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It is known that photon pairs generated from pulse-pumped spontaneous parametric processes
can be described by independent temporal modes and form a multi-temporal mode entangled state.
However, the exact form of the temporal modes is not known even though the joint spectral intensity
of photon pairs can be measured by the method of stimulated emission tomography. In this paper,
we describe a feedback-iteration method which, combined with the stimulated emission method, can
give rise to the exact forms of the independent temporal modes for the temporally entangled photon

pairs.

I. INTRODUCTION

Pulse-pumped spontaneous parametric processes, be-
cause of precise timing provided by the ultra-short pump
pulses [1l 2], have wide applications in quantum infor-
mation science such as time-bin entanglement, quantum
multi-photon interference of independent sources, her-
alded single-photon sources. However, the broad band-
width of the pump field and strict phase matching condi-
tion in highly dispersive nonlinear medium lead to com-
plicated spectral correlation in frequency domain.

Fortunately, the issue of complicated spectral correla-
tion was solved in time domain. Law et al. first made a
Schmidt decomposition of the joint spectral function and
found that the generated two-photon field can be decom-
posed into a superposition of independent pairs of tempo-
ral modes [3]. It was shown later that this mode decom-
position can be extended to high gain domain [4H6]. This
method significantly simplifies the quantum description
for the two-photon fields, leading to multi-dimensional
temporal quantum entanglement. Such a temporal mode
description was recently extended more generally into
field-orthogonal temporal mode analysis of electromag-
netic fields and was shown to form a new framework for
quantum information [7]. Quantum pulse gate technique
through nonlinear interaction processes was developed to
distinguish different temporal modes with some success
[R-L1].

On the other hand, the specific mode functions of the
temporal modes are only revealed by theoretical simula-
tions through the joint spectral function (JSF) of para-
metric processes [3H6]. They can be indirectly obtained
through singular value decomposition when the JSF is
measured [12]. But they have never been measured di-
rectly until recently when Huo et al applied a feedback-
iteration method to a parametric amplifier operated at
high gain regime and found the temporal profiles of the
first few temporal modes [I3]. The knowledge of the
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temporal profiles of the temporal modes then allows the
mode-matched homodyne detection of the quantum fields
generated by the high gain parametric amplifier to reveal
the pair-wise quantum entanglement in continuous vari-
ables [I3]. For discrete variables at photon level, the
parametric amplifier needs to be operated in the low
gain regime for spontaneous emission of photon pairs,
as shown by Law et al [3]. Then, one can use the infor-
mation of the temporal profile to implement the quan-
tum pulse gates [SHIT] in temporal mode selection and
de-multiplexing.

However, the mode measurement method by Hou et al
has to rely on the large gain difference among the differ-
ent modes to eventually lead to the convergence to the
mode with highest gain. At the low gain regime of spon-
taneous emission, the amplifier operates at near unit gain
for all modes so there is basically no difference in gain
and the method will not lead to a converged shape. One
may want to turn up the pump power to push into the
high gain regime but it is known that mode structure in
parametric processes changes with the pump power at
high gain [I4] 15]. Thus the method in Ref.[I3] does not
work in the low gain regime for spontaneous photon pair
generation to reveal the temporal mode structure of the
entangled photons discovered by Law et al [3].

In this paper, we modify the method by Hou et al and
apply it to the low gain regime. In our approach, instead
of making measurement on the transmitted and amplified
beam, we work on the stimulated emission in the conju-
gate beam. This is in a way similar to the method of
stimulated emission tomography [21]. But here we com-
bine the feedback-iteration method in Ref.[I3] and the
stimulated emission tomography method in Ref.[21] to
find the final profiles of modes for both correlated fields
in the low gain parametric processes. Since parametric
processes at low gain produce two correlated photons, the
measured mode functions will be the temporal profiles for
the generated photons.

The paper is organized as follows. In Sect.Il, we in-
troduce temporal mode analysis of pulse-pumped para-
metric processes. We then describe in Sect.ITI our cross-
feedback and iteration method for the temporal mode
determination at low gain regime and prove the conver-
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FIG. 1. Entangled two-photon states consisting of various temporal modes Ax, Brx(k = 1,2,3,...) in the signal and idler fields

generated from a pulse-pumped parametric process.

gence of the iteration. This is based on singular-value de-
composition (SVD) of the joint spectral function (JSF).
To demonstrate the validity and the effectiveness of our
method described in Sect.III, we present results of numer-
ical simulation in Sect.IV by using input-out relations in
parametric processes without the use of the SVD of the
JSF. We will also investigate the process of convergence
in this section. We conclude with a discussion in Sect.V.

II. TEMPORAL MODES OF PULSE-PUMPED
PARAMETRIC PROCESSES

When pumped by an ultra-short pulse, parametric pro-
cesses, realized via either three-wave or four-wave mix-
ing, produce two correlated fields dubbed “signal” and
“idler”, whose evolution is governed by the unitary oper-

ator
A / Z (1)

/dtlfl = ih/dwldng(w1,wg)di(wl)&;r(wz) + h.c., (2)

with [} 20]

where the frequency correlation is described by the joint
spectral function (JSF) F(w,ws) and usually has a com-
plicated form related to the spectral profile of the pump
fields and the phase matching conditions. Note that it
was realized recently that the unitary operator in the
form of Eqs. is only approximately correct because
H does not commute at different time [14]. See more
discussion later at the end of this section.

Fortunately, through the technique of singular value
decomposition, it is possible [4H6] to write the JSF
F(w1,w2) in terms of two sets of orthonormal temporal
modes {5 (w1), pr(w2)}, as shown in Fig[i}

F(wi,ws) = GZ Tk (wi)er (W) (3)

k

where {r;} > 0, satisfying the normalization relation
Dok 7",% = 1, can be arranged in such a way that r; >
ro > ... and are the mode numbers. G > 0 is a positive

dimensionless parameter proportional to the peak ampli-
tudes of the pump fields, nonlinear coefficient and the
length of the nonlinear medium, and

/dmwmnwwwn=&w=/dwwm@wmwaw®

Then Eq. can then be rewritten as
1 N PN
= / dtH = GLA]Bf — h.c. (5)
k

where Gy, = .G, A, = [ dwipi(wr)as(wr) and By =
[ dwapi (w2)a;(w2) are the annihilation operators for the
k-th modes of the signal and idler fields with respective
temporal profiles of fi,(17) = [dwipp(w)e™ 7, gp(r) =
[ dwer(w)e™™7. Notice that different temporal modes
(k) are decoupled in Eq. so that the input and output
relations for the parametric process are [4H0]

Azut _ AZL cosh Gy, + BIZ”T sinh Gy,
Bg" = Bi™ cosh Gy, + A;C"T sinh Gy, (6)

which are the relations for a parametric amplifier of am-
plitude gains cosh G, sinh G. These modes are exactly
the super modes studied by Roslund et al. [I8] and are
independent of each other. Through parametric ampli-
fication, these modes are pairwise entangled and form a
multi-dimensional quantum entangled states.

For low gain case, |G| < 1 so Eq.@ can be approxi-
mated as

Azut r~ AA;cn + GkB]ZnT
BY" = B + GRA, )

or in terms of photon state format, the output state is
approximately a two-photon state of the form [3H0]

|¥s) = |vac) + /dwldng(wl,wg)di(wl)&f(wzﬂvad
= |vac) + ZGkAEE,UUa@
k

= |vac>+GZTk|1Ak>s|1Bk>z‘, (8)
k
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FIG. 2. Schematic diagram for measuring the mode functions
at low gain. WS: wave shaper. The directly related light
fields have the same line style (dashed or solid) and color (red
or blue) and the direction of the arrow shows the flow of the
iteration. The converged functions are the outputs that give
the measured mode functions 9 (w), pr(w).

where |14,)s = AT|vac = [dwigp(wi)wi)s, 1B,)i =
E;Hvac f dwggok (w2)|w2); are the single-photon states
of modes Ak, By. .

It should be noted that because H(t) in general does
not commute at different times [I4], Eq.(T) is only ap-
proximately valid at low gain case. It has been shown
[14] that at high gain case, the mode decomposition de-
scribed in Eq. . 5) and the relations in Eq. @ are still valid
for the two-photon interaction Hamiltonian in Eq. (2| . but
the mode parameters {ry} in gain parameters Gy = G
as well as the mode functions {¢x, ¢r} will depend on
the pump parameter G [15].

Recently, Huo et al [I3] applied a feedback-iteration
method based on Eq.@ to measure explicitly the mode
functions {wg(w1), ¢r(w2)}. However, the success of the
method relies on the difference in the gain parameters
cosh Gy, for different k. So, the method fails at low gain
case when coshGy =~ 1 for all k. In the following, we
modify the feedback-iteration method by Huo et al so
as to apply to the low gain case to directly measure the
mode functions.

III. TEMPORAL MODES DETERMINATION

Our procedure to find the mode functions ¥y (w), i (w)
is based on Eq.. As shown in Fig we first inject a
seed (ouy,) into the signal field and observe the output
at idler field (Bout). This is similar to the method of
stimulated emission tomography [21], [22] but we use the
information obtained at the measurement to modify the
input seed with wave shapers: with the shape measured
at idler (Bout), we then inject this shape of pulse into
the idler field and in the meantime observe the output
at the signal field (agut). Now we have a new shape
for the input signal seed. We then alternately inject the
seed (a;n or Bin) at the signal or idler input based on
the measurement result (aou: or Bouy) and repeat this
procedure until steady shapes are observed in both signal
and idler fields.

To show the procedure converges, consider a coherent

pulse of spectral shape aﬁ?) (w) as the initial injected seed
into the signal field A. Because of the orthonormality in
Eq., we can expand it as

ol (w) =" Gn(w) 9)
k

with & = [dwij(w)a; () as the excitation ampli-
tude for mode k. Throughout the paper, we will assume
|€x[? > 1 in order to ignore spontaneous emission in the
discussion. Since the gain is nearly 1, the signal output
has no information about Gj. But it is different for the
idler field. Using Eq.7 we find the output at the idler
field is approximately

B (w) Z §Gror(w (10)

So, the excitations for each mode are modified by Gy
but with different coefficients. Now let us exploit this
difference in the coefficients: we can measure the output

spectral shape ﬂout(w) at the idler field by using pulse
characterization method [23] and then program an input

seed of the shape ﬁi(g)( )= C’ﬁout( ) with a wave shaper
(WS;). The wave shaper electronic gain constant C' can
be taken as C' = 1/G; to increase the input intensity,
with G defined in Eq.. At this time, the injection to
the signal input is blocked, so the output at the signal
field becomes

ali(w) Z@ka w). (11)

Now apply this to another wave shaper (WS;) with the
same gain C' = 1/G to produce a new spectral shape for
the input seed of the signal field and obtain

i () = Can @)
= @ > &G (w)
Ik
=Y &k(re/r)*Pr(w), (12)
k

which, from Eq., leads to the output at the idler:

=Gy Zﬁk re/11)° or (W), (13)

k
Since 71 > ro > ..., we have (ry/r1)? < 1 for all modes
except the first one (k = 1) and their excitation ampli-

tudes are reduced. We can then iterate the procedure N
times and the output field after N iterations becomes

6out Glzgk Tk/Tl 2N ! (LU)
out =Gy ka Tk/rl ( ) (14)



With N large enough, (ry/r1)?Y — 0 for k # 1 and we
are left with only the first mode: a(N)(w) x 1 (w) and

out
,ngt) (w) x @1(w). This procedure uniquely determines
P1(w), v1(w) up to a normalization constant.

To obtain the mode function for k& = 2, we need to have
an input field that is orthogonal to 97 (w), that is, & =
0. To achieve this, we use the Gram-Schmidt process:
with 91 (w), ¢1(w) known, we set the input as o/(w) =
a(w) — G (W) or B'w) = Bw) — mer(w) with ny —
J dwei(w)B(w), which gives & = 0 or ' = 0. Then the
dominating mode will be k = 2. To ensure & = 0 in the
input of each iteration, we perform the orthogonalization
step after each measurement of the output. Subsequent
modes can be obtained in a similar way but with the
orthogonal step changed to o/ (w) = a(w)— Zf;ll &ii(w)
or f(w) =p(w) — Zf;ll nip;i(w) for mode k.

The argument above is based on the singular value
decomposition of the JSF. To demonstrate its validity,
we go back to the evolution operator presented in Eq.
and find the output from the evolution process. Unfortu-
nately, because of the complexity in the JSF, we cannot
have an analytical expression so we resort to numerical
simulation.

IV. SIMULATIONS OF TEMPORAL MODE
DETERMINATION PROCESSES

The evolution operator given in Eq. for large pump-
ing power is hard to evaluate [24] but at low pump
power for the low gain regime, the dimensionless quantity
G? = [ dwidws|F(wi,w2)* < 1 and we can expand the
exponential in an infinite series and drop the higher order
terms. So, the evolution operator can be approximated
as [, 20]

. 1 - 1 5
U—exp{m/dtH}Nl—i-Z_h/dtH
=1+ /dwlde[F(wl,WQ)@g(wl)aj(wQ) — h.c]. (15)

So, the output becomes
a2t (w) = Ula,(w)U
~ i)+ [doaFlowil), (10)
where we used the commutation relation [a4(w), al(wy)]

= 0(w — w1) and dropped the higher order terms in
F(w1,ws). Similarly,

a%"t(w) = Ula; (w)U
~ a;(w) + /dwlF(wl,w)&l(wl). (17)
If we inject a coherent state of |{a(w)}) at the signal

input port but vacuum at the idler port, the expectation
value at the idler output will be

(62" () = / dor Flwr,w)a" (@1) = Bom(w)  (18)

because the coherent state is independent. Similarly, for
an input at the idler port of |{3(w)}), the output at the
signal field is

(a2 (w)) = /dng(w,wg)B*(wz) = aou(w).  (19)

Notice that with a singular value decomposition in Eq.
for F(w1,ws) and decomposition of Eq.@ for a(w), we
recover Eq. from Eq. by using the orthonormal
relation in Eq..

However, our simulation is based on Eqs. 19)
without the knowledge of the decomposition in Eq.(3]).
We will use the cross-feedback method discussed in
Sect.III to find the converged functions g5, (w) and
al,(w). From Sect.II, we find B¢, (w) = ¢1(w) and
al,(w) = P1(w). So, this cross-feedback and iteration
method will lead directly to the first order mode func-
tions ¥ (w), ¢1(w). We can follow the same procedure in
Sect.III to find mode functions of other higher orders.

Furthermore, if we choose a mode-independent elec-
tronic gain constant C for the wave shaper, from Eq.
we find that once a specific eigenfunction, say, vy, is
reached, that is, £ = 0 x,, the ratio between next two
outputs in the procedure is simply

(N+1)
Your (@) =CG*r}, < 1, - (20)

N
o) (w)

So, we can determine the mode numbers {r;} up to a
normalization constant.

In order to demonstrate the validity of the procedure
above, we consider the JSF given in Ref.[6] where the
parametric process is a pulse-pumped four-wave mixing
in a dispersion-shifted fiber. With spectrum shifted to
the center frequencies wyg,w;o of signal and idler beams
by defining Q;; = ws; — ws0,i0, the JSF has the specific
form of

F(957Qi):FeXp{—W}

402
X exp (_ngL>sinc (ASL) . (21)

Here F' is some constant proportional to the amplitudes
of the pump fields and nonlinear coefficient, o, is the
bandwidth of the pump field, AkL is the phase mismatch
for fiber length of L. For the dispersion-shifted fiber used
in Ref.[6], it is given by
AkL ~ 0.125& — 0.075&. (22)
2 Op Op
Our simulation is based on Eq.7 which is derived
with the assumption of small F({,$2;) or FF < 1 for low
gain case. But because the small F' value, the magnitudes
of B(w) and a(w) will become progressively decreased as
we iterate the process. To maintain the size, we normal-
ize the mode functions S(w) and a(w) after each step of
application of Eqs. . So the results are indepen-
dent of F', which is then set to 1 in the simulation. The
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FIG. 3. Simulated convergent output spectral functions with their magnitudes and phases for the first three modes k = 1, 2,
3 for the JSF given in Eq.(21)). (a) signal field 1% () and (b) idler field ¢k (£2). The green dash-dotted curves are the input
spectral functions while the blue dotted and red solid curves are intermediate outputs after the iteration steps indicated in the
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FIG. 4. Mode number distribution obtained by simulation for
the JSF given in Eq..

absolute values and phases of the final converged mode
functions of first three orders are shown in Figa) for the
signal field (¥1,2,3(w)) and in Figf3{b) for the idler field
(p1,2,3(w)). The green dash-dotted curves are the initial
input spectral functions and the black dashed curves are
the final output spectral functions. The blue dotted and
red solid curves are the output functions in the intermedi-
ate steps with the number of iterations shown in the leg-
ends. The magnitudes and phases of the mode functions
are plotted separately with only final converged phase
functions shown. It can be seen that the phase parts vary
slowly except the m-jumps at zeros of the magnitude. The
mode numbers {r;,} are plotted in Fig[4] with normaliza-
tion to 1. It can be seen that the mode functions and
the mode numbers are the same as those obtained by the
SVD method in Ref.[6] within the calculation accuracy.
As seen from Figf3] the phases of the mode functions
vary slowly with the frequency except a jump of 7 at zero
points of the functions. This confirms the validity of the
approximation of phase as a step function in Ref.[I3].
To see an example of large phase variation in the mode
functions, we add a chirped phase to the spectrum of the
pump field resulting in a phase of e!(2:T2)*/70 ¢4 the
JSF. Figure [p| shows the magnitudes and phases of the
first three mode functions of the signal(a) and idler(b)

fields for this case. As can be seen, the phases change
rapidly as a function of frequency. Even though the extra
chirped phase produces the same joint spectral intensity
|F(ws,w;)|? as that in Eq.7 it will change the mode
structure as shown in the mode number distribution in
Fig[f] as well as the bandwidths of the mode functions in
Fig[3|

To further see the effectiveness of this procedure and
the convergence processes, we calculate the ratio of the
total output power of the idler to the total input power
of the signal for each step, that is,

(rev-0)’ = J deo|Bou () (23
 [dwlaly V)P

and similarly, the ratio of the output at the signal to the
input at the idler

N
en)? _ _J dwlafel @)
R = 1) , (24)
Jdwl By (w)?
where N = 1,2,3,.... These ratios can be measured ex-

perimentally. Since [3-(N_1)(w) x ﬁ)(w) and Ozl(.TJ:]) (w) x
a(()gt) (w), using Eq. and Eqs., we can find for

the first mode

~1))\ 2 o1 &2 GE (rp fr1)* N D
(R§2N 1)) = sz:;}v_l Ek|2(kr:;7,1r)14(N71) (25)
and
eNN2 | Yopey [&kPG(re /)N 2
(B7) = S e @)

or combining the two cases above for M = 2N — 1,2N,
we have

(R(M))2 O |k PGE (g )M 2
1 ey k|2 (ryg fr1)2M =2

— G?*r? for M — co. (27)
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FIG. 5. Simulated convergent output spectral functions with their magnitudes and phases for the first three modes k = 1, 2, 3

for the JSF given in Eq. but with a chirped pump phase of e

(Q:490%/77 (3) signal field 4y, () and (b) idler field ¢y ().

The green dash-dotted curves are the input spectral functions while the blue dotted and red solid curves are intermediate
outputs after the iteration steps indicated in the legends. The black dashed curves are the final outputs.
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FIG. 6. Mode number distribution obtained by simulation
for the JSF given in Eq. but with a modified phase of

i (@s+2)%/9% 3 qded due to chirping of the pump field.

M is now the overall step number. Likewise, for kg-th
mode,

(R(M))2 _ Dbk €12 GR (re/rre )M 2
A 2k Sk [P (r/Tho )M 2

— G2r,2€0 for M — oc. (28)
Like angt)7 l()ivt) in Eq. 1} the convergence of R,(fy)

depends on the ratio rg/rg,. So quantity R,(f?)/l) can rep-

resent how the procedure converges as a function of step
M. Hence, we calculate R;ﬁl) for each iteration step for
the ko-th mode (ko = 1,2,3) and normalize it to Grq
for the JSF in Eq.. We plot it as a function of the
iteration step numbers in Figl7 It can be seen that after
only a few steps, R,(CM) changes slowly and eventually con-
verges to a final value 7 /r1. So, the rate of convergence
is quite good.

V. CONCLUSION AND DISCUSSION

We analyze an experimentally implementable method
to measure directly the temporal modes for the quantum

|4 Mode 1 0 Mode 2 /\ Mode3—1- -1/ T,
12— : :
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<>

3 . 5
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FIG. 7. Normalized ratio R,(QM)/Grl(k =1,2,3) as a function
of iteration step M. The straight lines are the limiting values
Of Tk /7“1 .

states generated by pulse-pumped parametric processes.
The method is based on the stimulated emission by a
trial pulse and relies on a cross-feedback and iteration
loop. We demonstrate the convergence of the procedure
by numerical simulations for various situation.

Although the simulation is for the low gain case, since
the method depends on the difference in the gain co-
efficients of G in Eq.@, it should also work for high
gain case where we have different gain coefficients of
sinh G, in Eq.@, except that the mode parameters {ry}
in Gy = rxG are now dependent of G. In this case, the
mode functions {9y, ¢} also depend on the gain [I3HIH].

To check for quantum correlation between different
temporal modes for quantum entanglement and orthog-
onality, as in Ref.[I3], we need to separate the contribu-
tions from different modes, which can be done by homo-
dyne detection in the high gain case [I3] and by quantum
pulse gate method in the low gain case [SHIT].

The finite spectral response of the shape measurement
system may affect the convergence and the outputs. It
is equivalent to adding a spectral filter in the iteration
loop and thus may change the eigen-modes. In fact, this



was observed in the experimental demonstration [I3]: the
input and the output may not be the same. This effect
will affect higher order modes more than the lower order
because higher order modes have wider spectral range.
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