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We report investigation of near-resonance light scattering from a cold and dense atomic gas of

87Rb atoms. Measurements are made for probe frequencies tuned near the F = 2 → F ′ = 3 nearly

closed hyperfine transition, with particular attention paid to the dependence of the scattered light

intensity on detuning from resonance, the number of atoms in the sample, and atomic sample size.

We find that, over a wide range of experimental variables, the optical depth of the atomic sample

serves as an effective single scaling parameter which describes well all the experimental data.

I. INTRODUCTION

Study of light interacting with cold and ultracold atomic gases is an active area of experimental and theoretical

research [1, 2]. The subject appears to be deceptively simple, corresponding in many cases to a single weak probe

beam scattering from a small cloud of cold atoms. However, under most realistic situations, the atoms in such a

sample interact not only with the incident radiation field, but also with the light scattered by all the other atoms in

the sample. The ensembles may then be viewed as many-body physical systems, and can display emergent complexity.

The optical response reveals a collective optical response that differs significantly from that of a dilute, optically thin

atomic ensemble.

Over the past few years, there have been a large number of reports on collective or cooperative effects in light

scattering by atoms. For instance, steady-state experiments have revealed collective effects, such as lensing [3], light

diffusion [4, 5], changes in the radiation pressure force [6–8], etc. Because of potentially important consequences for

clock technology [9], the question of collective shifts of the resonance line, in particular, raised a lot of discussions [10–

15] and experiments [16–24]. Even without any shift, changes in the line shape, collective broadening and saturation

of the amount of scattered light have been observed in several experiments with different parameters and geometries,

and interpreted somewhat differently [4, 21, 23–27].

In many of these studies, collective changes in the atomic response are measured and displayed as a function of

the atomic density. The results are then attributed to dipole-dipole interactions and presented in the context of the
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coupled dipole model. This approach basically includes all the essential physics (attenuation, diffraction, refraction,

multiple scattering, collective frequency shifts, etc). In a typical cold-atom experiment, however, the atomic density

cannot be readily changed independently of other parameters such as the sample size or the atom number. Then it

may be difficult to find if the measured collective effect really depends on the density, on the optical thickness, the

number of atoms, or on something else all together. Then, even though excellent results are often obtained from the

coupled-dipole model, other approaches such as the Beer-Lambert Law or random walk simulations are valuable and

can allow identification of which physical ingredients are really necessary to explain the data.

In this paper, we report measurements of the scattered light intensity from a cloud of cold 87Rb atoms. By changing

the number of atoms and the size of the sample, we have varied the optical depth through the center of the trap by

about a factor of 103. This range is large enough to encompass an optically thin sample on one hand, and emergence

of the so-called shadow effect on the other. All measurements are found to be in good agreement with microscopic

and fully quantum calculations of the light scattering processes. We find also that over the full and wide range of

optical depths the experimental data are well described by a random walk simulation of light transport in the atomic

medium; in this model the optical depth serves as an effective single scaling parameter which quantitatively agrees

with all the data. A Beer-Lambert’s law argument similarly shows a single parameter scaling with the optical depth.

In the following sections we first describe the experimental arrangement and measurement scheme. This is followed

by presentation of the experimental results and comparison with quantum microscopic calculations. We follow this

by a description of our random walk simulations, Beer-Lambert Law scaling, and comparison of the simulations with

the peak optical depth dependence of the experimental data.

II. EXPERIMENTAL ARRANGEMENT

The basic experimental scheme has been described in detail elsewhere [28]; here we provide only an outline of details

necessary to understand the experimental approach and results. In the basic approach, we follow a multistep process

to produce cold atom samples confined by a far off resonance trap (FORT). Initially, 87Rb atoms are loaded into a

3-dimensional magneto-optical trap (MOT), with a density distribution that can be approximated as Gaussian. The

MOT is characterized using methods similar to those in [28]. The physical size and temperature of the MOT are

found by directly measuring the radius of a fluorescence image projected onto a CCD camera (pixel resolution of 24

µm x 24 µm). The number of atoms trapped in the MOT is measured through traditional absorption imaging. The

number is independently measured by using an optical pumping approach, as described in [29]. We find that normally

we have about 450 million atoms contained in the MOT. At this stage of sample preparation, the distribution of

atoms among the F = 2 Zeeman states is not known. Most groups assume however that the atoms plausibly have the

atoms equally distributed among the Zeeman states; we assume that here. This hypothesis leads to an effective light

scattering cross-section of 7/15(3λ2/2π).

A small fraction of the MOT atoms is then loaded into a Far-Off-Resonance Trap (FORT). This trap consists of

a single laser beam (λ = 1064 nm) focused to a beam waist ω∗ of about 20 µm. This quantity was measured in

an auxiliary experiment using a scanning knife edge to determine the beam shape and size around the focus. The

longitudinal scale is given by the Rayleigh range, defined as zr = πω2
∗
/λ, which is about 900 µm in our case. The

intensity gradient of the focused light, along with being far detuned from resonance, creates a potential well in the



3

ground state in which the atoms can be trapped. During the loading process, the MOT trapping laser is detuned

∼ 10γ below resonance and the repumping laser is attenuated by ∼ 99%. This reduces the radiation pressure and

creates a compressed MOT, which has a better spatial overlap with the FORT laser beam. Atoms excited with the

MOT trapping laser tuned near the F = 2 → F ′ = 2 transition undergo inelastic Raman transitions, resulting in

loading into the lower F = 1 ground level. After a loading time of 70 ms, the trapping and repumping lasers are

fully extinguished, along with the external magnetic field. Starting with an initial load of 1.3(2) × 106 atoms, the

FORT laser is kept on for a minimum of 200 ms, until the sample is approximately thermalized with 7.8(1) × 105

atoms at a temperature on the order of 100(5) µK. The FORT atomic density distribution ρ is approximated by a

Gaussian distribution as ρ = ρ0exp(−
r2

2r2
0

− y2

2y2

0

) with a radial size r0, longitudinal radius y0, and peak density ρ0.

This frequently-made estimate is based on the observation that the atom distribution is dominantly located spatially

at small y, such that y is smaller than the Rayleigh length for the trap.

The peak density is determined from the definition ρ0 = N/(2π)3/2r20y0 and measurements of N , r0, and y0 and

the temperature T . We described in an earlier paragraph measurement of N by two methods. The longitudinal

size y0 = 259 µm is sufficiently large to be measured directly by fluorescence imaging using the CCD, which has a

pixel resolution of 24 µm x 24 µm.) The transverse size of r0 = 3.0 µm is too small to be directly measured that

way. Instead, we make measurements of the highest transverse parametric resonance frequency (as driven by weak

amplitude modulation of the trap depth), which appears at twice the harmonic oscillator frequency ω. Measurement

of the FORT temperature, and the transverse confinement allow determination of r20 = kBT/mω
2.

Once the atomic sample is thermalized, the FORT trapping laser is turned off. Initially the atoms are repumped

into the F = 2 ground state to prepare for probing on the F = 2 → F ′ = 3 transition. After an optical pumping phase

of about 8 µs, nearly all of the atoms are transferred to the F = 2 level. After another 2 µs, a near-resonance low

intensity (0.1 Isat) probe laser is flashed for 1 µs. As shown in Fig.1(b) the probe beam is linearly polarized, creating

by optical excitation an axially symmetric atomic polarization (alignment) in the excited F = 3 level with reference

to the probe electric field symmetry axis. This in turn modifies the emission diagram, generating an anisotropic

diagram of spatial fluorescence. This is a rather small effect, even for an optically thin atomic sample, and results

in an intensity difference of 12 %, relative to the isotropic case, on the equatorial plane, and 24 % at the poles. For

the fluorescence geometry of our experiment, this is a 7.9 % effect for single scattering from the atomic cloud. For

the case of multiple scattering, these are even smaller effects at least for 85Rb, as reported earlier [30]. These two

effects are steady state and are hidden in the global rescaling of the data. We thus ignore these small effects in further

discussion of the data.

The probe is offset from resonance by a detuning ∆ = f − f0, where f0 is the bare atomic resonance frequency. As

shown schematically in Fig. 1, the probe beam is spatially much larger than the atomic sample, with a e−2 radius

of 4.5 mm, and as shown in Fig. 1(b) is incident upon the sample at an oblique angle. Fluorescence detection of

the fluorescence is also made at an oblique angle (viewing down the x-axis). Following an initial measurement, the

sample is allowed to continue to expand and is probed again 40 µs after the initial flash. This process continues for

a total of 10 probe pulses up to a total expansion time of 370 µs. The sample expands from an initial volume with

radii r0 = 3.0 µm and y0 = 259 µm to final radii of r0 = 33.4 µm and y0 = 261 µm. The fluorescence from the

sample is collected without regard to light polarization for all 10 pulses and focused into a multimode fiber connected

to an infrared sensitive photomultiplier tube (PMT). The output of the PMT is directed without preamplification
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FIG. 1: The basic experimental scheme. (a) Relevant 87 Rb energy levels. (b) Geometry of probe optical excitation and

fluorescence collection. The angles θ = 23 degrees, and φ = 30 degrees. (c) Fluorescence detection arm, viewing down the

x-axis. Light is detected in the far field through a window (w) and focused into a 600 µm diameter multimode optical fiber

Fmm with a pair of lenses L1 and L2 as shown.

to a multichannel scaler having 40 ns time resolution. For the results presented in this paper, this time signal was

integrated over the duration of each individual pulse to show the total amount of fluorescence for each sample size,

all while maintaining the same number of atoms.

In order to sample a broader range of atomic sizes and densities, the number of atoms can also be changed. The

peak density of the sample depends on the holding time of the FORT; background gas collisions decrease the number

of atoms within the sample. At the longest hold time used for these measurements (2.5 s), the number of atoms is

reduced to 1.8(7) × 105. In Fig 2, the peak density for each sample holding time as a function of expansion time

is shown. Finally, we also studied the dependence of the scattered light intensity on probe detuning at the highest

possible density for our thermalized sample. Using an acousto-optical modulator (AOM) in a double-pass setup, the

frequency of the probe laser was tuned over a range of nearly 60 MHz while maintaining a constant probe optical

power.
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FIG. 2: Reduction of the number of atoms within the FORT over time due to ballistic expansion, thermalization and background

gas collisions. After various hold times T there are N atoms in the trap (see legend). After the FORT trapping laser is

extinguished, the sample expands, reducing the peak atomic density as shown.

III. RESULTS AND DISCUSSION

In this section we present our experimental results and make side by side comparison of the measurements and fully

quantum calculations of the measured quantities. These results and comparisons are followed by two subsections in

which the data is globally analyzed and discussed in terms of attenuation of the propagating light beam and a random

walk for the diffusing light.

The details of the microscopic calculational techniques are described in detail in several earlier papers [2, 31, 32]

on the general subject of light scattering in a cold and dense gas. For completeness, we include here a brief overview

of this model. Our approach is one of the versions of the method known in the literature as the coupled dipoles (CD)

model. This model has been heavily used in the context of cooperative scattering (see references in the introduction

and see also [35–39]). In our variant of the CD approach we solve the nonstationary Schrodinger equation for the

wave function ψ of the joint system consisting of N motionless two-level atoms (ground state with the total angular
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momentum Jg = 0, and degenerate excited state Je = 1 with m = Jz = 1, 0,−1) and a weak electromagnetic field. A

vacuum reservoir is also included in our considerations. We search for the wave function ψ as an expansion in a set of

eigenfunctions of the Hamiltonian of the noninteracting atoms and field. For the considered case of weak excitation

(linear optics regime), we account only for states with no more than one photon in the field. Tracing over the photon

degrees of freedom we obtain a finite set of equations for the Fourier component of amplitudes of states with one

excited atom, which are the basic equations of the CD model. This set of equations is solved numerically.

The resulting solution gives us the opportunity to find all the other amplitudes of the states taken in our con-

sideration and consequently the approximate wave function of the studied joint physical system. Knowledge of the

wave function allows us to describe the properties of the atomic ensemble as well as the properties of the secondary

radiation. Particularly, we can calculate the intensity of the different polarization components of the light scattered

in an arbitrary direction as a corresponding quantum-mechanical average (for more detail see [32]. Possible atomic

displacement caused by residual atomic motion is taken into account in our approach by averaging of calculated

quantities over this random spatial distribution of the atoms. Theoretical results obtained in the framework of this

procedure are scaled [33] to account for the fact that the measurements and theoretical calculations are made at very

different numbers of atoms.

In this section we present our experimental results and make side by side comparison of the measurements and fully

quantum calculations of the measured quantities. The details of the calculational techniques are described in detail

in several earlier papers [2, 31, 32] on the general subject of light scattering in a cold and dense gas. Note that the

theoretical results are scaled [33] to account for the fact that the measurements and theoretical comparisons are made

at very different numbers of atoms. These results and comparisons are followed by two subsections in which the data

is globally analyzed and discussed in terms of attenuation of the propagating light beam and a random walk for the

diffusing light.

A. Experimental results and comparison with theory

We first point out that, in all cases, fluorescence measurements are made after the atoms in the FORT have

essentially thermalized and the FORT has been turned off, so that the atoms are mainly in free space. There are two

primary overlapping experimental protocols. In one, once the FORT has been extinguished, the expanding atomic

sample is exposed to a series of ten 1µs probe pulses temporally spaced to map out a factor of several hundred in

peak atomic density. As the probe spatial profile is much larger than the atomic sample, the number of atoms probed

remains essentially constant. In a second protocol, the atom sample is held in the trap for increasingly longer periods

of time; background gas collisions reduce the number of atoms in the ensemble, while the sample size, as measured

by the sample Gaussian radii, remains the same. Then the FORT is extinguished and a sequence of probe pulses is

used to probe the sample. This dual approach allows mapping out of both the atomic sample size and atomic density

dependence of the fluorescence signals.

As an initial result, we present in Fig. 3 the measured fluorescence signals from a 10 µs probe pulse and their

dependence on the peak atomic density. We see in the figure that the signals increase with decreasing atomic density.

The origin of this somewhat counterintuitive effect arises from the fact that, for the highest densities, and consequently

the greatest optical depth, the probe beam is attenuated during its traversal through the sample. The scattering signals
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FIG. 3: On resonance variation of the scattered light signals with peak atomic density. Note the strong increase of the signal

size with decreasing atomic density, for a fixed number of atoms in the sample.

then should originate mainly from light scattered from the illuminated outer regions of the sample surface, and the

relatively fewer atoms compared to the sample as a whole. We will study in more detail this “shadow effect” in the

next subsection. As the density is decreased, on the other hand, the sample becomes more optically thin; the sample

ultimately scatters light as a collection of individual atoms. Comparison of the experimental results with calculations

shows very good agreement. Note that the vertical (signal) scale is adjusted to match the experimental and theoretical

responses.

We elaborated on this general effect by measuring the dependence of the scattering signals on atomic density and

on detuning from atomic resonance. The overall experimental results for all positive blue detunings and densities are

shown in Fig. 4(a). One striking feature of these results is that, for larger detunings, the sensitivity of the signals

to decreases in the density is significantly reduced, and for the largest detunings from resonance, there is, within

the experimental uncertainty, no variation of the signal intensity with peak atomic density. This effect is due to the

decreasing optical depth of the atomic sample with increasing detuning; for the smallest optical depth, all the atoms

experience essentially the same probe intensity, and thus contribute to the scattering signals. The corresponding

theoretical results are shown Fig. 4(b). These results are in very good qualitative agreement with the experimental
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FIG. 4: Detuning and density dependence of the measured scattered light intensity. (a) Experimental results for positive (blue)

detunings. (b) Theoretical results. The vertical scale has been adjusted to match the experimental data.
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FIG. 5: Representative line shapes for the dependence of the measured signals on detuning from atomic resonance.

ones. Red detuned measurements (not shown) are also in very good agreement with the simulations. The data are also

quite symmetric about zero detuning; this is seen in the characteristic spectral response for two different densities, as

shown in Fig. 5. There the solid lines represent Lorentzian spectral profiles; this line shape is a very good empirical

fit to the measured profile.

Implicit in Figs. 3 and Fig. 4 is a dependence on the spectral width (viz. Fig. 5) and the ensemble response to

changes in atomic density. This dependence is shown in Fig. 6, where we see a nonlinear increase of the spectral

width with increasing density, and an approach at low density to around 9 MHz, evidently larger than the 6.1 MHz

expected for single scattering. This behavior should be compared to that reported by Pellegrino, et al, [27] in a recent

paper. In our case, the lower density limit is partly due to the technical combination of the laser linewidth and the

Doppler width of the transition. Further, this dependence is qualitatively due to the fact that major contributions to

the signal arise from atoms near the outer regions of the atomic sample, the deeper atoms contributing less due to the

shadow effect. For a large optical depth and a uniform density, this implies a roughly
√
b scaling of the width; here

b is the peak optical depth through the center of the sample [33]. A fit to the data in Fig. 6 leads to a low density

intercept of around 7(1) MHz, in reasonable agreement with expectations. We should point out that, realistically,

our samples are strongly inhomogeneous, and there are contributions to the signals from a range of atomic densities.

Such scaling should then be considered as only a qualitative feature of the measured spectral widths.

Finally, we have examined the dependence of the measured scattered light intensity with variations in the effective

volume of the sample. We use as a measure of the sample volume the product of the atom sample Gaussian radii,

viz., (2π)3/2yor
2
o . In these measurements, this product is held fixed as the number of atoms in the sample is varied.

Results are shown in Fig. 7. We see in Fig. 7 that, for each sample size, and within the experimental uncertainty, the

signal increases monotonically with increasing number of atoms (or atomic density). However, the rate of increase is

significantly different, depending on the sample size, and is strongly suppressed for the smallest sample sizes.
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FIG. 6: Dependence of the full width at half maximum of the atomic resonance response as a function of atomic density. These

measurements correspond to varying the density by changing the sample size while holding the number of atoms fixed.

FIG. 7: Representative atom number dependence of the scattering signals as a function of the cold atom sample size. The data

is labeled according to the volume of the sample, as described in the text.

B. Rescaling according to the Beer-Lambert Law

The good agreement between the data and the full microscopic theory is in itself satisfactory but it does not allow

identifying the relevant physical ingredients at the origin of the specific behavior of the scattered light as a function of

the different control parameters. This is because the microscopic theory naturally contains many effects: attenuation

of the probe light, diffraction and refraction, multiple scattering, super and subradiance, collective shifts, etc. It is

thus useful to compare the data with a much simplified theory, including only some of these effects.

An effective approximation could be based on the ladder-type expansion of the light correlation function, which

leads to a Bethe-Salpeter type equation. This can be numerically solved via a sequence of iterative steps (multiple

scattering events), see [2]. Such an approach evidently ignores any cross interference in the process of multiple

scattering, which seems a rather realistic assumption for a dilute and disordered atomic gas. The applicability of the
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Bethe-Salpeter approach has been successfully demonstrated for the theory of random lasing, see [34, 40]

In this section, we show that taking into account only attenuation of the probe beam in the atomic sample, following

the Beer-Lamabert Law, is enough to explain the data with rather good agreement. This shows that the main physical

ingredient of the experiment is the so-called “shadow effect”: atoms at the back of the sample are less illuminated by

the incident laser, which induces an effective reduction of the total scattering cross-section compared to a collection

of independent atoms illuminated by the same laser intensity. As explained in detail in [41], this effect also explains

previous observations of a collective reduction of the radiation pressure force [6, 8]. It could also explain the results

of [27], although the very small sample sizes and high densities used in that work might induce some other effects.

From the Beer-Lambert Law, one can easily show (see AppendixA or ref. [8]) that the total scattering cross-section

of a Gaussian cloud (containing N atoms and illuminated by a plane wave) is

Σsc = Nσsc ×
Ein(b)

b
, (1)

where Ein is the integer function [42]

Ein(b) =

∫ b

0

1− e−x

x
dx

= b

[

1 +
∞
∑

n=1

(−b)n

(n+ 1)(n+ 1)!

]

,

(2)

and σsc is the single-atom scattering cross-section. Here b is the optical depth along the line of sight and the factor

Ein(b)/b in Eq. 1 corresponds to the deviation from single-atom physics induced by the shadow effect. In the limit

of vanishing optical depth b, the value expected from single atom physics is recovered, Σsc = Nσsc. For high optical

depth, the cross-section increases only logarithmically, which appears as a collective saturation of the scattered light.

Let us now use this result to rescale the experimental data. The measured scattered light is proportional to Σsc.

For data taken with a fixed atom number and varying detuning (“protocol 1”), such as the data reported in Fig. 4(a)

and Fig. 5, one should divide the signal by σsc ∝ 1/(1 + 4∆2/Γ2) and compare the results to Ein(b)/b. For data

acquired at a fixed detuning and varying atom number (“protocol 2”), such as the data reported in Fig. 7, one should

divide the signal by N and also compare to Ein(b)/b. In both cases one has to allow a global multiplicative factor to

fit the data to the theoretical curve, since the signal is not calibrated in absolute value. In other words, the detection

efficiency, which is the number of detected photons vs. the number emitted in the detector direction, is not precisely

known. The not-very-well known factors include the detector solid angle, the absolute probe intensity and the probe

overlap with the sample spatial location, the transmission of the various optical elements in the detector arm of the

apparatus, and the efficiency of the light detector to incoming photons. The relevant optical depth b is the one along

the line of sight of the laser, given by

b =

√
2πρ0σscr0

√

cos2 θ + sin2 θ sin2 φ+ η2 sin2 θ cos2 φ
, (3)

where η = r0/y0, r0, y0, ρ0 vary during the expansion and the angles θ, φ are given by the geometry of the experiment

as shown in Fig. 1 (θ = 23◦ and φ = 30◦).

We show the rescaled data in Fig. 8. The two panels correspond to the two different experimental protocols. The

striking result is that, despite the different protocols and different orders of magnitudes (almost 3 orders of magnitude

in density and in optical depth), all data points collapse quite close to the curve Ein(b)/b describing the shadow effect,

demonstrating that it is indeed the main physical ingredient of the collective behavior of the scattered light intensity.
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FIG. 8: Rescaled experimental data: the light scattering signal is plotted as a function of the detuning-depended optical depth

b(∆) and the color code indicates the peak density ρ0 in cm−3 (log scale). The solid line is the function Ein(b)/b which describes

the shadow effect from the Beer-Lambert Law. The two panels correspond to the two different experimental protocols, the

first one with a varying detuning and a constant atom number, the second one with the laser on resonance and a varying atom

number. In both cases the sizes of the cloud also vary, and thus the volume and density. A global vertical scaling factor for

each data set is the only free parameter.

C. Impact of multiple scattering

The previous scaling based on the total scattering cross-section supposes that the light is emitted isotropically

from the atomic sample. This is not the case when the optical depth is large, as already studied in [4], although the

anisotropy is much less pronounced when the cloud is illuminated by a wide beam (plane wave), as is the case here,

compared to the case when a large cloud is illuminated by a narrow beam, as in [4].

To describe this effect one needs to take into account multiple scattering of light inside the sample. This is naturally

included in the microscopic model, but it is also possible to use stochastic simulations based on a random walk

algorithm for light. In such a model, cooperative and coherent effects such as super and subradiance, interference and

diffraction are neglected, but one can well describe diffuse light scattering with the true parameters of the experiments

(also including subtle effects like the frequency redistribution due to Doppler broadening), if needed, see e.g. [43–45].

We have performed such random walk simulations for varying optical depths. The simulations include the actual

geometry of the laser beam (size and direction) and of the detection (direction), the anisotropy of the scattering

diagram for the first scattering event and the Gaussian density distribution of the cloud. We use the size y0 of the

cloud, which is almost constant for all data points, and the two extreme transverse sizes, corresponding to the shortest

and longest time of flight. We do not take into account the Doppler-induced frequency redistribution during multiple

scattering as it should be a tiny effect with the moderate temperature and optical depths explored here. The results

are shown in Fig. 9.

The comparison between the random walk simulations and the simple Beer-Lambert prediction shows a small

difference: the scattered light signal is always slightly larger in the random walk simulations. Several contributions

explain this difference. First, the Gaussian beam profile has a stronger intensity at the center, where it interacts with

the cloud, compared with a plane-wave illumination. Second, the small anisotropy of the scattering diagram of Rb

(we suppose an equally populated mixture of Zeeman states) slightly favors the direction of detection. And third, at
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FIG. 9: Comparison between the experimental data and the random walk simulation. The data are rescaled like in Fig. 8, dots

corresponds to the protocol 1 and squares to the protocol 2. The color code indicates the peak density ρ0 in cm−3 (log scale).

The solid lines are the results of the random walk simulations for the two extreme aspect ratios of the cloud, η = r0/y0 ≃ 0.13

(blue) and η ≃ 0.013 (red). The dashed line is the function Ein(b)/b which describes the shadow effect from the Beer-Lambert

Law. The global vertical scaling factor for each data set has been adapted to match the random walk results.

large optical depths, multiple scattering takes place and light has a higher probability to escape along the backward

and transverse directions, which also favors the detection direction compared to an isotropic emission. Finally, at the

precision of the numerical simulation, we do not see any significant difference between the two extreme aspect ratios

of the cloud, showing that this parameter does not affect the results. In Fig. 9, the vertical scaling factor of each data

set has been chosen to match the simulation results. With this as the only free parameter the simulations and the

experimental points are in very good agreement.

IV. CONCLUSIONS

Using two different experimental protocols, we have made measurements of diffusive light scattering from a cold

thermal gas of 87Rb. Due to variations in the number of atoms in the sample, or the size of the sample at fixed number

of atoms, the experiments extended over almost 3 orders of magnitude in density and in optical depth. The measured

diffusive light spectra were found to be in very good agreement with fully quantum based calculations. A second and

simpler analysis approach used stochastic simulations based on a random walk algorithm for the multiply scattered

light. The simulations revealed that the optical depth of the atomic sample can serve as an effective single scaling

parameter which describes very well all the experimental data. A final but important overall point, as mentioned

earlier in the paper, is that a substantial portion of the scattered light undergoes multiple scattering. However, the

multiple scattering only contributes a little to the emission diagram. With this, and the global scale factor needed

to compare the data and Beer-Lambert Law scaling, we can emphasize that the Beer-Lambert Law works in spite of

multiple scattering. This concluding point demonstrates the effectiveness of this rescaling.
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Appendix A: Proof of Eq. (1) for the shadow effect

For simplicity, let us take an isotropic Gaussian cloud with density distribution ρ = ρ0e
−r2/(2R2) and consider a

plane wave (intensity I0) propagating along z. The transmitted intensity has a transverse distribution

IT (r⊥) = I0 exp

(

−ρ0σsc

∫

e−r2/(2R2)dz

)

= I0 exp
(

−be−r2
⊥
/(2R2)

)

,

(A1)

with b =
√
2πρ0σscR and r⊥ = (x, y).

Moreover, what is scattered is what is not transmitted, so we have

Σsc =
Psc

I0
=

∫

[

1− exp
(

−be−r2
⊥
/(2R2)

)]

d2r⊥ . (A2)

Using d2r⊥ = 2πr⊥dr⊥ and the change of variable u = be−r2
⊥
/(2R2) one obtains

Σsc = 2πR2

∫ b

0

1− e−u

u
du = 2πR2Ein(b). (A3)

For single atom physics, the total cross section would be Nσsc. Using b = σsc/(2π) × N/R2, it is thus physically

meaningful to write

Σsc = Nσsc ×
Ein(b)

b
, (A4)

which is Eq. (1).
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