaticity at high ωF . Blue circles:
Ωc0 = 500Γ and Ωp = 80Γ, where we show the lifetimes of
atoms in the λ/4-spaced lattice, Veff(x). The error bars are 1
standard deviation of the exponential fits.

while Ωc2(t) is pulsed to a maximum value of 250Γ. The
reduction in STIRAP fidelity manifests as heating and
loss due to the decreasing spin adiabaticity at larger ωF .
Most importantly, we also measure the frequency depen-
dent lifetime of atoms loaded into Veff(x) for different ωF
(blue circles in Fig.4). The reduction in spin adiabaticity
accounts for the decrease in lifetime of atoms in Veff(x)
at high ωF .

The short lifetimes in the stroboscopically applied KP
lattices are expected due to a few factors. First, cou-
plings to the spatially and temporally dependent bright
states reduce lifetimes in subwavelength-spaced lattices
even for a perfect three-level system, through couplings
with higher Floquet bands (as shown in Fig. 3) and off-
resonant couplings with bright states [14]. In princi-
ple, these couplings can be reduced by using larger Rabi
frequencies. However, lifetimes are also limited by the
breakdown of the three-level approximation at large Rabi
frequencies due to admixing of states outside the three-
level system (Appendix A). This manifests as a dynami-
cally varying and spatially dependent two-photon detun-
ing (arising from Ωc(x, t)), which reduces the fidelity of
STIRAP [25]. This competing requirement prevents us
from benefiting from larger Rabi frequencies.

IV. CONCLUSION

In conclusion, we demonstrate the creation of a time-
averaged λ/4-spaced lattice using a recently proposed
stroboscopic technique [13] based on dynamically modu-
lated dark states in a three-level system [14, 15]. The sub-



5

wavelength structure of the lattice is confirmed by mea-
suring the probability density of the atoms averaged over
the ground band of the lattice. We measure the loss rate
of atoms in the lattice and observe high momentum exci-
tation due to Floquet-induced coupling to higher bands.
We measure the lifetime of the atoms in the λ/4-spaced
lattice to be 2 ms, which is not long enough compared to
the tunneling time to allow for many-body studies in the
current realization.

Further improvement of the λ/4-spaced lattice would
require compensation of the two-photon detunings or the
identification of other atomic systems with a more fa-
vorable (isolated) three-level system [31]. The lattice
demonstrated here is limited by the off-resonant coupling
to |(6s6p)3P1, F=3/2,mF=−3/2〉, which is only detuned
by the hyperfine splitting from the three-level system be-
ing used. Better candidates may make use of isolated
electronic levels, which are detuned by much larger op-
tical separations. For example, in 174Yb, the (6s6p)3P0

state and one of the states in the (6s6p)3P2 level could
be used as the ground states, while one of the (6s7s)3S1

states could be used as the excited state, with appro-
priate choice of polarization to select the three states.
In a more isolated three-level system the main limita-
tion would be the available laser power needed to meet
the Rabi frequency requirements. In addition to longer
lifetimes, higher Rabi frequencies would allow for lat-
tices with smaller spacings [14]. Our work can be ex-
tended to 2D and additional dynamic control over the
two-photon detuning—which makes subwavelength traps
possible [31]—allows for construction of arbitrary time-
averaged potential landscapes not limited by diffraction.
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APPENDIX

A. 171Yb ATOM LEVEL STRUCTURE

Fig. 5 shows the level structure of the 1S0 and 3P1

manifolds in 171Yb. The three hyperfine states |g1〉,
|g2〉, and |e〉 constitute the Λ-system. We use a mag-
netic field of 36 mT to yield a frequency separation of
1 GHz between |e〉 and |4〉. The hyperfine splitting is
∆HFS ≈ 6 GHz.

The ac-Stark shifts on the ground states |g1〉 and |g2〉
arise due to off-resonant couplings to states outside the
Λ-system. The Ωc(x, t) light field off-resonantly cou-
ples |g1〉 with |5〉, and |g2〉 with |6〉. The Ωp light field
off-resonantly couples |g2〉 with |4〉, |g2〉 with |7〉, and
|g1〉 with |6〉. The spatio-temporally dependent ac-Stark

FIG. 5. Level structure of the 1S0 and 3P1 manifolds in 171Yb:
∆ is the single photon detuning, and ∆HFS ≈ 6 GHz is the
3P1 hyperfine splitting.
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FIG. 6. Rabi frequencies of different light fields and the rel-
ative phase φ between Ωc1 and Ωc2 during three stages. The
Floquet period is not shown to scale, the minimum number
of Floquet cycles during the ramp-on of Ωc2 is 40.

shifts due to Ωc(x, t) give rise to the dynamic sinusoidal
potential mentioned in the main text.

B. EXPERIMENTAL SEQUENCE

Fig. 6 shows the experimental sequence that we use
to load atoms into the ground band of the stroboscopic
lattice.

I. We start with atoms optically pumped into |g1〉.
We then ramp on Ωc1 (red trace in Fig.6) followed
by Ωp (blue trace in Fig.6), transferring atoms into
a spatially homogeneous dark state. Then, we turn
on Ωc2(t) (green trace in Fig.6) in 200µs (minimum
number of Floquet cycles used during the ramp
≈ 40) to adiabatically load atoms into the ground
band of the stroboscopic lattice.
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II. We pulse the stroboscopic lattice for a variable
number of Floquet cycles.

III. We measure the average probability density of the
atoms in the ground band of the stroboscopic lat-
tice using the nanoresolution microscopy technique
described in Ref. [16].

The phase φ(t) of the Ωc2 light field, which controls
the position of the stroboscopic lattice, is only changed
when the dark-state spin composition is spatially homo-
geneous [14]. The experimental techniques used to gen-
erate the pulses is detailed in Ref. [16].

C. PULSE SCHEME

The functional form of Ωc2(t) that we use to create the
stroboscopic lattice is [14]:

Ωc2(t) =
Ωc0
2
− Ωp sin2(ωF t)√

1 + 4ε2 − sin4(ωF t)
,

ωF = Ωpr0
√

1 + 4ε2,

where ε = Ωp/Ωc0. In Fig. 4 , changes in ωF are param-
eterized using r0. Smaller r0 implies slower, more spin-
adiabatic pulses. In our experiment, we typically use
0.02 ≤ r0 ≤ 0.2.

D. DETAIL OF LIFETIME STUDY

When studying lifetime for the STIRAP-only case and
for the stroboscopic lattice case, we observe that ∼ 20%
of the atoms have a lifetime of ∼ 20 ms and are insen-
sitive to change in ωF . We speculate that these atoms
populate Floquet states that are immune to STIRAP due
to the large dynamic two-photon detunings arising from
the spatially-dependent ac-Stark shifts due to couplings
to states outside the Λ-system (Appendix A). The decay
rates shown in the main text pertain to the major fraction
of the atoms which show frequency-dependent loss rates
both in the stroboscopic lattice as well as stroboscopic
STIRAP case.

[1] M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski,
A. Sen(De), and U. Sen, Advances in Physics 56, 243
(2007), https://doi.org/10.1080/00018730701223200.

[2] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys.
80, 885 (2008).

[3] B. Dubetsky and P. R. Berman, Phys. Rev. A 66, 045402
(2002).

[4] G. Ritt, C. Geckeler, T. Salger, G. Cennini, and
M. Weitz, Phys. Rev. A 74, 063622 (2006).

[5] R. P. Anderson, D. Trypogeorgos, A. Valdés-Curiel, Q. Y.
Liang, J. Tao, M. Zhao, T. Andrijauskas, G. Juzeliūnas,
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