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Abstract

The interaction of a single-photon pulse of radiation with an atom or an ensemble of atoms

is studied using a source-field approach. The atom - field interaction is weak insofar as it can

be treated in lowest, non-vanishing order of perturbation theory. The output field intensity and

second-order correlation function of the field are calculated. It is shown that, even when any

modification of the atomic dynamics produced by the incident field is neglected, as a function of

the time delay τ between the incident field pulse and the field radiated by the atom(s), there is

a ”bump” in the time-integrated second order correlation at τ = 0. The increase in coincidence

counts for τ = 0 can be interpreted in terms of Hanbury Brown and Twiss type interference.

By looking at the field intensity, we show that the bump has no direct relation with stimulated

emission - it occurs even when the input field is attenuated. In recent down conversion experiments,

an increase in coincidence counts has been attributed to stimulated emission - we comment on the

validity of such an interpretation in light of our results.

1



I. INTRODUCTION

Any study of atom-field interactions would not be complete without the inclusion of

spontaneous and stimulated emission. In his 1917 paper [1], Einstein introduced his famous

A and B coefficients, with the A coefficient associated with spontaneous emission and the

B coefficient with either absorption or stimulated emission (both referred to as ‘changes of

state due to irradiation’ by Einstein). Although the underlying origin of spontaneous and

stimulated emission is well understood, there does not seem to be a universal definition as

to what constitutes stimulated emission. Most definitions relate to processes in which atom-

field interactions lead to an increase in the field intensity of an input field, although some

are somewhat more restrictive insofar as they require the increase in the field intensity to

occur in the same spatio-temporal mode of the input field [2]. Moreover, when the incident

field drives atomic transitions having frequency ω0, stimulated emission is often referred

to as a process in which each excited atom imparts an extra energy of ~ω0 to the field.

Clearly, both of these criteria apply to stimulated emission in the Jaynes-Cummings model

[3], since there is only one spatial field mode. They also apply (approximately) when a π

pulse is incident on a two-level atom that is prepared in its excited state, provided the pulse

duration is much less than the lifetime of the excited state. In that case, the average energy

in the field is increased by ~ω0 and the spatio-temporal form of the output field mode, while

not exactly the same as that of the input field, can approximate it to a high degree. In

general, however, the stimulated emission that occurs when an arbitrary pulse is incident

on an atom or atoms prepared with a population inversion does not produce an output field

mode that is in the same spatio-temporal mode as the input. We might point put that, even

in chiral waveguides [4], when an n−photon pulse incident on an atom in its excited state

results in an (n+ 1)−photon output pulse, the output field mode is never in exactly the

same spatio-temporal mode as the input field.

Atom-field interactions result not only in a change in the intensity of the incident field,

they also lead to an output field whose second-order correlation function differs from that

of the incident field. The most dramatic situation occurs when a single-photon probe pulse

is incident on a two-level atom prepared in an arbitrary initial state at t = 0. Clearly,

the second order correlation function vanishes for the incident field since it corresponds to

a single-photon state. However, for times t > 0, the output field state has a two-photon
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component. As a result, the second-order correlation function of the output field does not

vanish, in general. In a recent experiment [6] involving phase-matched emission from an

ensemble of three-level atoms, the second order time-integrated correlation function of the

output field was measured as a function of the delay τ between the input probe pulse and

the atomic emission. An increase in the second order time-integrated correlation function

that occurred for τ = 0 was attributed to constructive Hanbury Brown and Twiss (HBT)

[7] or Hong-Ou-Mandel (HOM) [8] interference. Both HBT and HOM fall into the general

category of two-photon interference, a subject that has been discussed extensively by many

authors [9]. We are concerned here with HBT interference associated with pulsed fields

from independent sources - in such cases HBT interference is a type of intensity-intensity

interference that can occur only for overlapping pulses.

Although stimulated emission involves a change in the field intensity and does not directly

relate to the second order correlation function, there can be correlations between the two

processes. In fact, several authors [5] explain an increase in coincidence counts observed in

down-conversion experiments (equivalent to the non-vanishing of the second order correlation

function) in terms of stimulated emission processes. You might then ask, “Is the increase

in coincidence counts a consequence of stimulated emission?” To help clarify some of these

issues, we consider a number of simple physical systems in which a single photon probe pulse

is incident on an atom (or ensemble of atoms) that can itself radiate a pulsed field, even in

the absence of the probe field. In each case we calculate the spatio-temporal intensity of the

output field to see if it matches that of the incident pulse. Moreover we calculate the time-

integrated second order correlation function for the total output field. We see that there

can be an increase in the time-integrated second-order correlation function when the input

pulse overlaps with the field radiated from the atom(s), even though stimulated emission

is either absent or negligible in the cases to be considered. This increase is interpreted as

arising from HBT-like interference.

Specifically, we look at three scenarios. In the first, a single-photon pulse is incident on

a two-level atom prepared in an arbitrary initial state. As a function of the time delay

τ between the incident probe field and the atomic emission, we show that there can be a

two-fold increase in the time-integrated second-order correlation function, even in situations

where the probe field intensity is reduced as a result of the atom-field interaction. In the

second scenario, we consider a single-photon pulse incident on a three-level atom that is

3



driven by a classical pump field in a Raman configuration. This level scheme offers several

advantages. Owing to off-resonant driving by the pump field, Raman emission occurs only

for times when the pump field interacts with the atom. The probe field always experiences

stimulated emission in this scenario. To make some connection with the type of calculations

used to explain down conversion experiments, we use both a source-field approach [10] and a

state-vector approach to obtain the output field intensity. We find that subtle problems arise

in the state vector approach. In particular, when the state vector is evaluated in lowest non-

vanishing order of perturbation theory (as is typically done in analyses of down conversion

experiments [5]), a spurious term appears. It is necessary to include higher order corrections

to the state vector to recover the correct result. Moreover, the spatio-temporal dependence

of the amplified output field is not the same as the input field. Finally we analyze a scenario

in which classical fields and a single-photon pulse are incident on an atomic ensemble,

resulting in phase-matched emission. In this case, we show that any stimulated emission

depends linearly on the atomic density, whereas the second order correlation function varies

as the square of the atomic density. In all cases, we adopt a one-dimensional model for the

incident pulsed field and assume that a weak-coupling approximation is valid - atom-field

interactions are treated in lowest order perturbation theory.

II. SINGLE-PHOTON PULSE INCIDENT ON A TWO-LEVEL ATOM

Consider a single atom fixed at the origin having a J = 0 ground state and a J = 1

excited state. The ground state eigenket is denoted by |1〉 and the m = 0 sublevel of the

excited state eigenket by |2〉, with the frequency separation of the levels equal to ω0. A

single-photon pulse having central frequency ω̄ = k̄c ≈ ω0 is incident on the atoms. The

state vector associated with the atom-pulse system at time t = 0 can be written as

|ψ(0)〉 =
∑

k

(β1 |1〉+ β2 |2〉) bk |1k〉 , (1)

where |1k〉 is the eigenket associated with a single photon in mode k, β1 and β2 are initial

atomic state amplitudes, and bk is the initial field state amplitude for mode k. We have

made a paraxial approximation and neglected diffraction. That is, we assume that the initial

pulse has cross-sectional area A, polarization uz and propagates in the ux direction (the u’s

are unit vectors). A lossless, 50-50 beam splitter having cross-sectional area A is located on
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the X−axis a distance XB from the atom and splits the output field into fields propagating

in the X and Y directions. Detectors are placed on the X and Y axes an equal distance

D ≪ XB from the beam splitter. Coincidences are recorded of a photo-count at one of the

detectors at time t1 and the other at time t2. Our system is intended to model the collection

mode of a single mode fiber.

With this geometry, the rate of coincidence counts, normalized to the field intensity

at each of the detectors, is given approximately by the second-order correlation function,

defined by

g(2) (XB, t1, t2) =
〈E−(XB, t1)E−(XB, t2)E+(XB, t2)E+(XB, t1)〉
〈E−(XB, t1)E+(XB, t1)〉 〈E−(XB, t2)E+(XB, t2)〉

, (2)

where E+(X, t) = [E+(X, t)]
† is the positive frequency component of the field operator at

position X at time t. It has been assumed implicitly that the field amplitudes can be taken

as constant over the area of the beam splitter allowing us to evaluate all fields on the X

axis. We are also interested in the time-integrated correlation function, defined as

g(2) (XB) =

∫

dt1
∫

dt2 〈E−(XB, t1)E−(XB, t2)E+(XB, t2)E+(XB, t1)〉
[∫

dt 〈E−(XB, t)E+(XB, t)〉
]2 (3)

In effect, this expression corresponds to the normalized, time-integrated number of coinci-

dence counts measured at the detectors.

To calculate g(2), we use source-field theory [10] and write the field operator as

E+(XB, t) = E+(tr) = E
(0)
+ (tr) + E

(Source)
+ (tr) (4)

where

E
(0)
+ (t) = i

∑

k

(

~ωk

2ǫ0AL

)1/2

ake
−iωkt

≈ i

(

~

µ

)1/2
√

γ′2c

Lω0

∑

k

√
ωkake

−iωkt, (5)

E
(Source)
+ (t) = i

~γ′2
µ
σ− (t) e−iω0t, (6)

µ is the dipole matrix element between the ground and excited state (assumed real and

positive), ak is a lowering operator for the field mode k, ωk = kc, σ− (t) is an atomic

lowering operator in an interaction representation,

tr = t−XB/c (7)
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is a retarded time, and AL is the quantization volume. The quantity γ′2 is defined by

γ′2 =
ω0 |µ|2
2~ǫ0Ac

=
3π

2

c2

ω2
0A
γ2, (8)

where γ2 is the spontaneous decay rate on the 2−1 transition. The ratio γ′2/γ2 represents the

fraction of spontaneous emission that goes into the mode volume of the detector . The weak

coupling approximation essentially boils down to the assumption that γ′2/γ2 ∼ 1/k20A≪ 1.

We assume that only those values of k in Eq. (5) that are sharply peaked about k = k̄ ≈ k0

contribute significantly when expectation values are taken. As a consequence, we can replace
√
ωk by

√
ω0 in Eq. (5). The correlation functions are given by

g(2) (t1, t2) =
〈E−(t1)E−(t2)E+(t2)E+(t1)〉
〈E−(t1)E+(t1)〉 〈E−(t2)E+(t2)〉

(9)

and

g(2) =

∫

dt1
∫

dt2 〈E−(t1)E−(t2)E+(t2)E+(t1)〉
[∫

dt 〈E−(t)E+(t)〉
]2 , (10)

where all times appearing in these expressions are retarded times. From this point onwards,

unless noted otherwise, all times t that appear in equations correspond to the retarded time

t − XB/c. That is, for a beam splitter at X = XB, the second order correlation function

g(2) (XB, t1, t2) depends only on the retarded times t1,2 −XB/c. Similarly the field intensity

I (XB, t) at the detector is a function only of the retarded time t−XB/c and will be written

as I(t).

It is assumed that the atom - input field interaction is weak, that is, to lowest order, all

atom - input field interactions are neglected. In other words, the atomic operators evolve as

if the input pulse was absent - the atom interacts only with the vacuum field and undergoes

spontaneous decay into all directions, such that

σ− (t) ≈ σ
(0)
− (t) = σ− (0) e−γtΘ (t) , (11)

where γ = γ2/2 and Θ is a Heaviside function. It is then a simple matter to calculate the

dimensionless intensity at the beam splitter as

I
(0)
N (t) =

I(0)(t)

~ω0γ2
=

2ǫ0cA

~ω0γ2
〈E−(t)E+(t)〉

=
c

γ2L

∣

∣

∣

∣

∣

∑

k

e−i(ωk−ω̄)tbk

∣

∣

∣

∣

∣

2

+
γ′2
γ2

|β2|2 e−γ2tΘ (t) , (12)
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where Eqs. (5), (6), and (8) were used. Although the atom undergoes spontaneous emission

in all directions, only a fraction γ′2/γ2 of this emission falls on the beam splitter.

We transform to continuous variables using the prescription

∑

k

→ L

2π

∫ ∞

−∞

dk; bk →
(

2π

L

)1/2

b(k) (13)

to obtain

I
(0)
N (t) =

1

γ2
|f(t)|2 + γ′2

γ2
|β2|2 e−γ2tΘ (t) , (14)

where

f(t) ≈
√

c

2π

∫ ∞

−∞

dk b (k) e−i(k−k̄)ct (15)

is normalized such that
∫ ∞

−∞

dt |f(t)|2 = 1. (16)

The quantity |f(t)|2 is the temporal profile of the average field intensity measured at the

detectors at time t +XB/c and |b (k)|2 is proportional to the spectral density of the pulse.

To this order of approximation, the field intensity is simply the sum of the intensities of the

incident field and the field radiated by the atom. Stimulated emission or absorption of the

incident field is absent since we have neglected interactions between the incident probe field

and the atom. The second term in Eq. (14) is of order γ′2/γ2 smaller than the first and can

be neglected.

In a similar manner, using Eqs. (4)-(6), we can calculate

〈E−(t1)E−(t2)E+(t2)E+(t1)〉 =
(

~ω0

2ǫ0A

)(

~γ′2
µ

)2 |β2|2
γ2c

×
[

|f(t1)|2 |w(t2)|2 + |f(t2)|2 |w(t1)|2 + 2Re [f ∗(t1)w(t1)f(t2)w
∗(t2)]

]

(17)

where

w(t) =
√
γ2e

−γtΘ (t) (18a)

and Eqs. (5), (6), and (8) were used. Note that w(t) has been defined such that

∫ ∞

−∞

dt |w(t)|2 = 1. (19)

Combining Eqs. (9), (10), (12), and (17), we obtain

g(2) (t1, t2)=
γ′2
γ2

|β2|2
|f(t1)|2 |w(t2)|2 + |f(t2)|2 |w(t1)|2 + 2Re [f ∗(t1)w(t1)f(t2)w

∗(t2)]

|f(t1)|2 |f(t2)|2
(20)
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and

g(2) = 2
γ′2
γ2

|β2|2
(

1 +

∣

∣

∣

∣

∫ ∞

−∞

dt f(t)w∗(t)

∣

∣

∣

∣

2
)

. (21)

The terms involving f(t)w∗(t) can be interpreted as constructive HBT interference, with

the maximum value of g(2) obtained if f(t) = w(t). The origin of this interference term can

be traced to terms in Eq. (17) of the form

〈

E
(0)
− (t1)E

(Source)
− (t2)E

(0)
+ (t2)E

(Source)
+ (t1)

〉

or
〈

E
(Source)
− (t1)E

(0)
− (t2)E

(Source)
+ (t2)E

(0)
+ (t1)

〉

,

which are nonvanishing only for overlapping pulses. In effect, HBT terms of this nature are

responsible for all the interference effects discussed in this paper. To examine the qualitative

dependence of g(2) on pulse characteristics, we choose an exponentially decreasing pulse

envelope,

fexp(t) =
√
Γe−i∆te−Γ(t−t0)/2Θ (t− t0) (22)

with t0 = −X0/c > 0 and

∆ = ω̄ − ω0. (23)

This corresponds to a pulse having bandwidth Γ and central frequency ω̄, whose wave front

is located a distance X0 to the left of the atom at t = 0. In that case,

g(2) = 2
γ′2
γ2

|β2|2
(

1 +
4Γγ2e

−γ2t0

(Γ + γ2)
2 + 4∆2

)

. (24)

There is a factor of two ”bump” in g(2) when ∆ = 0; t0 = 0; Γ = γ2, compared to the case

when either γ2t0 ≫ 1 or |∆| ≫ γ2 or Γ ≫ γ2. Corrections to g
(2) resulting from atom - input

field interactions have been neglected are smaller by a factor of order γ′2/γ2 ≪ 1. Thus, the

bump in g(2) can be explained entirely as a result of constructive HBT interference.

1. Field intensity

You might ask whether the bump is correlated with stimulated emission; that is, are

the optimal conditions for producing the bump the same as those for maximizing the field

intensity in the forward direction. To answer this question, we must calculate how the field

intensity given in Eq. (14) is modified by atom - input field interactions. The Hamiltonian

in an interaction representation is

HI(t) = ~g
∑

k

[

σ+(t)ak(t)e
−i(ωk−ω0)t − a†k(t)σ−(t)e

i(ωk−ω0)t
]

, (25)
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where

g = −i
(

ω0

2~ǫ0AL

)1/2

= −i
√

γ′2
c

L
(26)

is a coupling constant and ak(t) is an interaction representation Heisenberg operator. Using

standard techniques [10], we find that the time evolution equation for σ+ is

σ̇+ = ig
∑

k

a†k [σ22(t)− σ11(t)] e
i(ωk−ω0)t − γσ+(t)

≈ ig
∑

k

a†k
[

2σ22(0)e
−γ2tΘ(t)− 1

]

ei(ωk−ω0)t − γσ+(t), (27)

where a†k ≡ a†k(0). Including the lowest order corrections to σ+ (t) produced by the probe

field, we find

σ+ (t) ≈ σ+ (0) e−γtΘ (t)

+ ig
∑

k

a†k

∫ t

0

dt′ei(ωk−ω0)t′e−γ(t−t′)

×
[

2σ22(0)e
−γ2t′ − 1

]

Θ (t) . (28)

When this is substituted into Eqs. (6) and (4), and the sums converted to integrals, we

obtain

IN(t) = I
(0)
N (t) +

γ′2
γ2

(

f(t)

∫ t

0

dt′f ∗(t′)e−γ(t−t′)
[

2 |β2|2 e−γ2t′ − 1
]

+ c.c.

)

, (29)

where

I
(0)
N (t) =

1

γ2
|f(t)|2 + γ′2

γ22
|β2|2 |w(t)|2 . (30)

For the specific choice of f(t) given in Eq. (22),

IN(t) =
Γ

γ2
e−Γ(t−t0)Θ (t− t0) +

γ′2
γ2
e−γ2tΘ (t)

+
8Θ (t− t0) Γγ

′
2 |β2|2

γ2
[

(Γ + γ2)
2 + 4∆2

]

×





(γ2 + Γ)
{

cos [∆ (t− t0)] e
−γ(t+t0)e−Γ(t−t0)/2 − e−γ2te−Γ(t−t0)

}

+2∆ sin [∆ (t− t0)] e
−γ(t+t0)e−Γ(t−t0)/2





− 4Θ (t− t0) Γγ
′
2

γ2
[

(Γ− γ2)
2 + 4∆2

]

×





(Γ− γ2)
{

cos [∆ (t− t0)] e
−(γ+Γ)(t−t0)/2 − e−Γ(t−t0)

}

+2∆ sin [∆ (t− t0)] e
−(γ+Γ)(t−t0)/2



 . (31)
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Even if the atom is excited initially (β2 = 1) and the probe field is chosen so that its spatio-

temporal profile mirrors that of the atomic emission (Γ = γ2, ∆ = 0, t0 = 0), the output

field intensity,

IN(t) ∼ e−γ2tΘ (t) +
γ′2
γ2
e−γ2tΘ (t)

+ 2
γ′2
γ2
Θ (t) e−γ2t

[

2
(

1− e−γ2t
)

− γ2t
]

, (32)

does not match that of the input probe field.

The (dimensionless) total energy deposited into the detector mode is

WN =
γ2
~ω0

∫ ∞

0

IN(t)dt = 1 +
γ′2
γ2

|β2|2

+
γ′2
γ2

4γ2

(Γ + γ2)
2 + 4∆2

[

2Γ |β2|2 e−γ2t0 − (γ2 + Γ)
]

. (33)

The change in the incident pulse energy is of order γ′2/γ2 ≪ 1. Note that if ∆ = 0; |β2|2 = 1;

t0 = 0; Γ = γ2 (conditions to optimize the coincidence count bump), the interference term

vanishes! In fact, to maximize the intensity you need to take ∆ = 0; |β2|2 = 1; t0 = 0;

Γ = 3γ2, conditions which leads to a much smaller coincidence count rate than the optimal

one. As long as ρ22(0) = |β2|2 6= 0, the coincidence count bump is maximal if ∆ = 0; t0 = 0;

Γ = γ2, regardless of whether or not the interference term is positive (stimulated emission)

or negative (absorption).

On the other hand, the bump height in the dimensionless intensity WN resulting from

stimulated processes when the pulses overlap is equal to the corresponding bump height in

g(2). Although the increase in g(2) when the pulses overlap in this case is not caused by

stimulated emission, it is correlated with the increased intensity produced by stimulated

processes. In some sense, the increase in coincidence counts is not classic HBT insofar as

absorption or stimulated emission accompanies the increase in coincidence counts, but any

modification of g(2) produced by absorption or stimulated emission is negligibly small.

III. SINGLE-ATOM RAMAN CONFIGURATION

Next we consider the Raman scheme shown in Fig. 1 for a three-level atom having states

|1〉, |1′〉, and |2〉. States |1〉 and |1′〉 have the same parity, which is opposite that of state

|2〉. A classical pulsed field having central frequency ωL drives the 1 − 2 transition in an
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atom that is located at X = 0. This pump field is detuned from the atomic transition by

an amount δ = ωL − ω21 ≫ γ2, where γ2 is the excited state decay rate. In the absence of

any input fields, there is Raman emission centered at frequency ω̄ = ωL − ω1′1. An input

single-photon pulse field is incident along the X axis, whose central frequency is taken to be

equal to ω̄. This physical system, while not the same as that encountered in down-conversion

experiments, shares many of its properties.

As in the previous section, we use an effective 1-D Hamiltonian which, in the interaction

representation, can be taken as

HI(t) = ~
[

χ(t)σ21(t)e
−iδt + χ∗(t)σ12(t)e

iδt
]

+ ~g1
∑

k

σ21′(t)ak(t)e
−i(ωk−ω

21′
)t − a†k(t)σ1′2(t)e

i(ωk−ω
21′

)t, (34)

where χ(t) is one half the Rabi frequency associated with the classical pump field that drives

the 1− 2 transition, the σ(t)’s are raising or lowering interaction representation Heisenberg

operators,

g1 = −i
(

ω21′

2~ǫ0AL

)1/2

= −i
√

γ′2,1′
c

L
, (35)

and

γ′2,1′ =
ω21′ |µ21′|2
2~ǫ0Ac

=
3π

2

1

k221′A
γ2,1′, (36)

where µ21′ is a dipole moment matrix element. The quantity γ2,1′ is the spontaneous decay

rate on the 2 − 1′ transition and γ′2,1′/γ2,1′ is the fraction of spontaneous emission on the

2 − 1′ transition that goes into the mode volume of the detector, which itself is matched

to the mode volume of the single-photon input probe pulse. Terms involving vacuum field

interactions on the 2−1 transition have not been included. Such terms give rise to Rayleigh

scattering of the pump field, which is not of interest here. The corresponding source-field

result in this 1-D model is

E+(t) = E
(0)
+ (t) + E

(Source)
+ (t) (37)

where

E
(0)
+ (t) = i

~

µ21′

√

c

L
γ′2,1′

∑

k

ake
−iωkt, (38)

E
(Source)
+ (t) = i

~

µ21′
γ′2,1′σ1′2 (t) e

−iω
21′

t. (39)

Recall that all times are actually retarded times.
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A. Equations of motion

Perturbation theory is used and only those terms are retained that lead to non-zero values

when expectation values are taken with an initial state vector

|ψ(0)〉 =
∑

k

bka
†
k |1; 0〉 , (40)

where |1; 0〉 is the eigenket for the atom to be in level 1 and the field to be in its vacuum

state. Moreover, we set

σ11(t) ≈ σ11(0) = 1. (41)

The classical pump pulse is taken to be a smooth pulse starting at t = 0 and ending at

time T , with δT ≫ 1 and δ ≫ γ2. As such the excited state amplitude adiabatically follows

the classical pulse and

σ21(t) ≈
χ∗(t)eiδt

δ
. (42)

The equations of motion for the other operators that will be needed are

σ̇1′2(t) = −iχ(t)e−iδtσ1′1(t); (43a)

σ̇1′1(t) = ig1
∑

k

ake
−i(ωk−ω

21′
)tσ21(t)

≈ ig1
χ∗(t)

δ

∑

k

ake
−i(ωk−ω̄)t. (43b)

In these expressions, terms have been neglected that correspond to any off-resonant driving

of the 1′ − 2 transition by the probe field in the absence of the classical field.

B. g(2)

To evaluate g(2), we neglect all atom - probe field interactions. In that case

σ1′2(t) ≈
χ(t)

δ
e−iδtσ1′1(0). (44)

Then the calculation proceeds exactly as before [note that σ21′(t)σ1′2(t) ∼ σ11′(0)σ1′1(0) =

σ11(0) ≈ 1] and we find

g(2) (t1, t2) =
γ′2,1′

ΓR

|f(t1)|2 |wR(t2)|2 + |f(t2)|2 |wR(t1)|2 + 2Re [f ∗(t1)wR(t1)f(t2)w
∗
R(t2)]

|f(t1)|2 |f(t2)|2
,

(45)
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where

wR(t) =
√

ΓR
χ(t)

δ
Θ(t), (46)

Γ−1
R =

∫ ∞

0

dt
|χ(t)|2
δ2

, (47)

and f(t1) is defined in Eq. (15). Note that, as defined,

∫ ∞

−∞

dt |wR(t)|2 = 1. (48)

The time-integrated correlation function is

g(2) = 2
γ′2,1′

ΓR

(

1 +

∣

∣

∣

∣

∫ ∞

0

dt f(t)w∗
R(t)

∣

∣

∣

∣

2
)

. (49)

Clearly, if you match the temporal profile of the input pulse with that of the classical field,

you will get twice the coincidence counts when the pulses overlap compared to the case when

they do not overlap. Thus, just as in the previous case, the increase in coincidence counts

can be attributed to HBT interference.

C. Field Intensity

Although the increase in coincidence counts is not linked directly to stimulated emission,

we would like to see to what extent stimulated emission is present in this Raman configu-

ration. To do so we must calculate the field intensity. Such a calculation can be carried out

in two ways - the easy way and the hard way.

1. Source-field approach

The easy way is to use the source-field approach to evaluate

I(t) = 2ǫ0cAB

〈[

E
(0)
− (t) + E

(Source)
− (t)

] [

E
(0)
+ (t) + E

(Source)
+ (t)

]〉

, (50)

where the field operators are defined in Eqs. (38) and (39). If atom - input field interactions

are neglected, the cross terms vanish and

I
(0)
N (t) ≡ I(0)(t)

~ω21′ΓR

=
|f(t)|2
ΓR

+
γ′2,1′

Γ2
R

|wR(t)|2 . (51)
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The integrated dimensionless intensity is

W
(0)
N = ΓR

∫ ∞

0

I
(0)
N (t)dt = 1 +

γ′2,1′

ΓR

. (52)

To evaluate the effects of atom - input field interactions, we must solve Eq. (43) to next

order. Doing so, we find,

δσ1′2(t) = ig1
χ(t)

δ2
e−iδt

∫ t

0

∑

k

akχ
∗(t′)e−i(ωk−ω̄)t′dt′. (53)

Using this result in Eq. (50), we find that the cross terms give an additional contribution,

leading to a total dimensionless intensity given by

IN(t) =
|f(t)|2
ΓR

+
γ′2,1′

Γ2
R

|wR(t)|2 + 2
γ′2,1′

Γ2
R

Re

[

f ∗(t)wR(t)

∫ t

0

f(t′)w∗
R(t

′)dt′
]

. (54)

The integrated dimensionless intensity is

WN = 1 +
γ′2,1′

ΓR
+
γ′2,1′

ΓR

∣

∣

∣

∣

∫ ∞

0

f(t)w∗
R(t)dt

∣

∣

∣

∣

2

. (55)

The intensity at time t is a function only of the retarded time, as is to be expected. The

”interference” term always represents gain, insofar as its time integral is always positive.

There is a bump in the dimensionless integrated intensity that is equal to 1/2 the bump

height in g(2). As in the first example, the output field intensity does not have the same

spatio-temporal shape as the input probe field intensity.

2. State vector approach

The details of the this calculation are given in Appendix A. Here we simply summarize

the results. In a state vector approach, the field operators are time-independent Schrödinger

operators and all the time dependence is in the state vector. When the state vector is calcu-

lated to order |χ(t)| /δ, the resultant change in field intensity, which is of order |χ(t)|2 /δ2,
has spurious terms. For example, if the probe pulse does not overlap with the pump pulse,

the intensity calculated in this fashion has a term that corresponds to gain for the probe

pulse, which is physically impossible under these conditions. Moreover, the contribution to

the change in the integrated intensity in this limit is twice the correct result! It is necessary

to go to order |χ(t)|2 /δ2 in the state vector to get the correct result for the intensity to order

|χ(t)|2 /δ2. The interference term between the zeroth order and the |χ(t)|2 /δ2 contributions
to the state vector removes the spurious terms in the field intensity and restores the correct

result given in Eq. (54).
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IV. PHASE-MATCHED EMISSION

The correlation functions associated with phase-matched emission from an atomic en-

semble differ in a qualitative manner from those that have been considered so far. In order

to illustrate the underlying physics, we consider one of the simplest types of phase-matched

emission involving only stimulated emission, non-degenerate four-wave mixing. The level

scheme is the same as for the single-atom Raman case shown in Fig. 1. At time t = 0,

a pump pulse consisting of two classical field pulses propagating in the ±X direction ar-

rive simultaneously in the sample. The fields comprising this pump pulse have propagation

vectors k0A and k0B and frequencies ω0A = k0Ac and ω0B = k0Bc, with

(ω0A − ω0B)− ω1′1 ≈ 0. (56)

For an N−atom ensemble, the pump pulse prepares the initial atomic state vector,

|ψ(0)〉A =
N
∏

j=1

(

α |1〉j + β |1′〉j eik0·Rj

)

, (57)

where the effective propagation vector is

k0 = k0A − k0B. (58)

Levels 1 and 1′ are two sublevels of the ground state manifold, such that k1′1 = ω1′1/c can

be set equal to zero. It is assumed that |β|2 ≪ 1.

Following excitation, a second pump field arrives on the sample and drives the 1 − 2

transition in each atom. This field has propagation vector kD ≈ k0A, frequency ωD = kDc,

and can lead to phase-matched emission on the 1′ − 2 transition having propagation vector

ks = kD−k0 and frequency ωs = ωD, provided ωs ≈ ksc. That is, the requirement for phase

matching is |kD − k0| c ≈ ωD. To separate the Raman emission from the second pump pulse

alone, we take k0A ≈ −k0B , such that k0 ≈ 2k0A and ks ≈ −k0A. It is assumed that the

pump pulses interact individually with each atom - that is, the atomic density is sufficiently

low to neglect any cooperative effects between the atoms.

In addition to the pump pulses, there is a single-photon pulse incident in the ks direction

having central frequency ωs. We want to see if this pulse is amplified by the medium and

how any amplification is related to the second-order correlation function of the outgoing

fields in the phase-matched direction.
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Using an effective 1-D model for the probe field, the Hamiltonian in the interaction

representation can be taken as

HI(t) = + ~

N
∑

j=1

[

χD(t)σ
(j)
21 (t)e

−iδteikD ·Rj + χ∗
D(t)σ

(j)
12 (t)e

iδte−ikD ·Rj

]

+ ~g1

N
∑

j=1

∑

k

σ
(j)
21′(t)ak(t)e

ikk̂s·Rje−i(ωk−ω
21′

)t

− ~g1

N
∑

j=1

∑

k

a†k(t)e
−ikk̂s·Rjσ

(j)
1′2(t)e

i(ωk−ω
21′

)t, (59)

where χD(t) is one half the Rabi frequency associated with the classical pump field that

drives the 1− 2 transition,

δ = ωD − ω21 (60)

is an atom-field detuning, the σ(t)’s are raising or lowering interaction representation Heisen-

berg operators, and g1 and γ
′
2,1′ are defined in Eqs. (35) and (36), respectively. It is assumed

that any population in level 2 can be neglected. The only emission on the 1′ − 2 transition

that we consider is linked to the 1− 1′ coherence created by the pump field that led to the

initial state given in Eq. (57).

The corresponding source-field result for this 1-D model is

E+(t) = E
(0)
+ (t) + E

(Source)
+ (t) (61)

where

E
(0)
+ (t) = i

~

µ21′

√

c

L
γ′2,1′

∑

k

ake
−iωkt, (62)

E
(Source)
+ (t) = i

~

µ21′
γ′2,1′

N
∑

j=1

σ
(j)
1′2 (t) e

−iω
21′

te−ik
21′

·Rj , (63)

and

k21′ = k21′R/R =
k21′

ks
ks ≈ ks,

All times are retarded times relative to the center of the sample. The vector k21′ is in the

direction of ks since the detector is placed in the phase-matched direction.
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A. Equations of motion

Perturbation theory is used and only those terms are retained that lead to non-zero values

when expectation values are taken with an initial state vector

|ψ(0)〉 =
∑

k

bka
†
k |1; 0〉 , (64)

where |1; 0〉 is the eigenket for all the atoms to be in level 1 and the field to be in its vacuum

state. The sum over k is restricted to the direction of phase-matched emission and ωk = kc

is centered at the central frequency ωs of the phase-matched emission. Moreover, we set

σ
(j)
11 (t) ≈ σ

(j)
11 (0

+) ≈ 1; (65)

σ
(j)
1′1(0

+) ≈ σ
(j)
1′1(0) + β∗e−ik0·Rj , (66)

where 0+ is the time immediately following the initial excitation pulse. In other words, the

initial pulse creates a phased, off-diagonal atomic operator.

The classical pump pulse having (half) Rabi frequency χD(t) is taken to be a smooth

pulse starting at t = 0 and ending at time T , with δT ≫ 1 and δ ≫ γ2 = γ2,1 + γ2,1′. The

equations of motion for the operators that will be needed are

σ̇
(j)
1′2(t) = −iχD(t)e

ikD ·Rje−iδtσ
(j)
1′1(t); (67a)

σ̇
(j)
1′1(t) = −iχ∗

D(t)σ
(j)
1′2(t)e

iδte−ikD·Rj

+ ig1′2

N
∑

j=1

∑

k

σ
(j)
21 (t)ak(t)e

ikk̂s·Rje−i(ωk−ω
21′

)t; (67b)

σ̇
(j)
12 (t) = −iχD(t)e

−iδteikD ·Rj

− ig1′2
∑

k

σ
(j)
11′(t)ak(t)e

ikk̂s·Rje−i(ωk−ω
21′

)t, (67c)

along with the adjoints of these equations. Terms involving population operators σ
(j)
22 and

σ
(j)
1′1′ have been suppressed.

B. Second-order correlation function

First, we neglect all atom - input field interactions and retain only terms linear in |χD|.
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In that approximation,

σ
(j)
1′2(t) ≈

χD(t)e
−iδt

δ
eikD ·Rjσ

(j)
1′1(t); (68a)

σ
(j)
1′1(t) ≈ σ

(j)
1′1(0) ≈ σ

(j)
1′1(0) + β∗e−ik0·Rj . (68b)

By combining Eqs. (63) and (68), we see that

E
(Source)
+ (t) = i

~

µ21′
γ′2,1′

N
∑

j=1

χD(t)e
−iδt

δ
e−iω

21′
teikD·Rje−ik

21′
·Rj

×
[

σ
(j)
1′1(0) + β∗e−ik0·Rj

]

(69)

The term proportional to σ
(j)
1′1(0) is similar to the one we encountered for Raman emission

from a single atom. Since kD −k21′ ≈ k0, this term is not phase-matched. The second term

is phase-matched and leads to a contribution that is of order N |β|2 times larger than the

σ
(j)
1′1(0) term. We assume that

N |β|2 ≫ 1, (70)

so that the phase-matched term is dominant. For perfect phase matching,

E
(Source)
+ (t) ≈ i

~N

µ21′
γ′2,1′

χ1(t)e
−iδt

δ
e−iω

21′
tβ∗. (71)

Then, following the same procedure used in the previous cases we find

g(2) (t1, t2) =
γ′2,1′

Γpm

|f(t1)|2 |wpm(t2)|2 + |f(t2)|2 |wpm(t1)|2 + 2Re
[

f ∗(t1)wpm(t1)f(t2)w
∗
pm(t2)

]

|f(t1)|2 |f(t2)|2
,

(72)

where

wpm(t) = N
√

Γpm
χD(t)

δ
β∗Θ(t), (73)

Γ−1
pm = N2 |β|2

∫ ∞

0

dt

∣

∣χD(t)
∣

∣

2

δ2
, (74)

f(t) is defined in Eq. (15), and

∫ ∞

−∞

dt |wpm(t)|2 = 1. (75)

Note that g(2) (t1, t2) is proportional to N
2. The time-integrated correlation function is

g(2) = 2
γ′2,1′

Γpm

(

1 +

∣

∣

∣

∣

∫ ∞

0

dt f(t)w∗
pm(t)

∣

∣

∣

∣

2
)

. (76)
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As in the Raman case, if you match the temporal profile of the input pulse with that of

wpm(t), you will get twice the coincidence counts when the pulses overlap compared to the

case when they do not overlap. The increase in coincidence counts that can be attributed

to HBT interference.

C. Field Intensity

If we neglect interactions between the probe and the atoms and neglect absorption of the

probe field, the dimensionless field intensity is simply the sum of the contributions from the

atoms and the probe field,

I
(0)
N (t) =

I(0)(t)

~ω21′Γpm

=
|f(t)|2
Γpm

+
γ′2,1′

Γ2
pm

|wpm(t)|2 . (77)

The integrated dimensionless intensity is

W
(0)
N = Γpm

∫ ∞

0

I
(0)
N (t)dt = 1 +

γ′2,1′

Γpm

. (78)

Atom - input field interactions modify this result primarily in two ways. First there is

the same type of stimulated emission that we encountered in the Raman problem. If the

inequality in Eq. (70) is satisfied, this contribution, proportional to N , can be neglected. In

addition there can be some decrease in probe intensity resulting from Rayleigh scattering,

also, proportional to N . This contribution can be neglected relative to the phase-matched

contribution if
γ′2,1′γ2,1′T

N
∫ T

0
dt |χD(t)|2

≪ 1. (79)

In this limit, any bump in the dimensionless integrated intensity that occurs when the probe

and pump pulses overlap is now negligibly small compared with the bump in g(2). In this

respect, the situation is very close to HBT interference where stimulated emission plays no

role.

V. CONCLUSIONS AND DISCUSSION

We have examined a number of problems in which a single-photon pulse is incident on

an atom or an ensemble of atoms. In each case, there can be a field radiated by the atom(s)

in the absence of the input pulse. As such there is always the possibility that, when an
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input pulse is applied, there can be a non-vanishing value of the second order correlation

function of the output field. The output field consists of the input field, the field radiated

by the atom(s) and interference terms which correspond to the modification of the input

field produced by its interaction with the atom(s). In the weak coupling approximation

adopted in this work, such interference terms have a negligible effect on the intensity of

the input field. Moreover, to lowest order, they do not affect the number of coincidence

counts measured by detectors that monitor the output field. Nevertheless, in all the cases

studied, there can be an increase in coincidence counts when the input field overlaps with

the field radiated by the atom(s). We have argued that such an increase is nothing more

that constructive HBT or HOM interference.

Our results call into question some approaches used to analyze coincidence counts mea-

sured in certain down-conversion experiments [5]. The effective Hamiltonian in an interaction

representation that describes down conversion is often taken as

HI(t) = ~

∑

k1,k2

(

Bk1k2(t)e
−i(ωL−ωk1

−ωk2)a†k1a
†
k2
+ adjoint

)

, (80)

where a†k1 and a†k2 are creation operators for the signal and idler modes, respectively, ωL

is the frequency of the pump field, and B is a function that represents the entanglement

between the signal and idler modes. Given the Hamiltonian (80), the source-field and state

vector approaches developed in this paper can be used to evaluate both the signal and idler

field intensities for an initial single-photon state that is incident in the direction of the signal

photon probe pulse. As in the Raman case, the signal field intensity calculated to order B2

using the state vector approach has spurious terms and does not agree with the correct result

to order B2, which can be obtained using a source-field approach. On the other hand, the

idler field intensity calculated to order B2 using the lowest order state vector does agree.

The increase in the idler signal intensity when the input probe field overlaps with the

pump field is sometimes taken to be a definitive signature of stimulated emission [11]. It is

our opinion that this assignment is not consistent with conventional definitions of stimulated

emission. Consider the two level scheme shown in Fig. 2 (a), in which a two photon pulsed

pump field having central frequency ωL ≈ (ω21 + δ) /2 drives the 1− 2 transition. The field

is off-resonant, but leads to Raman-like scattering on the 2− 1′ transition (level 1′ now has

parity opposite to that of level 1). A single-photon probe field having central frequency ωL

is also incident on the atom and can be time-delayed from the pump field. Clearly, there
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will be increased Raman emission when the probe field overlaps with the pump field. In

effect, the probe field provides an additional channel for Raman scattering. In analogy with

the logic followed in the analysis of down conversion experiments, the increase in Raman

emission can be attributed to stimulated emission produced by the probe. However, in this

case, the intensity of the probe field is actually reduced by its interaction with the atom,

even if the transition rate from level 1 to 1′ is increased. That is, you can call this stimulated

emission if you wish, owing to the increased rate, but it is not the conventional use of the

term, which we claim always involves the constructive interference of an incident field with

the field scattered from a medium.

Now consider the same level scheme but with a two photon pump field that drives the

1 − 2 transition in an atomic ensemble - Fig. 2 (b). In this case the pump field consists

of two fields having propagation vectors ka and kb and frequencies ωa = kac ≈ ω1′1 and

ωb = kbc ≈ ω21′ + δ. In addition there is a single-photon probe field that is incident on

the ensemble having propagation vectors kp ≈ ka and frequency ωp = kpc ≈ ω1′1 that

can be delayed relative to the pump field. In the absence of the probe field there is non-

phased matched Raman emission at frequency ωa + ωb − ω1′1 in all directions. In addition

there is phase-matched emission of correlated two-photon states, with one photon having

wave vector approximately equal to k1 ≈ kb (idler) and the other approximately equal to

k2 ≈ kb (signal) [12]. When the probe field does not overlap with the pump field, emission

on the idler transition is unaffected by the presence of the probe field; however, when it

does overlap, the phase-matched emission on the idler transition is increased. Again it is

possible to say that the increased rate for phase-matched emission on the idler transition is a

result of stimulated emission produced by the probe pulse (even though the probe intensity

actually decreases), but we feel this corresponds to an unconventional definition.

Returning to down conversion, the increase in phase matched idler intensity is analogous

to that for the level scheme shown in Fig. 2 (b). It is not clear in the down-conversion

experiments whether or not the probe field is amplified or absorbed by the medium. The

relatively large increase in the idler intensity results from a corresponding increase in the

rate for phase-matched emission, which we have argued is not the conventional definition of

stimulated emission. In Appendix B, we try to relate the approach taken in this paper with

that followed in some of the analyses of down-conversion experiments.
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VII. APPENDIX A - STATE VECTOR CALCULATION OF THE RAMAN FIELD

INTENSITY AND g(2)

In this appendix, we repeat the field intensity calculation for the Raman problem using

a state vector approach. That is we calculate |ψ(t)〉 using perturbation theory with the

Hamiltonian (34) and then evaluate

I(t) = 2ǫ0cAB 〈ψ(t)|E−(XB)E+(XB) |ψ(t)〉 , (81)

where E+(XB) is now the time-independent Schrödinger operator

E+(XB) = i
~

µ21′

√

c

L
γ′2,1′

∑

k

ake
ikXB (82)

and t is the non-retarded time (in this appendix, t always refers to the non-retarded time

and tr to the retarded time). The perturbation theory result is

|ψ(t)〉 = e−iH0t/~
∣

∣ψI(t)
〉

(83)

where

∣

∣ψI(t)
〉

=





1− i
~

∫ t

0
HI(t′)dt′

− 1
~2

∫ t

0
HI(t′)dt′

∫ t′

0
HI(t′′)dt′′ + ....



 |ψ(0)〉 , (84)

H0 = ~ω21 |2〉 〈2|+ ~ω1′1 |1′〉 〈1′|+
∑

k

~ωka
†
kak, (85)

and

HI(t) = ~
[

χ(t)σ21e
−iδt + χ∗(t)σ12e

iδt
]

+ ~g1
∑

k

σ21′ake
−i(ωk−ω

21′
)t − a†kσ1′2e

i(ωk−ω
21′

)t. (86)

The operators in this equation are time-independent Schrödinger operators.
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Let us define
∣

∣ψI
j (t)
〉

as the jth order perturbation theory result. Thus

∣

∣ψI
0(t)
〉

= |ψ(0)〉 =
∑

k

bka
†
k |1; 0〉 , (87)

∣

∣ψI
1(t)
〉

= − i

~

∫ t

0

HI(t′)dt′ |ψ(0)〉

= −i~
∫ t

0

dt′χ(t′)σ21e
−iδt′ |ψ(0)〉

≈ χ(t)

δ
e−iδt

∑

k

bka
†
k |2; 0〉 , (88)

and

∣

∣ψI
2(t)
〉

= − 1

~2

∫ t

0

HI(t′)dt′
∫ t′

0

HI(t′′)dt′′ |ψ(0)〉

= −ig1
δ

∑

k,k′

bk

∫ t

0

dt′ ei(ωk′−ω̄)t′χ(t′)a†ka
†
k′ |1′; 0〉 . (89)

We are interested in times t > T . Since the excitation adiabatically follows the field, the

contribution given in Eq. (88) vanishes. To this order of perturbation theory, the state

vector consists of the original single photon state vector plus a two-photon state vector.

In theories of down conversion, this two-photon component is said to constitute stimulated

emission when the pulses overlap. To see if this is actually the case in the Raman problem,

we need to evaluate this term.

From Eqs. (81), (83), (87), and (89), we find that there are two contributions to the

signal,

I0(t) = 2ǫ0cA
〈

ψI
0(t)
∣

∣ eiH0t/~E−(XB)E+(XB)e
−iH0t/~

∣

∣ψI
0(t)
〉

(90)

and

I2(t) = 2ǫ0cA
〈

ψI
2(t)
∣

∣ eiH0t/~E−(XB)E+(XB)e
−iH0t/~

∣

∣ψI
2(t)
〉

. (91)

It is not overly difficult to show that

I0(t) = ~ω21′ |f(tr)|2 , (92)

in agreement with the first term in Eq. (51).
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The second term is only a bit more difficult to calculate. It is equal to

I2(t) =
~ω21′

δ2

( c

L

)2 ∑

k1,k2,k,k′,k′1,k
′

2

exp
[

i
(

ωk′
1
+ ωk′

2
− ωk1 − ωk2

)

t
]

×
∫ t

0

dt′′χ∗(t′′)e
−i

(

ωk′
1

−ω̄
)

t′′
b∗k′

2

∫ t

0

dt′χ(t′)ei(ωk1
−ω̄)t′bk2

e−ik′XBeikXB 〈0| ak′
1
ak′

2
a†k′aka

†
k1
a†k2 |0〉 . (93)

By applying the commutation relations for the creation and annihilation operators, we find

that there are four terms that contribute,

A : k = k1; k
′ = k′1; k2 = k′2; (94)

B : k = k2; k
′ = k′1; k1 = k′2; (95)

C : k = k1; k
′ = k′2; k2 = k′1; (96)

D : k = k2; k
′ = k′2; k1 = k′1. (97)

Term A is evaluated as

I2A(t) = ~ω21′
γ′2,1′

ΓR
|wR(tr)|2 , (98)

in agreement with the second term in Eq. (54). Terms B and C lead to

I2B(t) + I2C(t) = ~ω21′
γ′2,1′

ΓR

f ∗(tr)wR(tr)

∫ t

0

f(t′)w∗
R(t

′)dt′ + c.c. (99)

This equation almost agrees with the third term in Eq. (54), but the upper limit of the

integral is t instead of tr [recall that the t in Eq. (54) actually the retarded time tr].

Moreover, there is an additional term,

I2D(t) = ~ω21′
γ′2,1′

ΓR
|f(tr)|2

∫ t

0

|wR(t
′)|2 dt′, (100)

not found in Eq. (54).

For arbitrary probe pulse characteristics and arbitrary retardation, both the change in

intensity given by Eqs. (98)-(100) and the change in integrated intensity differ significantly

from the correct results given in Eqs. (54) and (55). For example, if the probe pulse does not

overlap with the pump pulse, the I2D(t) term still corresponds to gain for the probe pulse,

which is physically impossible. Moreover, the contribution to the change in the integrated

intensity from the I2D(t) term leads to a result which is twice the correct result!
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The differences between the source-field and state vector approaches can be resolved if we

calculate the fourth order contribution to
∣

∣ψI(t)
〉

. The fourth order contribution contains

a term which can interfere with the zeroth order contribution. There are two chains in the

perturbation chain that contribute to this fourth-order contribution,

A : |1; 1k〉 → |2; 1k〉 → |1′; 1k, 1k′〉 → |2; 1k′〉 → |1; 1k′〉 ; (101)

B : |1; 1k〉 → |2; 1k〉 → |1′; 1k, 1k′〉 → |2; 1k〉 → |1; 1k〉 , (102)

where |1k〉 = a†k |0〉 is a field state with a photon in mode k and |1k, 1k′〉 = a†ka
†
k′ |0〉 is a field

state with one photon in mode k and another in mode k′. In evaluating the last two terms

in the perturbation chains, we encounter factors of the form

−
∫ t

0

dt′χ∗(t′)eiδt
′

∫ t′

0

dt′′G(t′′),

where G(t′′) is some function. We switch the order of integration to obtain

−i
∫ t

0

dt′′G(t′′)

∫ t

t′′
dt′χ∗(t′)eiδt

′ ≈
∫ t

0

dt′′χ∗(t′′)eiδt
′′

G(t′′)/δ,

where we have again used the adiabatic following approximation. In this manner we find

∣

∣ψI
4A(t)

〉

= −|g|2
δ2

∑

k1,k2

∫ t

0

dt′χ∗(t′)e−i(ωk1
−ω̄)t′

∫ t′

0

dt′′ ei(ωk2
−ω̄)t′′χ(t′′)bk1 |1; 1k2〉 ; (103)

∣

∣ψI
4B(t)

〉

= −|g|2
δ2

∑

k1,k2

∫ t

0

dt′χ∗(t′)e−i(ωk2
−ω̄)t′

∫ t′

0

dt′′ ei(ωk2
−ω̄)t′′χ(t′′)bk1 |1; 1k1〉 . (104)

In forming I(t) there are now cross terms of the type

Ic(t) = 2ǫ0cAB

〈

ψI
0(t)
∣

∣ eiH0t/~E−(XB)E+(XB)e
−iH0t/~

∣

∣ψI
4(t)
〉

+ c.c., (105)

with
〈

ψI
0(t)
∣

∣ =
∑

k′
1

b∗k′
1

〈

1; 1k′
1

∣

∣ . (106)

In evaluating this expression for the A contribution to
∣

∣ψI
4(t)
〉

, we find that the sum over

k2 gives rise to the delta function δ (t′′ − t+XB/c), which implies that the integral over t′′

contributes only if t′ > t−XB/c. Using this result and Eq. (15), we obtain

IcA(t) = −~ω21′
γ′2,1′

Γ
f ∗(t)wR(t)

∫ t

t−XB/c

f(t′)w∗
R(t

′)dt′ + c.c., (107)
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which exactly cancels the non-retarded part of Eq. (99). Similarly in evaluating the expres-

sion for the B contribution, we find that the sum over k1 gives rise to the delta function

δ (t′′ − t′) leading to

IcB(t) = −1

2
~ω21′

γ′2,1′

Γ
|f(tr)|2

∫ t

0

|wR(t
′)|2 dt′ + c.c., (108)

which exactly cancels the D contribution in Eq. (100) [the factor of 1/2 arises when we

set
∫ t′

0
dt′′δ (t′′ − t′)G(t′′) = G(t′)/2]. Thus the source-field and state vector approaches now

agree.

It is also possible to calculate g(2) using the state vector approach if the field operators

are evaluated at the same time, but different positions, that is

g(2) (t, X1, X2) =
〈E−(X1, t)E−(X2, t)E+(X2, t)E+(X1, t)〉
〈E−(X1, t)E+(X1, t)〉 〈E−(X2, t)E+(X2, t)〉

. (109)

With this definition all times are the same so we can replace this expression by one in which

all the field operators are time-independent Schrödinger operators and the expectation value

is evaluated using the time-dependent ket
∣

∣ψI(t)
〉

. Using Eq. (82), we are then able to show

that we can reproduce Eq. (45) with t1 replaced by t−X1/c and t2 by t−X2/c. Although the

results are the same, it is much easier to interpret the results using the source-field approach

since the incident input field and source-field separate in a natural fashion. With the state

vector approach, the two contributions are intermixed so it is not as easy to conclude that

the value of g(2) that is obtained arises as if the input field and atom do not interact.

VIII. APPENDIX B - SINGLE MODE CALCULATION OF THE RAMAN FIELD

INTENSITY AND g(2)

In this appendix, we calculate the correlation function and the field intensity for the

Raman problem using the types of formalisms often employed in theories of down conversion

A. Operator approach

In theories of down conversion and in ”beam splitter” theories of attenuators or amplifiers

[5, 9, 13], an input-output approach is taken, based in part on a ”single-mode” approach.

Quotation marks are used since the theories are often used for pulsed fields in which the field
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annihilation and creation operators actually correspond to localized operators of a pulsed

field. Consider first the case when the probe and pump fields overlap, that is the probe field

has the same temporal shape as the pump field,

χ(t) = ηχ0f(t) (110)

where η is constant having units of
√
t. Since the fields have the same spatio-temporal

profile, it is assumed in such approaches that the field emitted by the atoms in the absence

of the probe field is emitted into the same mode as the probe field.

With this assumption, the output annihilation operator is written as

aout = Tain +Rb†, (111)

where

R =
γ′2,1′

δ2

∫ ∞

0

dt |χ(t)|2 (112)

and b† = σ1′1 is an atomic raising operator satisfying
[

b, b†
]

= σ11 − σ1′1′ ≈ 1, . To maintain

the commutation relation
[

aout, a
†
out

]

= 1, it is then necessary that

T =
√
1 +R2 ≈ 1 +R2/2. (113)

The initial state is one in which there is a single photon in the input mode and the atom is

in state |1〉. The b† operator leads to atomic excitation, that is b† |1〉 = |1′〉. In this limit, to

lowest order in R2, it follows that the dimensionless integrated field intensity WN and the

time-integrated second-order correlation function g(2) are

WN =
〈

a†outaout

〉

∼
(

1 +R2
)

+R2 = 1 + 2R2; (114a)

g(2) =

〈

a†outa
†
outaoutaout

〉

〈

a†outaout

〉2 ∼ 4R2. (114b)

On the other hand, if the probe pulse arrives at the atom after the pump field is no longer

present, it is assumed that the atomic emission and the probe field emission are in distinct

field modes [aout(probe) = ain(probe)] and

W ′
N ∼ 1 +R2 (115a)

g(2)′ = 2R2 (115b)
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In this picture, the increase in WN resulting from stimulated emission [WN −W ′
N = R2]

is correlated with the increase in the coincidence counts [g(2) − g(2)′ = 2R2]. Although this

approach produces the correct limits for overlapping and non-overlapping pulses, it does not

properly account for the time-dependence of the operators.

To see why this is the case and to make connection between the ”single-mode” and exact

formulations, we follow Loudon [13] and define a time-dependent annihilation operator by

aout(t) =

√

c

L

∑

ω

aω(t)e
−iωt → 1√

2π

∫

dω a(ω, t)e−iωt. (116)

The continuous field operator a(ω, t) is a function of t owing to the atom-field interactions.

As a consequence,
[

aout(t), a
†
out(t

′)
]

6= δ (t− t′), as is the case for continuous free-field oper-

ators. In perturbation theory, it then follows from Eqs. (116), (38), (39), and (43) that

aout(t) = a0(t) + γ′2,1′
χ(t)

δ2
e−iω̄t

∫ t

0

ain(t
′)χ∗(t′)dt′

+
√

γ′2,1′
χ(t)

δ
e−iω̄tσ1′1(0), (117)

where the continuous free-field operator is defined by

a0(t) =

√

c

L

∑

ω

aωe
−iωt → 1√

2π

∫

dω a(ω)e−iωt. (118)

Given the fact that the initial state of the field is the single-photon state

|1f 〉 = a†f |0〉 , (119)

where

a†f =

∫

dt f(t)e−iω̄ta†0(t), (120)

and that

a0(t) |1f〉 = f(t)e−iω̄t |0〉 , (121)

it is straightforward to show that Eq. (117) leads to the correct retarded field intensity given

in Eq. (54) (recall that t is the retarded time). Equation (117) differs from the input-output

form given in Eq. (111); that is, the first term of output field operator aout(t) depends in a

nonlocal way on the input field operator ain(t).
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B. State vector approach

In some theories of down-conversion, one also finds a type of hybrid Schrödinger-

Heisenberg single mode approach using a state vector theory in lowest order perturbation

theory. To mirror the down conversion calculations, we must consider two limits, overlapping

and non-overlapping pulses.

When the probe and pump field pulses overlap, the effective Hamiltonian for the Raman

problem can be taken as ,

H(t) = ~G(t)
(

a†1b
† + a1b

)

, (122)

where a†1 is a creation operator for the output field mode, b† acting on the atomic ket |1〉
converts it to |1′〉, and

G(t) =

∣

∣

∣

∣

ηχ0f(t)

δ

∣

∣

∣

∣

2

(123)

accounts for the atom - field coupling. To lowest order, the state vector is then given by

|ψ(T )〉 ≈ |ψ(0)〉 − i

∫ T

0

dtG(t)a†1b
† |ψ(0)〉 . (124)

If we take |ψ(0)〉 = a†1 |0〉, then

|ψ(T )〉 ≈ a†1 |0; 1〉 − i

∫ T

0

dtG(t)a†1a
†
1b

† |0; 1〉

= |11; 0〉 − i
√
2R |21, 1′〉 , (125)

where |nF ;nA〉 is the eigenket of an n photon state in mode 1 and and the atom in state nA.

If R2 ≪ 1,

WN = 〈ψ(T )| a†1a1 |ψ(T )〉 = 1 + 2R2; (126a)

g(2) ≈ 〈ψ(T )| a†1a†1a1a1 |ψ(T )〉 = 4R2, (126b)

just as in the operator approach.

On the other hand if the probe and pump pulses do not overlap, the initial state vector

is |ψ(0)〉 = a†2 |0〉 (the probe pulse is in a mode distinct from the one produced by the

atom-vacuum field interaction), leading to

|ψ(T )〉 ≈ a†2 |0; 1〉 − i

∫ T

0

dtG(t)a†2a
†
1b

† |0; 1〉

= |12; 0〉 − iR |11, 12; 1′〉 , (127)
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W ′
N = 〈ψ(T )|

(

a†1 + a†2

)

(a1 + a2) |ψ(T )〉 = 1 +R2 (128)

and

g(2)′ ∼
〈ψ(T )|

(

a†1 + a†2

)(

a†1 + a†2

)

(a2 + a1) (a2 + a1) |ψ(T )〉

〈ψ(T )|
(

a†1 + a†2

)

(a2 + a1) |ψ(T )〉2
≈ 2R2.

(129)

The factor of
√
2 in Eq. (125), resulting from stimulated emission can then be viewed

as the origin of the increase in coincidence counts. This is the type of reasoning used in

the explanation of the down conversion experiments [5], but there seems to be no formal

justification for this ”single mode” type approach. Although this approach gives the correct

answer in the limits of overlapping and non-overlapping pulses, it is no substitute for the

more rigorous calculation given in Appendix A that is valid for arbitrary pump and probe

pulse profiles and fully accounts for retardation. Moreover, as we have already seen, a state

vector approach carried out in lowest order leads to an incorrect result for the field intensity.
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Figures

FIG. 1: Level scheme for Raman excitation. The central frequency of the pump pulse is ωL = ω21+δ

and that of the probe pulse is ω̄ = ωL − ω1′1.

FIG. 2: Level schemes increased field intensity on an undriven transition. (a) Raman-like scheme

(b) phase-matched emission on at both the”signal” and ”idler” frequencies.
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