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In this paper we analyze the limits of optical time transfer through atmospheric turbulence and
relate those predictions to timing uncertainty analysis using the Allan timing variance (TVAR). The
power spectrum of timing uncertainty due to atmospheric turbulence is expressed with the help of
Taylors frozen flow hypothesis, identifying a f−8/3 and f−2/3 power-law behavior for uncorrelated
and partially correlated turbulence, respectively. The scaling of each power law is related to the
geometry of the link and the turbulence profile. The power-law slopes are used to calculate two
new TVAR scaling coefficients relevant to turbulence timing noise, c5/3 and c

−1/3, which can be
applied to time-transfer analysis of timing data affected by turbulent fluctuations. Examples of a
2 km horizontal partially overlapping two-way link estimate the atmospheric contribution to timing
fluctuations to be below 10 fs, while a two-way link to a MEO satellite experiences timing fluctuations
on the order of 2 fs. Comparison of turbulence theory to a recent two-way optical time transfer
experiment shows good agreement with the expected power-law behavior and scaling factors.

I. INTRODUCTION

Precision timing information is essential to many ap-
plications including high accuracy geodesy, validation of
terrestrial reference frames, Time (epoch) and frequency
transfer, synchronization of time scales between remote
locations, augmentation of Global Navigation Satellite
Systems (GNSS), proposed science missions to test fun-
damental concepts of physics (e.g. Einstein’s Relativ-
ity), and searches for new physics [1–3]. Existing RF
satellite time transfer techniques are capable of fractional
frequency uncertainties on the order of 4 × 10−16 after
days of averaging, limited by signal bandwidth, signal-to-
noise ratio, and ionospheric corrections [4]. Optical time
transfer links offer higher bandwidth and better sensitiv-
ity, enabling direct comparison of state-of-the-art optical
frequency references using dedicated fiber networks [5].
For time transfer to remote locations, airborne platforms,
or satellites in orbit, the optical signals must propagate
through the turbulent atmosphere. Optical two-way time
and frequency transfer (OTWTFT) uses bi-directional
signal propagation and the principle of reciprocity of
single-mode links [6], to cancel path length fluctuations
through the atmosphere. OTWTFT has been demon-
strated at the femtosecond level over up to 12 km of
turbulent air [7, 8].
A previous paper considered a dedicated space-time

reference in orbit that would utilize two-way laser links,
based on existing satellite laser communication technolo-
gies, to provide < 1 ps timing uncertainty worldwide and
1 mm ranging to the satellite [9]. To support this appli-
cation, or even more precise tests of clocks in space [10],
satellite optical time transfer links will be required.
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When the two-way time transfer link has path asym-
metry, due to terminal separation or high velocity over
long distances, the link becomes partially reciprocal. Op-
tical signals propagating in opposite directions will see
slightly different realizations of turbulence, and will pick
up additional path length fluctuations that do not cancel
in the two-way measurement. The effect of partial reci-
procity on two-way time (and frequency) transfer links
has been analyzed in [11, 12], and recently measured
at the National Institute of Standards and Technology
(NIST) in Colorado [13] for a horizontal 2 km path.

Here we supplement the analysis presented in [12] by
connecting the predictions of turbulence theory to timing
stability analysis. We convert from the spatial statisti-
cal description of index fluctuations in turbulence to a
temporal timing noise spectrum under the assumption of
frozen flow. Once a temporal timing noise spectrum is
identified the power-law behavior displayed by the turbu-
lence is converted to a timing uncertainty TVAR averag-
ing behavior. This description of the effect of turbulence
on timing uncertainty is then consistent with common
timing noise processes [14].

The remainder of this paper is organized as follows.
Section II gives an overview of two-way time transfer
through turbulent atmosphere over partially reciprocal
paths. Taylor’s frozen flow hypothesis [15] is introduced,
and used to convert from the spatial frequency descrip-
tion of turbulence to temporal frequency. Two distinct
regions of uncorrelated and partially correlated turbu-
lence are then identified by their power-law slopes. Sec-
tion III uses the identified power-law slopes to calculate
the timing instability behavior using the Allan Variance
TVAR. Section IV compares the predicted turbulence
power laws and TVAR behavior to experimental data
from a 2 km optical time transfer link at NIST. Discus-
sions and conclusions are presented in Section V.
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II. OPTICAL TWO-WAY TIME TRANSFER

THROUGH TURBULENT ATMOSPHERE

A. Two-Way Time Transfer

The goal of a time transfer system is to produce ac-
curate timing offset measurements between clock A with
time TA and clock B with time TB. The stability of the
two clocks relative to each other can then be estimated
from the time difference measurements ∆TAB = TA−TB.
In a two-way link, each end records the transmission time
of a timing marker signal, and the reception time of the
corresponding signal from the opposite clock. The time
differences measured at each end ∆TA and ∆TB, are
given by

∆TA = Tpath,A→B +∆TAB,

∆TB = Tpath,B→A −∆TAB. (1)

Both ∆TA and ∆TB in (1) include the time of flight along
the propagation path Tpath and the clock timing differ-
ence ∆TAB, which shows up at each end with opposite
sign. To cancel Tpath the difference between the measure-
ments at each end are taken as

∆TA −∆TB

2
= ∆TAB +

Tpath,A→B − Tpath,B→A

2
. (2)

Any random difference in path lengths due to turbulence
Tpath,A→B − Tpath,B→A = ∆Tatmo will be indistinguish-
able from the clock difference ∆TAB, and appear as addi-
tional timing uncertainty. These simplified time transfer
equations do not include any non-reciprocal effects due to
platform motion, relativity, or asymmetries in the trans-
mit and receive terminals, in order to focus on the effect
of path length fluctuations due to turbulence.
Figure 1 shows an example of an optical two-way time

transfer system with partial reciprocity along a horizon-
tal path. This is the experimental layout from [13], which
will be used for comparison between theoretical predic-
tions and experimental results. Clock A and Clock B
each have their own transmit and receive apertures that
are physically separated by some distance d. The optical
signals from each transmit terminal travel a slightly dif-
ferent path through the atmosphere on their way to the
opposite receivers, leading to ∆Tatmo 6= 0 and increasing
the uncertainty of the time-transfer link. The amount
of extra path length fluctuations that appear in (2) will
depend on the separation distance along the propagation
path, and the spatial correlation of the turbulence, which
will be covered in Section II B.
The geometry in Figure 1 is unlikely to be realized in

a real time transfer system but it allows experimental
evaluations of partial reciprocity that can be scaled to
match the expected effect on a satellite or high altitude
platform link, as described in Section IID.

FIG. 1. Two-way optical time transfer setup through turbu-
lent atmosphere along a folded path. The timing offsets ∆TA

and ∆TB include slightly different turbulent path length fluc-
tuations due to the Tx and Rx separation d. The incomplete
cancellation of path length fluctuations will show up in the
clock difference measurement ∆TAB .
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FIG. 2. Two-way optical time transfer to a satellite in or-
bit. The long distance from ground to the satellite and high
orbital velocity means the ground-to-satellite beam must be
transmitted at point-ahead angle θpa which causes the uplink
and downlink beams to sample different turbulence through
the atmosphere.

In a satellite time transfer system, the lack of symme-
try between uplink and downlink is shown in Figure 2.
The high orbital velocity and long propagation time to
the satellite requires the uplink beam to be launched at a
point-ahead angle θpa ≈ 2vorbit/c. The path separation
between uplink and downlink in the plane perpendicular
to the optical propagation, along the propagation dis-
tance z, is given by d(z) = X + θpaz + V (z)td, which
includes the transmitter and receiver ground separation
X , increasing separation with altitude due to the point-
ahead angle θpaz, and the effect of wind speed and slew
rate V (z) displacing turbulence over any time delay be-
tween the uplink and downlink td. For this analysis we
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FIG. 3. Turbulence spatial power spectra Φn(κ) using the
Kolmogorov model ((3) orange solid), von-Kármán model ((4)
blue dotted), and Greenwood-Tarazano model ((5) red dash-
dot). Upper lines are L0 = 10 m and lower lines are L0 =
100 m for the VK and GT models.

assume the uplink and downlink timing signals are off-
set to pass through the atmosphere at nearly the same
time, and the effective displacement V (z)td is negligible.
In certain link geometries this may not be valid and the
time delay between uplink and downlink will increase the
effective path separation.

B. Timing Fluctuations Through Turbulent

Atmosphere

1. Spatial Power Spectrum Description of Turbulence

Optical signals propagating through the turbulent at-
mosphere experience phase fluctuations due to random
changes in the index of refraction n along the propaga-
tion path [16]. These fluctuations cause the optical path
length to vary randomly about an average value, adding
additional uncertainty in timing measurements.
Kolmogorov’s theory of turbulence is used to describe

the statistics of turbulent eddies in the atmosphere that
cause index fluctuations [17]. A review of Kolmogorov
theory, and its application to optical propagation [18], is
beyond the scope of this work, but the reader is directed
to [19] Ch.3 for a well-presented discussion.
This work assumes that the turbulent atmosphere is

statistically described by a spatial power spectrum of in-
dex fluctuations Φn(κ), where κ is spatial frequency in
units of rad/m, using common models from turbulence
theory. The simplest model for Φn(κ) is the Kolmogorov
spectrum [19]

Φn(κ, z)K = 0.033C2
n(z)κ

−11/3, (3)

where C2
n(z) is the index of refraction structure con-

stant along the propagation path, which can range from
10−17 m−2/3 in weak turbulence to 10−13 m−2/3 for

strong turbulence. Equation (3) shows a κ−11/3 power-
law, and is valid for spatial frequencies within the range
2π/L0 ≪ κ ≪ 2π/l0. Kolmogorov theory applies to tur-
bulent eddies in the inertial sub-range, between the outer
scale L0 where energy is injected into the system, to the
inner scale l0 where eddies dissipate [17, 20]. Typical
scale sizes are L0 = 10 m for outer scale, and l0 = 1 mm
for inner scale. The Kolmogorov spectrum has infinite
energy if extended to κ = 0, or it predicts that there is
no limit to the spatial scale of correlation of turbulence.

Theodore von-Kármán proposed a modified spectrum
extending to low spatial frequencies 0 ≤ κ ≪ 2π/l0, as-
suming the correlation function of turbulence depends on
L0, and the turbulent power should not be infinite [21],

Φn(κ, z)VK =
0.033C2

n(z)

(κ2 + κ2
0)

11/6
. (4)

Here κ0 = 2π/L0 is the corner frequency of the outer
scale, below which the power spectrum flattens to a con-
stant. The von-Kármán spectrum is used in many tur-
bulence theory investigations since it is mathematically
tractable, and it fits with the idea that turbulent fluctu-
ations should have some limit to their spatial scale.

Greenwood and Tarazano conducted measurements of
temperature fluctuations in turbulence and arrived at
a slightly different spectral shape that better fit their
data [22],

Φn(κ, z)GT =
0.033C2

n(z)

(κ2 + κκ0)11/6
, (5)

which also shows a reduction in spectral power for κ0 ≪
2π/L0, but with a slope of κ−11/6 as opposed to κ0 in
(4).

Figure 3 shows the different spatial power spectral
models described, along with the effect of increasing
outer scale L0 from 10 to 100 m. The choice of spec-
tral model and outer scale value affects the predicted
turbulence variance. For the same turbulence parame-
ters the Greenwood-Tarazano model (5) predicts 9 times
higher variance than the von-Kármán model (4) due to
the steeper low wavenumber slope. Increasing the outer
scale from L0 = 10 m to L0 = 100 m in either model
adds 45 times more total spectral power.

The low spatial frequency spectrum maps to timing
uncertainty over long observation times, as will be dis-
cussed in Section II C. Measurements of the spatial struc-
ture of turbulence show evidence of the existence of an
outer scale, however there is no well-motivated physi-
cal theory describing the spectral shape of turbulence
for κ ≤ 2π/L0 [23, 24]. Since the Greenwood-Tarazano
model showed better fit to long time series data, it is the
most suitable for our timing stability investigation and is
preferred over the von-Kármán model.
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2. Timing Fluctuations

The timing variance of an optical signal propagating
through turbulent atmosphere is calculated from the spa-
tial power spectrum Φn(κ) as ([19] 8.6.1)

σ2
τ,1Way =

4π2

c2

∫ L

0

∫
∞

0

κΦn(κ, z)dκdz, (6)

where c is the speed of light. The residual timing variance
on a two-way measurement (2) through the atmosphere
depends on the correlation of index fluctuations over the
separation distance d(z). The mean squared timing dif-
ference between two separate paths through atmosphere
can be expressed as

σ2
τ,2Way =

2π2

c2

∫ L

0

∫
∞

0

κΦn(κ, z)[1− J0(κd(z))]dκdz,

(7)
where d(z) is the perpendicular distance between paths
along the propagation direction z (Figure 2). This
was the main result used in [12] to connect the spatio-
temporal displacement of two optical paths through the
atmosphere to a residual two-way timing variance. It is
a re-casting of the phase structure function of the at-
mosphere ([19] 8.6.2), which describes the mean squared
phase difference between two points. The [1−J0(κd(z))]
factor in (7), where J0(κd(z)) is a Bessel function of the
first kind, acts as a high pass filter that passes the un-
correlated portion of Φn(κ) for the given separation dis-
tance. Turbulent eddies smaller than the separation dis-
tance (high spatial frequencies) will be uncorrelated and
show up in the two way measurement, while large scale
turbulent eddies will remain correlated and cancel.
Taking the horizontal path in Figure 1 as an example,

the displacement d(z) starts at the TxA and RxA sep-
aration d, goes to zero at the mirror half way along the
path, then increases to the separation between TxB and
RxB which is also d. Using the parameters from the ex-
periment in [13]: L = 2 km, d = 0.5 m, C2

n = 5.5×10−15,
L0 = 100 m, l0 = 1 mm, V = 0.55 m/s, and the
Greenwood-Tarazano model (5) for Φn(κ, z) in (6) gives
a one-way time-of-flight deviation στ,1Way = 300 fs. The
two-way measurement (7) has residual timing variance
στ,2Way = 3 fs. The separated two-way link maintains
sufficient partial reciprocity to cancel turbulent path
length fluctuations at the level of a few femtoseconds.

C. Temporal Frequency Spectrum of Atmospheric

Turbulence

1. Taylor’s Frozen Flow Hypothesis

To connect turbulence theory to methods of timing sta-
bility analysis it is necessary to convert from the spatial
frequency power spectrum of index fluctuations Φn(κ) to

a temporal frequency timing noise spectrum Sx(f). This
is accomplished with the help of Taylors frozen flow hy-
pothesis [15]. Taylor’s hypothesis states that temporal
variations of turbulence seen at a measurement point are
due to spatial variations being transported by the wind,
and not the time evolution of the turbulence itself. For
a turbulent quantity u(r, t) with spatial and temporal
dependence, Taylor’s hypothesis can be expressed as

u(r, t+ τ) = u(r−Vτ, t), (8)

which states that a shift in time is equivalent to the dis-
placement in position over that time due to the wind
velocity V . This leads to a direct connection between
spatial frequency κ and temporal frequency f as

κ = 2πf/V, (9)

which allows the spatial models of Section II B to be con-
verted to temporal models.
Taylor’s hypothesis is valid for short time scales, where

the motion of turbulence due to the wind is much
faster than the temporal evolution of the turbulent ed-
dies (See [25] Appendix B). Measurements taken at the
Mt. Wilson observatory suggested that Taylor’s hypoth-
esis was valid for timescales shorter than 10 − 15 s [26].
For observations longer than ∼ 10 seconds Taylor’s hy-
pothesis breaks down, and measurements of timing fluc-
tuations will include contributions from both the spatial
structure of the turbulence and its temporal evolution.
The conversion from Φn(κ) to Sx(f) is then most valid
for high temporal frequencies f ≥ 0.1 Hz, and for predic-
tions of timing uncertainty over short times τ ≤ 10 s.
For predictions of timing uncertainty beyond τ ≥ 10

seconds further investigation into the spectral behavior of
turbulence is required, both at long time scales and large
spatial scales. Greenwood and Tarazano’s model (5)
showed a good fit to the temporal spectra of tempera-
ture measurements down to below 0.01 Hz [22], which
was further supported by measurements at Mt. Wil-
son [25]. However the temperature difference spectrum,
which corresponds to the two-way spectrum discussed
here, showed deviation from the model at low frequen-
cies (See [22] Fig.9). Sinclair et al. were surprised to find
no evidence of an outer scale roll-off in the power spec-
trum of their experimental data down to 100 µHz [27].
Similar behavior was also observed on the Mt. Wilson
stellar interferometer, where the unbounded Kolmogorov
model gave a better fit to the low temporal frequency
fringe motion [23].

2. Temporal Spectrum of Atmospheric Turbulence

Using (9) to express the one-way timing fluctuations
(6) in terms of temporal frequency, assuming a horizontal
path of length L, gives
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σ2
τ,1Way =

∫
∞

0

Sx(f)df

=
4π2

c2
L

∫
∞

0

2πf

V
Φn

(
2πf

V

)
2π

V
df, (10)

which when evaluated using the Kolmogorov spectrum
(3) gives

σ2
τ,1Way =

∫
∞

0

(2π)1/3

c2
LV 5/30.033C2

nf
−8/3df. (11)

Equation (11) is a power-law spectrum with a f−8/3

slope for the non-reciprocal (NR) turbulence or one-way
spectrum, given by

Sx(f)K,NR = h−8/3f
−8/3,

h−8/3 =
(2π)1/3

c2
LV 5/30.033C2

n. (12)

Applying the same technique to the two-way timing
uncertainty (7), assuming the separation distance be-
tween counter-propagating paths is a constant d meters,
reveals the effect of partial reciprocity on Sx(f). First
the two-way timing uncertainty (7) is brought to tempo-
ral frequency using (9) giving

σ2
τ,2Way =

2π2

c2
L

∫
∞

0

2πf

V
Φn

(
2πf

V

)[
1− J0

(
2πf

V
d

)]
df.

(13)
Then the first two terms of the small argument expansion

of J0(κd) = 1− (κd)2

4 + · · · are used in (13) to analyze the
asymptotic small frequency behavior for κd ≪ 1. At low
frequencies the two-way timing noise spectrum for the
Kolmogorov model becomes

σ2
τ,2Way =

∫
∞

0

Sx(f)df

≈

∫
∞

0

(2π)7/3

8c2
LV −1/30.033C2

nd
2f−2/3df.

(14)

The power-law slope in (14) is f−2/3 for the partially
reciprocal (PR) region with scaling coefficient

Sx(f)K,PR = h−2/3f
−2/3,

h−2/3 =
(2π)7/3

8c2
LV −1/30.033C2

nd
2. (15)

In the case where the displacement d(z) changes along
the propagation direction the mean square displacement
along the propagation path d2 should be used in (15).
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FIG. 4. Temporal PSD Sx(f) of a two-way link computed for
the Kolmogorov spectrum (orange solid), von-Kármán spec-
trum (blue dotted), and Greenwood-Tarazano spectrum (red

dash-dot). The transition from f−8/3 uncorrelated turbu-

lence ((12) purple dashed) to f−2/3 partially reciprocal tur-
bulence ((15) green dashed) can be seen just below f = 1 Hz.
The outer scale roll-off in the VK and GT models is around
f = 0.1 Hz for L0 = 10 m, and f = 0.01 Hz for L0 = 100 m.

The intersection of (12) and (15) is the transition from
f−2/3 to f−8/3 power laws at corner frequency

fc =
0.318V√

d2
. (16)

If not obscured by other effects, the outer scale roll-off
is expected to appear for very low frequencies below

fL0
=

V

L0
. (17)

In the outer scale roll-off region κ ≪ 2π/L0 the power-
law slope for the GT model (5) is κ−11/6. This maps to
a f7/6 behavior in (13) for f ≪ fL0

Sx(f)GT,L0
= h7/6f

7/6,

h7/6 =
(2π)−7/3

8c2
L

L
11/6
0

V −13/60.033C2
nd

2. (18)

Figure 4 shows the timing noise power spectrum eval-
uated numerically from (13) for the horizontal link ex-
ample in Section II. The Kolmogorov turbulence model
shows a clear transition from f−8/3 uncorrelated turbu-
lence (purple dashed) to f−2/3 partially-reciprocal tur-
bulence (green dashed) at corner frequency fc. The
von-Kármán and Greenwood-Tarazano turbulence mod-
els show their low frequency outer scale roll-off below
f < V/L0, with the GT model having a shallower f7/6

slope.
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FIG. 5. Numerical evaluation of timing noise spectrum
for Earth to MEO one-way (triangles), MEO two-way (dia-
monds), Earth to LEO one-way (squares), and LEO two-way
(circles) using the Greenwood-Tarazano atmospheric model.
The higher slew rate from tracking a LEO satellite results
in a shift of Sx(f) to higher temporal frequencies. The

one-way timing noise follows the f−8/3 slope ((21) purple
dashed/dotted) until the low frequency roll-off from the tur-
bulence outer scale begins. The two-way noise shows the
change to f−2/3 power-law slope ((22) green dashed) before
experiencing the same outer scale roll-off.

D. Ground-to-Satellite Geometry

For a vertical time transfer link from a ground station
to an orbiting satellite, the link geometry is shown in
Figure 2. The displacement between uplink and downlink
beam paths d(z) changes with distance along the path,
as does the C2

n(z) profile. A common model for the index
of refraction structure constant variation with altitude h
in meters, is the Hufnagel-Valley model [28]:

C2
n(h) =0.00594

(
VRMS

27

)2

(10−5h)10 exp
−h

1000

+ 2.7× 10−16 exp
−h

1500
+ C2

n(0) exp
−h

100
. (19)

In (19) VRMS is usually taken as 21 m/s. The Bufton
wind model is used to describe the effective wind speed
with altitude

V (h) = ωsh+ Vg + 30 exp

(
−

(
h− 9800

4800

)2
)
. (20)

The Bufton model includes the effective wind speed due
to the satellite tracking angular slew rate ωs, the ground
wind speed Vg, and models an exponential wind velocity
profile with height. The mapping from spatial to tem-
poral frequency becomes κ = 2πf/V (h) which pushes
higher altitude turbulence to higher temporal frequen-
cies. The satellite angle relative to zenith ζ is used to

translate from altitude to path length as z = h× sec (ζ),
where h is the altitude in meters.
As an example, we consider a two-way time trans-

fer link to a Medium Earth Orbit (MEO) satellite or-
biting at 10, 000 km and ζ = 45◦ above the horizon.
At this altitude the point-ahead angle is approximately
θpa = 35 µrad and the slew rate is ωs = 0.5 mrad/s.
The transmitter and receiver share the same aperture, so
that |X | = 0 cm, and the time transfer signals are off-
set to pass through the same atmosphere in the uplink
and downlink direction such that td = 0. The Hufnagel-
Valley model is used for C2

n(z) and the GT model
for Φn(κ, z) with the following parameters: C2

n(0) =
1 × 10−14, L0 = 100 m, l0 = 1 mm, Vg = 3 m/s,
VRMS = 21 m/s. The one-way time-of-flight fluctuations
estimated from (6) are στ,1Way = 126 fs. For the two-way
link, evaluating (13) using d(z) from the ground to the
top of the atmosphere results in στ,2Way = 1.9 fs. The
partial correlation between uplink and downlink is suffi-
cient to cancel the path length fluctuations to the fem-
tosecond level even with the large 35 µrad point-ahead
angle.
For a satellite in Low Earth Orbit (LEO) such as the

International Space Station, the slew rate is much faster,
up to ωs = 20 mrad/s, which produces a higher pseu-
dowind and will shift the temporal spectrum to higher
frequencies. The point-ahead angle for LEO is larger
at θpa = 50 µrad which further reduces the reciprocity
between the uplink and downlink paths. For the same
turbulence conditions as the MEO example the one-way
time-of-flight fluctuations are still στ,1Way = 126 fs, but
the two-way timing fluctuations στ,2Way = 2.5 fs are
slightly worse than the MEO case. A LEO orbit also
has a much shorter visibility window, on the order of 100
seconds per pass compared to up to 6000 seconds for a
six hour MEO orbit.
The varying wind speed V (z), uplink-to-downlink dis-

placement d(z), and index structure C2
n(z), make it

harder to fit the simple power-law approximations of the
horizontal case, but the f−2/3 and f−8/3 spectral behav-
ior still applies. The scaling coefficient for the uncorre-
lated turbulence-induced timing fluctuations is given by

h−8/3,sat =
(2π)1/3

c2
0.033

∫
∞

0

C2
n(z)V (z)5/3dz, (21)

with the partially correlated region scaled by

h−2/3,sat =
(2π)7/3

8c2
0.033

∫
∞

0

C2
n(z)V (z)−1/3d2(z)dz.

(22)
At lower frequencies any outer scale roll-off will reduce
the slope further. The power-law scaling from (21) and
(22) can be used to compare the timing noise spectrum
expected from a vertical path geometry to a horizontal
path timing noise spectrum with (12) and (15).
Figure 5 shows the timing noise spectrum for the

described MEO and LEO satellite links using the
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Greenwood-Tarazanomodel. The f−2/3 and f−8/3 power
laws are still visible but with different scaling based on
the satellite link geometry. Sx(f) for the LEO satellite is
shifted to higher frequencies due to the higher slew rate
increasing the apparent wind speed. The low frequency
behavior shows a more gradual roll-off due to the mix-
ture of scaled spectra calculated at different wind speeds
V (z), and C2

n(z) values along the path.

III. CONNECTION TO TIMING STABILITY

ANALYSIS

Timing stability is usually characterized using the tim-
ing variance TVAR, denoted by σ2

x(τ), which is a member
of the Allan variance family [29]. TVAR (or the square
root TDEV) is a measure of the timing uncertainty be-
tween two clocks over an observation interval τ ,

σ2
x(τ)

.
=

1

6
< (∆2x̄)2 >, (23)

where the ∆2x̄’s are second-difference measurements of
clock time offsets ∆TAB, averaged into non-overlapping
blocks of k samples spaced τ0 apart, such that the ob-
servation window τ = kτ0. TVAR can be described in
the frequency domain by a filter function acting on the
timing noise spectrum Sx(f) [14, 30]:

σ2
x(τ) =

8

3k2

∫
∞

0

[
sin3 (πfτ)

sin (πfτ0)

]2
Sx(f)df. (24)

An important advantage of using TVAR is the rela-
tionship between power-law noise processes described by
Sx(f) = hβf

β, and the time-domain averaging behav-
ior of σ2

x(τ) = cητ
η . A power-law slope of β will pro-

duce a time-averaging behavior of TVAR as cητ
η with

η = −β − 1. This relationship allows different noise pro-
cesses to be identified by looking at the slope on log-log
time stability plots. The coefficient cη can be computed
from (24) by using the power law of interest and making
a convenient substitution u = kfτ [31]:

cη =
8hβ

3πβ+1

∫
∞

0

uβ

k2
sin6 (u)

sin2 (u/k)
du. (25)

Having identified two power-law slopes in the turbu-
lence timing noise spectrum in Section II it is possible to
estimate the timing stability behavior of two-way optical
time transfer links. The f−8/3 power law for one-way
turbulent propagation fits between White FM f−2 and
Flicker FM f−3 noise. The spectral scaling coefficient
h−8/3 is given by (12) for a horizontal link or (21) for
a vertical geometry. The related time-averaging slope is
σ2
x(τ) = c5/3τ

5/3 with c5/3 evaluated from (25) as

c5/3 = 7.66h−8/3. (26)

The f−2/3 power law for partially reciprocal two-way
propagation fits between White PM f0 and Flicker PM
f−1 noise. The spectral scaling coefficient h−2/3 is given
by (15) for a horizontal link and (22) for a vertical path.
The associated time average slope is σ2

x(τ) = c−1/3τ
−1/3

with c−1/3 evaluated from (25) as

c−1/3 = 0.83h−2/3. (27)

Since the f−2/3 power-law slope is a knee in the timing
noise spectrum and does not continue to infinity, the use
of σ2

x(τ) = c−1/3τ
−1/3 is valid for averaging times longer

than the reciprocal of the corner frequency τ > 1/fc.
The Kolmogorov f−2/3 slope continues to f = 0 Hz and
can be used as a conservative estimate of the timing un-
certainty due to turbulence in the absence of any outer
scale roll-off.
Equation (27) can be used with (22) to estimate the

timing uncertainty limit due to turbulence on a MEO
two-way link. For the same turbulence parameters used
in the example in Section IID, h−2/3,sat = 3× 10−31 and

the timing deviation TDEV is σx(τ) = 5×10−16τ−1/3. A
cold atom Cesium clock or Hydrogen Maser might show a
timing stability of 2×10−13τ1/2. The timing uncertainty
due to turbulence on the two-way link will be below the
stability of the clock past a few milliseconds. However a
state-of-the-art optical clock can have a timing stability
of 4 × 10−17τ1/2, which crosses the atmosphere timing
stability floor around τ ≥ 30 s. The atmosphere can still
limit short-time comparisons of the best ground clocks.

IV. COMPARISON TO TIME TRANSFER

EXPERIMENTAL MEASUREMENTS

NIST in Colorado has demonstrated optical frequency
comb-based two-way time transfer with sub-femtosecond
timing uncertainty over turbulent free-space paths up to
12 km [7, 8]. The same group has also investigated the
effects of partial reciprocity by separating the terminal
transmit and receive paths, as depicted in Figure 1. The
mean-square displacement for this folded crossover geom-
etry is approximately: d2 = 0.33d2.
Figure 6 shows the power spectrum for one- and two-

way timing fluctuations measured over a 2 km folded
path geometry with d = 0.5 m separation between Tx
and Rx terminals. This is the same experimental data
analyzed in [13]. The one-way timing uncertainty spec-
trum shows a continuation of the f−8/3 slope down to
very low frequencies, which suggests an extremely large
outer scale. This was discussed briefly in Section II C 1 as
likely being due to a breakdown of Taylor’s hypothesis on
long time scales. The low frequency spectrum is captur-
ing power from other temporally evolving processes in
the atmosphere, as well as potential thermally induced
path length changes in the measurement apparatus. The
f−8/3 power-law slope is clearly visible on the one-way
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FIG. 6. Timing fluctuation PSD from 2 km partially recipro-
cal link with 0.5 m Tx Rx separation. Data from [13]. The

one-way timing data (yellow) follows a f−8/3 power-law slope
(purple dashed-dot) while the two-way data (blue) shows the

transition to larger scale correlated turbulence f−2/3 (green
dashed) near fc = 0.6 Hz. The broken power-law ((28) orange
solid) fit to the two-way data gives the C2

n and wind speed V

values shown.

data while the f−2/3 slope is seen in the two-way timing
noise spectrum at low frequencies. The one-way data lies
above the f−8/3 portion of the two-way data by a factor
of two due to (7) being an average of two measurements.
A broken power-law function was chosen to fit be-

tween Sx(f)K,PR = h−2/3f
−2/3 at low frequencies and

Sx(f)K,NR = h−8/3f
−8/3 at high frequencies, giving a

simplified continuous representation of the Kolmogorov
timing uncertainty spectrum. The function is given by

Sx(f) = A

[(
f

fc

) 2

3
m

+

(
f

fc

) 8

3
m
]−1/m

+ h0, (28)

which merges the asymptotic behavior of (15) to (12).
The smoothness parameter m = 1.5 in (28) was chosen
separately from the data to match the shape of the tran-
sition region in Sx(f) around f = fc, by numerically
evaluating (13) with d(z) for the experimental geometry.
Equation (28) is easier to use in (24) than numerically
integrating (7) inside the TVAR integral, and it gives a
straightforward equation to compare to the timing noise
spectrum data.
Equation (28) was fit to the two-way timing noise spec-

trum data between 0.01 Hz and 6 Hz. The two param-
eters fit were the scaling factor A = 6.7 × 10−30 and
the corner frequency fc = 0.63 Hz. The noise floor
h0 = 6.6 × 10−33 s2/Hz was estimated separately from
the high frequency noise spectrum and added after per-
forming the broken power law fit. The model-fit fc can
be used in (16) with the root-mean square path sepa-

ration d2 = 8.4 cm2 to estimate the wind velocity as
V̂ = 0.60 m/s, which agrees with the measured wind

speed during the experiment of 0.55 m/s. Using V̂ and
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FIG. 7. Atmospheric contribution to timing deviation
(TDEV) in seconds, from 2 km horizontal experiment. In-
cluding one-way time-of-flight uncertainty (yellow diamonds),
two-way link uncertainty (blue squares), broken power law
fit using the Kolmogorov model (orange solid), Greenwood-
Tarazano model (red dotted), and theoretical TDEV slopes
from (26) (purple dashed dot) and (27) (green dashed). The
total time transfer uncertainty stays below 10 fs out to 1000 s
of averaging time where mechanical drift in the experimental
terminals masks the contribution from turbulence.

fc, Ĉ2
n can be estimated from (15) as

Ĉ2
n =

Af
2/3
c 8c2

(2π)7/3LV̂ −1/30.033d2
. (29)

The value of Ĉ2
n = 7.8 × 10−15 from using (29) is larger

than the value C2
n = 5.6× 10−15 reported in [13], which

was extracted from amplitude scintillation data. The un-
certainties on the reported values were ±0.4 m/s for wind
speed and±2.6×10−15 m−2/3 for C2

n. Since equation (28)
is meant to capture the behavior of Sx(f), and not pre-
cisely reproduce it, we consider the estimated values ac-
ceptable given the variability in turbulence parameters
and approximate nature of the theoretical model.
Figure 7 shows the link timing uncertainty TDEV cal-

culated from the 2 km experimental data overlaid with
the broken power law fit and asymptotic TDEV slopes.
The c5/3τ

5/3 behavior is visible after τ = 0.2 s on the one-
way data after averaging down the receiver white noise
floor. Again, the one-way TDEV slope sits above the fit
to the two-way data since it does not have the one-half
scaling of the two-way measurement (2). The peaking
around τ = 0.04 s is due to extra phase noise in optical
fibers, as mentioned in [13]. This can also be seen as
the peaks around 20 Hz in Figure 6. The two-way data
quickly transitions to partially reciprocal turbulence with
c−1/3τ

−1/3 behavior. Equation (28) fits the shape of the
two-way data well out to τ = 20 s. There is no evidence
of the turbulence outer scale at long averaging times;
instead, the timing uncertainty turns upwards as other
sources of error take over past τ = 100 seconds. This
”uptick” in TDEV isn’t as obvious looking at the timing



9

noise spectrum plot Figure 6, but may be related to a
similar behavior noted by Greenwood and Tarazano in
the temperature structure function spectrum [22] Fig.9.
The peak timing uncertainty due to the spatial structure
of atmospheric turbulence is 2 fs at averaging times near
1/fc = 1 s.

V. DISCUSSION AND CONCLUSIONS

We have described the effect of atmospheric turbu-
lence on optical two-way time transfer by connecting
the turbulence induced timing noise power spectrum to
timing uncertainty expressed using TVAR. The scaling
factors h−8/3 for one-way f−8/3 power-law timing noise

and h−2/3 for two-way partially reciprocal f−2/3 power-
law timing noise were derived from turbulence theory
along with their corresponding TVAR time averaging
coefficients c5/3 and c−1/3. These scaling factors and
TVAR coefficients can be used to estimate the expected
contribution of turbulence timing uncertainty for paths
through the atmosphere, and as another method of esti-
mating turbulence parameters from power spectral mea-
surements.

The experimental data from [13] showed a good fit to
the theoretically predicted f−8/3 and f−2/3 power-law
slopes, though there is more work needed to understand
the low frequency behavior of turbulence beyond Tay-

lor’s frozen flow model. Using a broken power law fit
produced estimates of C2

n and wind speed in agreement
with those measured during the experiment. The result-
ing atmospheric contribution to time transfer uncertainty
was below 10 fs out to 1000 s of averaging time for their
two-way link.
Over a 2 km link geometry the one-way time-of-flight

uncertainty due to turbulence was calculated as 300 fs,
reducing to 3 fs for a partially reciprocal two-way link.
For a potential MEO satellite time transfer system the
one-way timing uncertainty was calculated as 126 fs, re-
ducing to 1.9 fs using a two-way link despite the large
35 µrad point-ahead angle and high slew rate. The
TDEV floor due to turbulence was estimated as σx(τ) =
5 × 10−16τ−1/3, which can limit comparisons at optical
clock levels of performance. It is important to mention
that this is the limit due to the turbulence only, and there
are many other factors that will also impact the timing
uncertainty in a two-way satellite link at this level.
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[8] J.-D. Deschênes, L. C. Sinclair, F. R. Giorgetta, W. C.
Swann, E. Baumann, H. Bergeron, M. Cermak, I. Cod-
dington, and N. R. Newbury, Synchronization of distant
optical clocks at the femtosecond level, Physical Review
X 6, 021016 (2016).

[9] P. Berceau, M. Taylor, J. Kahn, and L. Hollberg, Space-
time reference with an optical link, Classical and Quan-
tum Gravity 33, 135007 (2016).
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