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We study the process of seeded, or stimulated, third-order parametric down-conversion, as an
extension of our previous work on spontaneous parametric downconversion (TOSPDC). We present
general expressions for the spectra and throughputs expected for the cases where the seed field or
fields overlap either only one or two of the TOSPDC modes, and also allow for both pump and
seed to be either monochromatic or pulsed. We present a numerical study for a particular source
design, showing that doubly-overlapped seeding can lead to a considerably greater generated flux
as compared with singly-overlapped seeding. We furthermore show that doubly-overlapped seeding
permits stimulated emission tomography for the reconstruction of the three-photon TOSPDC joint
spectral intensity. We hope that our work will guide future experimental efforts based on the process
of third-order parametric downconversion.

I. INTRODUCTION

The promise of quantum-enabled technologies, which
can outperform their counterparts based on classical
physics, has motivated a number of exciting lines of re-
search [1–6]. While a definitive technology for the imple-
mentation of all quantum information science (QIS) tasks
does not exist, it is in general believed that photons are
well suited for some of these tasks [7]. Such photonics-
based QIS leads to the need for sources of single-photons
[8] and of multiple photons in quantum-entangled states
[5, 9]. In this paper, we present a study of seeded third-
order parametric downconversion as a route towards the
characterization and utilization of three-photon states.
Nowadays, the use of nonlinear spontaneous paramet-

ric processes for the generation of entangled photon pairs
and heralded single photons has become standard [10–
15]. However, the generation of heralded photon pairs

that requires the availability of photon triplet sources,
remains challenging. While cascaded sources of photon
triplets, i.e. relying on an initial photon pair generation
stage with one of the generated modes later acting as
pump for a second photon pair generation stage, have
been demonstrated [16–23], the development of genuine
photon triplet sources in which the three photons derive
from a single quantum event is an ongoing research topic
[21].
One possible avenue towards the above goal is the

use of the process of third-order spontaneous paramet-
ric downconversion (TOSPDC), in which a pump photon
is annihilated with the consequent creation of a photon
triplet, in such a manner that energy and momentum
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are conserved. TOSPDC is a direct generalization, re-
lying on a χ(3) nonlinearity, of the well known second-
order spontaneonous parametric downconversion process
(SPDC), mediated by a χ(2) nonlinearity. TOSPDC
has been explored theoretically, at first in a hypotheti-
cal medium with third order non-linearity [24], and later
through specific proposals: one, from our group, relying
on the use of a thin cylindrical waveguide surrounded
by air, which could be realized in the form of a tapered
fiber [25, 26]; and another based on nonlinear crystals
[27]. Note that given the very large spectral separation
between the pump (at ωp) and the generated photons
(around ωp/3) inherent in TOSPDC, phasematching in-
volving all four waves in the fundamental fiber mode is,
for fused silica and other fiber materials, not feasible.
Thus, our proposal relies on intra-modal phasematch-
ing with the pump in a non-fundamental mode and the
photon triplets in the fundamental mode. While phase-
matching can indeed be attained in this manner, the chal-
lenge now becomes the fact that the emission rate, which
is proportional to the overlap integral between the four
interacting waves is very low for such intra-modal phase-
matching. Under ideal conditions and with realistic ex-
perimental parameters, the expected emission rate from
such a source is < 10 triplets/s.

As with photon pair generation, the characterization
of spectral emission properties, including spectral entan-
glement, would become a key aspect of photon triplet
experiments. A comprehensive review of spectral char-
acterization techniques for photon pairs can be found in
Ref. [28]. Such spectral characterization of photon pairs
can be time consuming, particularly if rasterization tech-
niques are used. Given the very low conversion efficiency
of TOSPDC, such rasterization techniques would in all
likelihood be unfeasible.

Among the techniques reviewed in [28], stimulated
emission tomography (SET) based on a stimulated ver-
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sion of the parametric process is promising. As first ex-
plored in [29] for photon pair sources, it is possible to
utilize a tunable seed, say at the idler frequency ωi, so
as to stimulate emission at the signal mode, which can
then be measured with the help of a standard spectrom-
eter for classical light. The authors demonstrated that
the rate of spontaneous generation in the idler mode can
be inferred as the quotient of the stimulated emission
rate for the signal mode to the incoming seed power in
the idler mode. By combining the signal-mode (classi-
cal) spectra obtained for the various idler frequencies it
then becomes possible to obtain a 2D frequency map that
corresponds to the joint spectral intensity, which would
have been obtained through a quantum measurement of
the unseeded, spontaneous source. The theoretical pro-
posal by Liscidini et al. was later implemented exper-
imentally [30, 31]. One of the motivations behind the
present work is to explore whether this idea can be ex-
tended to photon-triplet sources. In this regard, the pi-
oneering work of Dot et.al. [27] described theoretically
spontaneous and stimulated generation in the third order
parametric downconversion process in the possible pres-
ence of a seed or seeds, with experimental work by the
same authors reported in [32, 33]. In addition, Okoth
et.al. [34] have analyzed theoretically seeding for third
and higher-order parametric processes.
In this work, we present the theory for the process of

stimulated third-order parametric downconversion pro-
cess, as a generalization of the scheme proposed by Lisci-
dini et al. in which we employ a fully quantum descrip-
tion of all the fields involved. Note that henceforth we
use the abbreviation STOPDC for stimulated third-order
parametric downconversion, in contrast to TOSPDC for
third-order spontaneous parametric downconversion. As
part of this description we study different configurations
for the pump and seed fields, and derive expressions for
the resulting output flux for each of the fields involved, as
an important guide for future experiments. In addition,
we explore the possibility of exploiting the STOPDC pro-
cess as the basis for the spectral characterization of the
three-photon state, in analogy to the stimulated emission
tomography technique already demonstrated for photon-
pair sources. We hope that the present work will pave the
road towards the full exploitation of the process of third
order parametric downconversion, particularly in seeded
configurations.

II. QUANTUM STATE PRODUCED BY

STOPDC

Figure 1 depicts the STOPDC process schematically.
NL represents the non-linear material with a χ(3) non-
linearity, assumed to be in the form of an optical
fiber. The pump field is described by the coherent
field D̂p({α}) |vac〉, in terms of the displacement oper-

ator D̂p({α}). The operators b̂(ki) with i = {1, 2, 3}
correspond to the energy-conserving and phase-matched

NL

ω

D̂seed({β})| 〉

ω

b̂(k1)

b̂(k2)

b̂(k3)

D̂seed({β})| 〉

D̂p({α})| 〉

D̂p({α})| 〉

FIG. 1. Schematic for the process of stimulated, or seeded,
third-order parametric downconversion. NL represents the
third order nonlinear material. Pump and seed fields are de-
scribed as coherent states D̂p({α}), D̂seed({β}) |vac〉. b̂(k1),

b̂(k2), and b̂(k3) are the generation modes.

generation modes of the spontaneous parametric process.
The generation modes can in general have distinct spec-
tral properties, which has been emphasized with the well-
separated spectra shown on the right. Finally, another
coherent state corresponding to the seed field is included,
shown in the figure as D̂seed({β}) |vac〉. The seed field is
shown with a wide spectrum to point out that it could
overlap with more than one of the TOSPDC generation
modes. Note that we refer to each generation mode which
exhibits overlap with the seed field or fields as a seeded
mode. Note also that the light exiting the nonlinear

medium at modes b̂(ki) with i = {1, 2, 3} could include
spontaneously generated triplets, photons from the ap-
plied seed, as well as stimulated radiation resulting from
the effect of seeding. In our analysis, we employ a de-
scription of the fields in a dispersive medium [35, 36] and
obtain the evolution of the input field asymptotically to
the output of the medium in a similar fashion to the
treatment in references [29, 37].
In this paper we employ the so-called asymptotic-state

formalism [37, 38], which was developed originally for
χ(2) processes and includes the possibility of multiple
pairs of photons per generation event and the use of
seeding, to third order parametric downconversion for
the first time to the best of our knowledge. This ap-
proach has two important benefits as compared to other
published Heisengerg-formalism treatments: i) the full
quantum-mechanical nature of the pump and seed fields
can be retained, and ii) it permits the full three dimen-
sional propagation of the fields, including the transverse
amplitude, instead of restricting the propagation to a
given axis. Note that while the case studied in this paper
is one-dimensional in nature (specific fiber modes), it is
useful to have an approach which is ready to be applied
in a more general context.
We study the third-order parametric downconversion

process with the total Hamiltonian H = HL + HNL.

HL = ~
∑

µ

∫

dkωµ(k)b̂
†(k)b̂(k), with µ designating each

of the fields involved, is the linear part and the nonlinear
part is given as [35, 39],

HNL =
3

4
ǫ0

∫

drE · χ(3)
E ·E · E+ h.c., (1)
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where ǫ0 is the vacuum electric permittivity, χ(3) is the
third-order non-linear susceptibility of the medium and
E the total electric field, which contains the sum of all
fields involved as E =

∑

µ Eµ. Individual fields propa-
gate in the x direction with polarization σ and transverse
normalized amplitude u⊥(y, z); they can be written as

Eµ(x) = iêσ

∫

dk

√

~kµνk
4πǫ(ω(kµ))

× (u⊥µ (y, z)b̂µ(kµ)e
ikµx − u⊥∗

µ (y, z)b̂†µ(kµ)e
−ikµx),

(2)
where ~ is the Planck constant, k the wavenumber, νk
the group velocity, b†µ(k) is the creation operator for field

µ and ǫ(ω(k)) = k2/µ0ω
2(k) with µ0 the permeability

of free space. In this treatment, we will consider co-
polarized and collinear fields, allowing for a scalar de-
scription of (2). The Schrödinger equation for the Hamil-
tonian is as follows

i~
d

dt
|ψ(t)〉 = HNL(t) |ψ(t)〉 , (3)

where the time-dependent Hamiltonian is obtained as
HNL(t) =

∫

d3reHLt/~HNLe
−HLt/~. It can be shown

that the energy conserving term for the TOSPDC pro-
cess is as follows

HNL(t) =

∫

dkp

∫

dk1

∫

dk2

∫

dk3S(k1, k2, k3, kp)

× b̂†(k1)b̂
†(k2)b̂

†(k3)â(kp)e
−i∆ωt + h.c.,

(4)
where ∆ω = ωp − ω1 − ω2 − ω3, with ωp and ωi (with
i = 1, 2, 3) the frequency of the pump and the downcon-
verted fields, respectively, and h.c. denotes the Hermitian
conjugate. In Eq. 4 the function S(k1, k2, k3, kp) is de-
fined as

S(k1, k2, k3, kp) = − 9~2

32π2
ǫ0χ

(3)

×
[

kpk1k2k3νkpνk1νk2νk3
ǫ(ω(kp))ǫ(ω(k1))ǫ(ω(k2))ǫ(ω(k3))

]1/2

×
∫

d3ru⊥p (y, z)u
⊥∗
1 (y, z)u⊥∗

2 (y, z)u⊥∗
3 (y, z)e−i(∆k)x,

(5)
where ∆k = −kp+ k1+ k2+ k3, which is also used in the
more explicit form ∆k(ω1, ω2, ω3) = −kp(ω1+ω2+ω3)+
k1(ω1) + k2(ω2) + k3(ω3) throughout the text.
We proceed in a similar fashion to reference [29], with

the asymptotic-in fields to the non-linear medium as co-
herent states in the form

|ψin〉 = exp

(
∫

α(k)â†kdk − h.c.

)

× exp

(
∫

β(k)b̂†kdk − h.c.

)

|vac〉 ,
(6)

where α(k), β(k) are the spectral envelopes of
the pump and the seed fields, defined such that

∫

dk|α(k)|2(
∫

dk|β(k)|2) represents the average photon
number of the pump (seed) in the interaction time. The
time dependent solution to (3) is given as

|ψ(t)〉 = exp

(
∫

α(k, t)â†kdk − h.c.

)

× exp

(
∫

β(k, t)b̂†kdk − h.c.

)

|ϕ(t)〉 .
(7)

In the above equation, the resulting complete state of
the system |ψ(t)〉 is expressed in such a way that the evo-
lution of the pump and seed fields appears explicitly (in
the operator formed by the product of the two exponen-
tials in Eq. (7); as is discussed below this corresponds
to the classical evolution - i.e. in the absence of quan-
tum mechanical effects - according to a set of coupled
differential equations (Eqns. (9), below). |ψ(t)〉 is then
be formed by this operator acting on a state |ϕ(t)〉, it-
self the result of a perturbative calculation (see Eq. (11),
below) based on an effective Hamiltonian (see Eq. (10),
below), which will lead to the result in Eq. (12). The
quantities α(k, t) and β(k, t) in Eq. (7) represent the
temporal evolution of the coherent input fields as

α(k, t) = α(k) + α̃(k, t), (8a)

β(k, t) = β(k) + β̃(k, t). (8b)

Note that in Eq. 8, α̃(k, t) and β̃(k, t)) are the time de-
pendent parts of the spectral envelopes. We assume that
the pump and seed fields follow a classical evolution de-
scription as in reference [29]. The quantum operators for
the pump and seed field are substituted by their classical
amplitude fields; it is then straightforward to obtain the
following coupled set of equations for the amplitudes ᾱ
and β̄

dα(kp, t)

dt
= − i

~

∫

dk1

∫

dk2

∫

dk3S(k1, k2, k3, kp)

× β(k1, t)β(k2, t)β(k3, t)e
−i∆ωt,

(9a)

dβ(k1, t)

dt
= −3i

~

∫

dk2

∫

dk3

∫

dkpS(k1, k2, k3, kp)

× β
∗
(k2, t)β

∗
(k3, t)α(kp, t)e

−i∆ωt.
(9b)

Note that in the undepleted pump approximation
dα(kp, t)/dt = 0, therefore α̃(k, t) = 0. By substitu-
tion of eq. (7) into eq. (3) one can obtain the effective
Hamiltonian
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Heff (t) =

∫

dkp

∫

dk1

∫

dk2

∫

dk3S(k1, k2, k3, kp)b̂
†(k1)b̂

†(k2)b̂
†(k3)â(kp)e

−i∆ωt

+

∫

dkp

∫

dk1

∫

dk2

∫

dk3S(k1, k2, k3, kp)b̂
†(k1)b̂

†(k2)b̂
†(k3)α(kp)e

−i∆ωt

+ 3

∫

dkp

∫

dk1

∫

dk2

∫

dk3S(k1, k2, k3, kp)β
∗
(k1, t)b̂

†(k2)b̂
†(k3)â(kp)e

−i∆ωt

+ 3

∫

dkp

∫

dk1

∫

dk2

∫

dk3S(k1, k2, k3, kp)β
∗
(k1, t)b̂

†(k2)b̂
†(k3)α(kp)e

−i∆ωt

+ 3

∫

dkp

∫

dk1

∫

dk2

∫

dk3S(k1, k2, k3, kp)β
∗
(k1, t)β

∗
(k2, t)b̂

†(k3)â(kp)e
−i∆ωt + h.c.,

(10)

which obeys the Schrödinger equation i~ d
dt |ϕ(t)〉 =

Heff |ϕ(t)〉. We can obtain the resulting quantum state
through a standard first order time-dependent perturba-
tive approach for |ϕ(t)〉 with the aid of eq. (10); the state
at t → ∞ is obtained as

|ϕ(∞)〉 ≈
(

1 + 1
i~

∞
∫

0

dt′Heff (t
′)

)

|vac〉 (11)

In what follows, we will assume that the three
TOSPDC modes are created in the same spatial mode
and with the same polarization, which simplifies the ef-
fective Hamiltonian, since the function S(k1, k2, k3, kp)
becomes symmetric in the sense of being invariant to per-
mutations of the arguments k1, k2 and k3.
Note that in obtaining an expression for the state

|ϕ(∞)〉 from Eq. 11, only 2 out of 5 terms in the effective
Hamiltonian, see Eq. 10, (the second and fourth terms)
yield a contribution to the resulting quantum state; the
remaining terms vanish because they involve an annihila-
tion operator acting on the vacuum state. The resulting
state can be expressed as follows

|ϕ(∞)〉 = |vac〉

+
2π

i~

∫

dk1

∫

dk2

∫

dk3

∫

dkpS(k1, k2, k3, kp)

× b̂†(k1)b̂
†(k2)b̂

†(k3)α(kp)δ(ωp − ω1 − ω2 − ω3) |vac〉

+
6π

i~

∫

dk1

∫

dk2

∫

dk3

∫

dkpS(k1, k2, k3, kp)

× β
∗
(k1, t)b̂

†(k2)b̂
†(k3)α(kp)δ(ωp − ω1 − ω2 − ω3) |vac〉 ,

(12)
where the first term is associated with third order
spontaneous parametric downconversion (TOSPDC)[24,
25], and the second term is associated with stimu-
lated, or seeded, third order parametric downconversion
(STOPDC).
The state in eq. (12) can be expressed as

|ϕ(∞)〉 = N (|vac〉+ cIII |III〉+ cII |II〉) (13)

with N = 1/
√

1 + c2III + c2II , and in terms of a three-
photon term |III〉 derived from the spontaneous process,

as well as a two-photon term |II〉 derived from the seeded
process, where cIII and cII are the corresponding prob-
ability amplitudes, obtained from Eq. (12) through nor-
malization of the states |III〉 and |II〉; these states can
be written as follows

|III〉 = 1√
6

∫

dk1

∫

dk2

∫

dk3φIII(k1, k2, k3)

× b̂†(k1)b̂
†(k2)b̂

†(k3) |vac〉 ,
(14a)

|II〉 = 1√
2

∫

dk1

∫

dk2φII(k1, k2)b̂
†(k1)b̂

†(k2) |vac〉 ,
(14b)

in terms of functions φIII(k1, k2, k3) and φII(k1, k2),
which are in turn normalized so that the integral of
the absolute value squared over all k-number arguments
yields unity. φIII(k1, k2, k3) and φII(k1, k2) can be ex-
pressed as follows

φIII(k1, k2, k3) =
2
√
6π

i~cIII

∫

dkpS(k1, k2, k3, kp)α(kp)

× δ(ωp − ω1 − ω2 − ω3),
(15a)

φII(k1, k2) =
√
3
cIII
cII

∫

dk3φIII(k1, k2, k3)β
∗(k3),

(15b)
where the terms cII and cIII can be expressed as follows

|cII |2 =
72π2

~2

∫

dk1dk2dk3dk
′
3dkpdk

′
pS

∗(k1, k2, k
′
3, k

′
p)

× S(k1, k2, k3, kp)β(k
′
3)β

∗(k3)α
∗(k′p)α(kp)

× δ(ω′
p − ω1 − ω2 − ω′

3)δ(ωp − ω1 − ω2 − ω3),
(16a)

|cIII |2 =
24π2

~2

∫

dk1dk2dk3dkpdk
′
pS

∗(k1, k2, k3, kp)

× S(k1, k2, k3, k
′
p)α

∗(kp)α(k
′
p)

× δ(ωp − ω1 − ω2 − ω3)δ(ω
′
p − ω1 − ω2 − ω3).

(16b)
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In the undepleted pump approximation for which both
sides of eq. (9a) vanish, we can integrate Eq. (9b) so as
to obtain the following expression for β(k1, t), in terms
of function φIII(k1, k2, k3)

β(k1, t) = β(k1) +
√

3
2cIII

∫

dk2
∫

dk3φIII(k1, k2, k3)β
∗(k2)β

∗(k3). (17)

Within this approximation, Eq.(7) can then be written
in terms of (17) as

|ψout〉 = D̂({αp}) exp
(
∫

(

β(k1, t)
)

b̂†(k1)dk1 − h.c.

)

× N (|vac〉+ cIII |III〉+ cII |II〉),
(18)

where D̂({αp}) is the displacement operator for the
pump. Note that we assume that the spectral overlap be-
tween the pump and the TOSPDC generation modes is
negligible, a reasonable assumption considering the large
spectral separation between them.
It is interesting to point out that equivalent expressions

for the stimulated process can be obtained if one starts
from a description of the electric field for each TOSPDC
generation mode as follows

Ẽi(x, t) = Êi(x, t) +E
cl
i (x, t), (19)

where Êi(x, t) is the corresponding quantized electric
field, and E

cl
i (x, t) is the classical seed field. By substi-

tution of Eq. (19) into the nonlinear Hamiltonian in Eq.
(1), we obtain three energy conserving terms as follows

HNL(t) = H0(t) +H1(t) +H2(t), (20)

where H0(t) represents the spontaneous process, while
H1(t) and H2(t) include the effect of the seed field over-
lapping with one or two TOSPDC modes, respectively.
These terms can be expressed as follows

H0(t) =

∫

dkp

∫

dk1

∫

dk2

∫

dk3S(k1, k2, k3, kp)

× b̂†(k1)b̂
†(k2)b̂

†(k3)â(kp)e
−i∆ωt + h.c.,

(21a)

H1(t) = 3

∫

dkp

∫

dk1

∫

dk2

∫

dk3S(k1, k2, k3, kp)

× β∗(k3)α(kp)b̂
†(k1)b̂

†(k2)e
−i∆ωt + h.c.,

(21b)

H2(t) = 3

∫

dkp

∫

dk1

∫

dk2

∫

dk3S(k1, k2, k3, kp)

× β∗(k2)β
∗(k3)α(kp)b̂

†(k1)e
−i∆ωt + h.c.

(21c)

Through the standard perturbative approach to first
order, we obtain the following state

|Ψout〉 = N
′(|vac〉+ cIII |III〉+ cII |II〉+ cI |I〉), (22)

in terms of normalization constant N ′, where the ex-
pressions for |III〉 and |II〉 are identical to those found
above, see Eqns. (14a) and (14b), while |I〉 is expressed
as follows

|I〉 =
∫

dk1φI(k1)b̂
†(k1) |vac〉 , (23)

with

φI(k1) =

√

3

2

cIII
cI

∫

dk2dk3φ(k1, k2, k3)β
∗(k2)β

∗(k3).

(24)
Note the similarity of Eq. (24) with the second term

in Eq. (17). Also note that through this approach we ob-
tain directly a one-photon contribution derived from dual
seeding, while in the previous asymptotic treatment this
contribution appears implicitly. In order to obtain the
double seeded contribution in the asymptotic treatment,
one may expand the exponential terms in (7), where it
should be noted that the seed operators do not com-
mute with those associated with the TOSPDC genera-
tion modes. Substitution of Eq. (13) into Eq. (7) then
yields the following output state

|ψ(∞)〉 = exp

(
∫

α(k, t)â†kdk − h.c.

)

×
[

1 +

∫

dkβ(k, t)b̂†(k)− h.c.+ · · ·
]

× [|vac〉+ cIII |III〉+ cII |II〉] ,

(25)

and by using the expression for β(k, t) obtained in Eq.
(17) one obtains the one photon (double seeded) term
with the correct coefficient. Of course, higher-order terms
which we will ignore here appear when expanding the
exponential in eq. (7).

III. EMITTED PHOTON FLUX

We are interested in calculating the effect of seeding
on the observed intensities of the output modes, as a
guide for future experiments. To this end, we calculate
the expectation value of the number operator for one of
the output modes, integrated over all k wavenumbers as
follows

N =

∫

dk 〈ψout| b̂†(k)b̂(k) |ψout〉 , (26)
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where N is calculated within the interaction time, which
is taken as the pulse duration if at least one of the fields
(pump and seed) is pulsed, or as the unit time (1s) if all
fields are CW. To obtain expectation values of the num-
ber operator per unit time in pulsed cases, the expression
in (26) should be multiplied by the repetition rate R.
By substitution of (18) into (26) and assuming that the
generated modes commute with the pump modes, we can
group the resulting expression in terms of the number of
modes that overlap the seed as follows

N = N0 +N1 +N2, (27)

where the Baker-Campbell-Hausdorff [40] formula has
been used so as to rearrange the non-commuting terms
related to the observed mode and the seed modes
as D̂†({β(k1, t)})b̂(k)D̂({β(k1, t)}) = b̂(k1) + β(k1) +
√

3
2cIII

∫

dk2dk3φ(k, k2, k3)β
∗(k2)β

∗(k3). Note that in

all calculations the integral interval will not include the
seed spectral range, to avoid summing the expectation
value of the seed photon number to the stimulated pho-
tons. The term N0 in eq. (27) corresponds to the rate of
spontaneous triplet generation, while the terms N1 and
N2 correspond to the generation rate in the TOSDPC
modes, given the presence of a seed field that can over-
lap one or two of the existing output modes, respectively.
The spontaneous term is easily evaluated as

N0 = 3|cIII |2, (28)

while the terms N1 and N2 are obtained from eq. (26)
with the aid of eq. (18) as follows

N1 = 2N0|β0|2Θ1, (29a)

N2 =
N0

2
|β0|4Θ2, (29b)

where we have written β(k) as β(k) = β0β̃(k); here, β̃(k)

is normalized so that |β̃(k)|2 has a unit integral, while
|β0|2 represents the average photon number of the seed
field, in terms of the frequency-integrated single-seed and
dual-seed overlap terms Θ1 and Θ2

Θ1 =

∫

dk1

∫

dk2

∣

∣

∣

∣

∫

dk3φIII(k1, k2, k3)β̃
∗(k3)

∣

∣

∣

∣

2

,

(30a)

Θ2 =

∫

dk1

∣

∣

∣

∣

∫

dk2

∫

dk3φIII(k1, k2, k3)β̃
∗(k2)β̃

∗(k3)

∣

∣

∣

∣

2

.

(30b)
It becomes clear that the resulting flux is proportional

to the product of three terms: i) the spontaneous, un-
seeded flux, ii) the seed intensity (square of the seed in-
tensity) for the single-seed (double-seed) case, and iii) a

frequency-integrated spectral overlap term between the
three-photon amplitude function φIII(k1, k2, k3) and the
seed. N1 quantifies the flux produced by the singly-
seeded process which is mathematically described by the
second term of Eq. 12. Note that this contribution can be
understood as analogous to the quantum state produced
by the processes of spontaneous parametric dowconver-
sion (SPDC) or spontaneous four wave mixing (SFWM),
in which for a sufficiently low parametric gain photon
pairs are produced; such a process has no classical ana-
logue. In contrast, the flux represented by N2 derived
from the presence of two seeds can be fully understood
in terms of the classical equations of motion for the pump
and seed fields, see Eqns. (9a) and (9b), and corresponds
to classical difference frequency generation in which a
new field with frequency ω3 = ωp −ω1 −ω2 is generated,
with ωp the pump frequency and ω1 and ω2 the seed fre-
quencies. Note also that the singly-seeded case can be
understood as double seeding with one of the seeds cor-
responding to vacuum fluctuations.
It is clear from equations (30) that the effect of seeding

will be highly dependent on the spectrum of the seed.
Note that a significant difference arises compared to the
photon-pair case studied by Liscidini and Sipe [29], where
only the term equivalent to our N1 exists.
While we have shown expressions for the total flux

(integrated over all wavenumbers of the mode in ques-
tion), on occasion it is the emission spectra instead which
are of interest. We thus define the singly-overlapped
and doubly-overlapped emission spectra N1(k1) and
N2(k1), respectively, so that

∫

dk1N1(k1) = N1 and
∫

dk1N2(k1) = N2. This leads to the following expres-
sions.

N1(k1) = 2N0|β0|2Θ1(k1), (31)

N2(k1) =
N0

2
|β0|4Θ2(k1),

in terms of spectrally-resolved overlap coefficients Θ1(k1)
and Θ2(k1), which are defined from eq. (30)

Θ1(k1) =

∫

dk2

∣

∣

∣

∣

∫

dk3φIII(k1, k2, k3)β̃
∗(k3)

∣

∣

∣

∣

2

, (32)

Θ2(k1) =

∣

∣

∣

∣

∫

dk2

∫

dk3φIII(k1, k2, k3)β̃
∗(k2)β̃

∗(k3)

∣

∣

∣

∣

2

.

(33)

A. Case I: Spontaneous, unseeded process

We proceed to calculate the photon flux in the absence
of a seed, i.e. for β(k) = 0, so as to establish a link with
previous TOSPDC studies [25, 26] and so as to define the
expressions that will be used for the seeded cases.
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It may be shown that the coefficient |cIII |2, which
determines the spontaneous generation rate as N0 =
3|cIII |2, may be expressed as follows in the case of a
pulsed pump

|cIII |2pulsed =
33
√
2~L2n4

0Pav

8π5/2ω2
0σpR

|γ|2

×
∫

dω1

∫

dω2

∫

dω3
ω1ω2ω3|f(ω1, ω2, ω3)|2

n(ω1)n(ω2)n(ω3)n(ω1 + ω2 + ω3)
,

(34)
in terms of the the repetition rate R, average power Pav,
and bandwidth σp of the pump laser; L the length of
the non-linear medium, n(ωi) is the refractive index at
frequency ωi (with i = 1, 2, 3), n0 the refractive index at
the central pump frequency ω0. The non-linear coefficient
γ can be expressed as [41]

γ =
3χ(3)ωofeff
4ǫ0c2n2

0

, (35)

written in terms of the spatial overlap feff between the
four fields involved in the TOSPDC and STOPDC pro-
cesses

feff =

∫ ∞

−∞

dy

∫ ∞

−∞

dzu⊥p (y, z)u
⊥∗
1 (y, z)u⊥∗

2 (y, z)u⊥∗
3 (y, z).

(36)
In Eq. 34, the joint amplitude function f(ω1, ω2, ω3)

can be written as

f(ω1, ω2, ω3) = ξ(ω1, ω2, ω3)Ξ(ω1, ω2, ω3), (37)

with

ξ(ω1, ω2, ω3) = e−(ω1+ω2+ω3−ω0)
2/σ2

p ,

Ξ(ω1, ω2, ω3) = sinc

(

L

2
∆k (ω1, ω2, ω3)

)

,
(38)

where the functions ξ(.) and Ξ(.) are the pump enve-
lope and the phase-matching function, respectively. It is
likewise of interest to evaluate the limit σp → 0 in Eq.
34 so as to obtain the spontaneous generation rate for
a monochromatic pump. It may be shown that in this
limit we obtain the following expression for |cIII |2

|cIII |2cw =
33~L2n4

0Pav

8π2ω2
0

|γ|2
∫

dω1

∫

dω2

× ω1ω2(ω0 − ω1 − ω2)|f(ω1, ω2, ω0 − ω1 − ω2)|2
n(ω1)n(ω2)n(ω0 − ω1 − ω2)n(ω0)

.

(39)

The spontaneous contribution to the photon flux N0

can be obtained with eq. (34) and eq. (39) by simple
substitution into eq. (28). The spontaneous case is not
explored further in this work, since it has been studied

in Refs. [25, 26]. Also, note that in a seeded scenario the
spontaneous contribution to the overall flux will tend to
be negligible when compared to the seeded output fields;
expressions for the generation rate in the presence of a
seed field will be presented in the following subsections.
We divide our analysis according to the spectral proper-
ties of the seed.

B. Case II: Pulsed seed

In this subsection, we analyze the case of a pulsed seed,
while the pump field is allowed to be pulsed or monochro-
matic.

1. Case IIa: Pulsed seed and pulsed pump

We first analyze the case for which both pump and seed
are pulsed. Note that seeding will produce an appreciable
effect only in those situations for which the pump and
seed are temporally and spectrally overlapped. In the
case where both seed and pump are in the form of a train
of pulses, this translates into the need for the two trains
to: i) be characterized by the same repetition rate, and
ii) for the pump and seed pulse maxima to be temporally-
coincident, i.e. with a vanishing temporal delay; in what
follows, t0 denotes the temporal delay between the two
pulse trains. It should be pointed out that in practice it
may be challenging for the pump and seed pulse trains,
at very different frequencies, to be temporally matched.

The spectral envelope of the seed field, assumed to be
Gaussian, may then be expressed in terms of the seed
central frequency ωs0 and bandwidth σs as

β(ω, t0) = β0

(

2

σ2
sπ

)1/4

β′(ω)eiωt0 (40)

where β′(ω) = e−(ω−ωs0)
2/σ2

s represents the adimensional
Gaussian spectral envelope function for the seed.

The resulting spectral overlap terms Θp,p
1 and Θp,p

2 , for
both fields pulsed (pump and seed) are, then, as follows

Θp,p
1 =

33n3
0PavL

2
~

22π3σpσsω2
0Rp

|γ|2
|cIII |2

∫

dω1

×
∫

dω3
ω1ω3

n(ω1)n(ω3)

∣

∣

∣

∣

∫

dω2

√

ω2

n(ω2)
β

′∗(ω2)e
−iω2t0

× f(ω1, ω2, ω3)e
iL
2
∆k(ω1,ω2,ω3)

∣

∣

∣

∣

2

,

(41a)

and
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Θp,p
2 =

33n3
0PavL

2
~

2
√
2ω2

0σ
2
sσpπ

7/2Rp

|γ|2
|cIII |2

∫

dω1
ω1

n(ω1)

×
∣

∣

∣

∣

∫

dω2

∫

dω3e
iL
2
∆k(ω1,ω2,ω3)

×
√

ω2ω3

n(ω2)n(ω3)
β

′∗
s (ω2)β

′∗
s (ω3)

× f(ω1, ω2, ω3)e
−i(ω2+ω3)t0

∣

∣

∣

∣

2

,

(41b)

for the cases where the seed overlaps one TOSPDCmode,
and two TOSPDC modes, respectively.

2. Case IIb: Pulsed seed and monochromatic pump

From the expressions which appear in the last subsec-
tion, it is possible to obtain versions for a monochromatic
pump by taking the limit σp → 0. We thus obtain the fol-
lowing expressions for the overlap terms Θcw,p

1 and Θcw,p
2

valid for a pulsed seed and monochromatic pump

Θcw,p
1 =

33|αp|2~2n3
0L

2

22
√
2σsπ5/2ω0

|γ|2
|cIII |2

×
∫

dω1dω3
ω1(ω0 − ω1 − ω3)ω3

n(ω1)n(ω0 − ω1 − ω3)n(ω3)

× |β′∗(ω0 − ω1 − ω3)|2Ξ2(ω1, ω0 − ω1 − ω3, ω3)

(42a)

and

Θcw,p
2 = 2

(

3

2

)3 |αp|2~2n3
0L

2

σ2
sπ

3ω0

|γ|2
|cIII |2

×
∫

dω1

∣

∣

∣

∣

∣

∫

dω3

[

ω1(ω
0 − ω1 − ω3)ω3

n(ω1)n(ω0 − ω1 − ω3)n(ω3)

]1/2

× β
′∗(ω0 − ω1 − ω3)β

′∗(ω3)Ξ(ω1, ω0 − ω1 − ω3, ω3)

∣

∣

∣

∣

∣

2

,

(42b)

for the cases where the seed overlaps one TOSPDCmode,
and two TOSPDCmodes, respectively, where |αp|2 repre-
sents the average pump photon number which temporally
overlaps the seed pulse.

C. Case III: Monochromatic seed

In this section we present expressions for the case
where the seed is monochromatic, while the pump is al-
lowed to be either pulsed or monochromatic.

1. Case III a: Monochromatic seed and pulsed pump

We obtain the following expressions for the overlap
terms Θp,cw

1 and Θp,cw
2 valid for a pulsed pump and

monochromatic seed.

Θp,cw
1 =

33~Pavn
3
0L

2ω1ω
′
s

22
√
2π5/2σpRω2

0n(ω1)n(ω′
s)

|γ|2
|cIII |2

×
∫ ∫

dω1dω2
ω2

n(ω2)
|f(ω1, ω2, ω

′
s)|2,

(43a)

and

Θp,cw
2 =

√
2

(

3

2

)3
Pav

π5/2σpRω2
0

~n3
0L

2 |γ|2
|cIII |2

×
∫

dω1|f(ω1, ω
′
s, ω

′
s)|2

ω1ω
′2
s

n(ω1)n2(ω′
s)
,

(43b)

for the cases where the seed overlaps one TOSPDCmode,
and two TOSPDC modes, respectively, where ω′

s is the
frequency of the monochromatic seed.

2. Case III b: Monochromatic seed and monochromatic

pump

We obtain the following expressions for the overlap
terms Θcw,cw

1 and Θcw,cw
2 valid for the case where both

pump and seed are monochromatic.

Θcw,cw
1 =

33~Pavn
3
0L

2

23π2ω2
0

|γ|2
|cIII |2

×
∫

dω1
ω1ω

′
s(ω0 − ω1 − ω′

s)

n(ω1)n(ω′
s)n(ω0 − ω1 − ω′

s)

× Ξ2(ω1, ω0 − ω1 − ω′
s, ω

′
s),

(44a)

Θcw,cw
2 =

(

3

2

)3
~Pavn

3
0L

2(ω0 − 2ω′
s)ω

′
s
2

π2ω2
0n(ω0 − 2ω′

s)n
2(ω′

s)

|γ|2
|cIII |2

× Ξ2(ω1, ω0 − ω1 − ω′
s, ω

′
s).

(44b)

This case for which the pump and seed are both
monochromatic, and therefore continuous wave, is partic-
ularly interesting because in contrast with the case where
both fields are pulsed, temporal overlap between them is
guaranteed with no additional effort.

D. Case IV: Multiple seed fields

We can straightforwardly extend our analysis to
the case where multiple seed fields are simultaneously
present, by an appropriate rewriting of the single-seed
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description. Let us assume that each seed field is a co-
herent state described by its respective displacement op-
erator D̂({βi}) |vac〉. If n different coherent states are
superimposed, for example by means of n − 1 dichroic
mirrors, the resulting field can be described as the prod-
uct ΠiD̂({βi}) |vac〉. This can be simplified under the as-
sumption that there is no spectral overlap between any
two seed fields, i.e.

∫

dkβ∗
i (k)βj(k) = 0, for all i 6= j,

leading to an effective single seed with amplitude

β(k) →
∑

i

βi(k). (45)

Note that under these assumptions,
∫

dk|β(k)|2 =
∑

i |βi|2, where |βi|2 is the average photon number for
each seed field. Note also that in the symmetric case for
which the function φ(k1, k2, k3) is invariant under per-
mutations of its arguments, the seeded throughputs can
be expressed as

N1 ≈ 2N0

∑

i

∫

dk1

∫

dk2

∣

∣

∣

∣

∫

dk3φ(k1, k2, k3)β
∗
i (k3)

∣

∣

∣

∣

2

,

(46a)

N2 ≈ N0

∑

i6=j

∫

dk1

×
∣

∣

∣

∣

∫

dk2

∫

dk3φ(k1, k2, k3)β
∗
i (k2)β

∗
j (k3)

∣

∣

∣

∣

2

+
N0

2

∑

i

∫

dk1

×
∣

∣

∣

∣

∫

dk2

∫

dk3φ(k1, k2, k3)β
∗
i (k2)β

∗
i (k3)

∣

∣

∣

∣

2

.

(46b)

One may note that the first term in N2, which cor-
responds to non-degenerate seed fields, can be used as
the basis for tomographic reconstruction if seeds i, j are
scanned within the phase-matched interval (see next sec-
tion). Note that in the specific situation where there are
two seed fields present, there are in general six contribu-
tions to the output field that can be described as follows:

i spontaneous term,

ii single overlap, of seed 1 with one TOSPDC mode.

iii double overlap, of seed 1 with two TOSPDC modes.

iv single overlap, of seed 2 with one TOSDPC mode.

v double overlap, of seed 2 with two TOSDPC modes.

vi double overlap, of seeds 1 and 2, each with a distinct
TOSPDC mode.

The possible dominance of some terms over the others
will depend on specific configurations of seeds, pump and
the nonlinear characteristics of the non-linear medium.

E. Stimulated Emission Tomography

Let us consider a specific multiple-seed configuration
(see previous section), specifically with two distinct seed
fields. Let us further assume that these seed fields are
sufficiently narrow, in frequency (or k-number), so that
we may approximate the integrals in eqs. (30) as

Θ1 ≈
∫

dk1

∫

dk2|φ(k1, k2, ki0)|2δki, (47a)

Θ2 ≈
∫

dk1|φ(k1, ki0, kj0)|2δkiδkj , (47b)

where δki (δkj) is the k-number bandwidth for the seed
field i (j). Let us rewrite the expressions for the single-
seed and double-seed throughput, Eqs. (29), explicitly in
terms of the two distinct seed fields i and j

N1 = 2N0|βki
0

|2Θ1, (48a)

N2 =
N0

2
|βki

0

|2|βkj
0

|2Θ2, (48b)

where |βki
0

|2 is the average photon number of the i seed

field, centered at ki0.
Now, for the double-seed term N2 let us assume

that a spectrally-resolved measurement is carried out
so as to determine the throughput for seed fields i
and j at each wavenumber k, N ij

2 (k), defined so that
∫

dkN ij
2 (k) = N2. We likewise define a spectrally-

resolved double-seed overlap Θ2(k) so that
∫

dkΘ2(k) =
Θ2. Note that the spectrally-resolved, doubly-seeed over-
lap term essentially corresponds to the joint spectral am-
plitude of the TOSPDC triplets as follows Θ2(k1) =

|φ(k1, ki0, kj0)|2δkiδkj . We can then write,

N ij
2 (k1) =

N0

2
|βki

0

|2|βkj
0

|2Θ2(k1)

=
N0

2
|βki

0

|2|βkj
0

|2|φ(k1, ki0, kj0)|2δkiδkj . (49)

It is then a simple matter to re-write this expression
as

N0

2
|φ(k1, ki0, kj0)|2 =

N ij
2 (k1)

|βki
0

|2|βkj
0

|2δkiδkj
. (50)

This relationship forms the basis for the stimulated
emission tomography (SET) which could be implemented
for the spectral characterization of the photon-triplet
joint spectral intensity. For each pair of values ki and kj
which are scanned (rasterized) within the phasematched
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FIG. 2. Plot of the TOSPDC joint spectral intensity
|f(λ1, λ2, λ3)|

2 in the frequency-degenerate source configura-
tion. Marginal distributions are shown on each of the three
coordinate planes.

region, the resulting measured spectrum N ij
2 (k1) is di-

vided by the product of the seed intensities and their
bandwidths. By accumulating measurements for the dif-
ferent ki and kj values, one may in principle extract

the desired |φ(k1, ki0, kj0)|2 joint spectral intensity for the
TOSPDC photon triplets.
Note that while photon-triplet SET is based on two

independent, singly-overlapped seed fields, the presence
of additional signals derived from i) doubly-overlapped
seeding for one or both of the seed fields, and ii) one of
the seed fields exhibiting overlap but not the other, may
constitute sources of noise for the SET measurement,
since it is impossible to discern whether a particular out-
put photon is derived from SET or from these two other
competing seeded TOSPDC variations. However, SET
is likely to yield usable information because: i)the sig-
nal obtained from a doubly-overlapped single seed tends
to be spectrally localized, and ii) the signal from single
seeding is orders of magnitude smaller than that derived
from double seeding.

IV. STIMULATED GENERATION IN A

SPECIFIC SITUATION

In this section, we present the results of simulations of
the expected stimulated throughputs and emission spec-
tra for a specific TOSPDC configuration. The source
characteristics assumed here are the same ones as used
in a previous proposal from our group [25, 26], with a
non-linear medium in the form of a thin optical fiber with
core radius of r = 0.395µm of length 1cm. The pump is
first assumed to be centered at ωp = 2πc/0.532µm, with
bandwidth of 4.7/2π THz, travelling in the HE12 spatial
mode. The generated TOSPDC modes are centered at
ωi = ω/3 in the mode HE11. The resulting TOSPDC
JSI is shown in Fig. 2 , with darker shades of gray rep-

1500
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1600
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1600

1700
1500

1600
1700

FIG. 3. Plot of the TOSPDC joint spectral intensity
|f(λ1, λ2, λ3)|

2 in the frequency non-degenerate source con-
figuration. Marginal distributions are shown on each of the
three coordinate planes.

resenting higher probabilities of emission. On the walls
we have shown plots of the two-photon marginal spectral
distributions obtained by tracing over one of the gener-
ation modes. Note that this configuration corresponds
to the degenerate case, with triplet emission peaked at
ω1 = ω2 = ω3 = ωp/3. Note also that the concavity of the
JSI is towards the origin, in the joint emission wavelength
space, as is evident from the fact that the two-photon
marginals extend towards λ < 3λp (with λp = 2πc/ωp).
In Fig. 3 we depict the TOSPDC JSI for the ex-

perimental situation as above, except that the pump
frequency is shifted from ωp = 2πc/0.532µm, to
2πc/0.531nm. It is clear from the absence of an emission
maximum at ωp/3 that this corresponds to a spectrtally
non-degenerate source configuration.
Note that in accordance with eq. (21b), and (30a), sin-

gle seeding corresponds to taking a ‘slice’ of the TOSPDC
JSI at the seed frequency, i.e. to the intersection between
the three-dimensional JSI and a plane placed at the seed
frequency, as shown schematically for the non-degenerate
case, in Fig. 4(a). The function thus obtained, with two
frequency arguments, can be either: i) integrated over
both frequency arguments for the total seeded flux, or ii)
integrated over one of the frequency arguments for the
seeded emission spectrum (shown as a blue curve in Fig.
4(a). Similarly, in accordance with Eq. (21c), and (30b),
double seeding corresponds to taking a double slice, i.e.
to the triple intersection between the JSI, a plane placed
at the first seed frequency, and a second plane orthogonal
to the first placed at the second seed frequency, as shown
schematically for the non-degenerate case, in Fig. 4(b).
The function thus obtained may be i) left intact for the
emission spectrum, or ii) integrated over the frequency
argument for the total flux,
We now proceed to present numerical evaluations of

the seeded throughputs obtained for various situations
of interest, based on the source described above. We
are interested in comparing the behavior, in the presence
of seeding, of the degenerate and non-degenerate source
configurations (see Figures 5 and 6). For both of these
configurations, we are also interested in comparing the
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(a) (b)

FIG. 4. Schematic for: (a) singly-overlapped seeding,
which corresponds to the intersection of a plane at the seed
frequency with the joint spectral intensity. (b) doubly-
overlapped seeding, which corresponds to the intersection of
two orthogonal planes defined by each of the two seeds with
the joint spectral intensity.

resulting behavior when the pump and seed fields are
selected as pulsed or monochromatic in all possible com-
binations.

At first we assume that both the pump and seed are
monochromatic. In order to be able to provide numerical
estimates for the throughputs, we (arbitrarily) assume
a pump power of 200mW and a seed power of 10mW.
For the degenerate source configuration resulting from a
pump wavelength 532nm, and in the presence of a single
seed frequency, Fig. 5(a) shows the emitted spectra (col-
ored solid lines)N1(λr) obtained for a number of different
seed frequencies λseed, as derived from singly-overlapped
seeding. The dashed line shows the doubly-overlapped
(i.e. frequency-degenerate double seed) throughput ob-
tained in the presence of a single seed frequency ωseed at
frequencies ωr which fulfil the energy conservation con-
straint ωr = 2ωp − ωseed.

Fig. 5(b) shows (blue curve) the total flux expected
for each seed frequency, obtained by integrating the in-
dividual singly-seeded spectra from panel (a). So as to
compare with the degenerate double-seed case, we also
present in the same axis the doubly-seeded behavior (red
curve), already shown in panel (a). It becomes clear from
this figure that the doubly-seeded case leads to three or-
ders of magnitude greater flux as compared to the singly-
seeed cases. Note that the doubly-seeded flux is indeed
expected to be greater than the singly-seeded flux by
a factor proportional to the product of the second seed
intensity and the quotient of the overlap terms Θ2/Θ1

(see Eqs. (48) and (49)), which in this case amounts
to these three orders of magnitude. Finally, panel (c)
shows the doubly-seeded throughput obtained by letting
the two seed frequencies ωseed1 and ωseed2 vary inde-
pendently. Note that we can recover the red curve in
panel (b) by evaluating this non-degenerate doubly-seed
response along the line ωseed1 = ωseed2.

Let us now turn our attention to the non-degenerate
source configuration, with a pump wavelength λp =
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FIG. 5. For the frequency-degenerate source configuration:
(a) Colored continuous lines indicate spectra obtained from
singly-overlapped seeding, while the dotted line indicates
doubly-overlapped seeding at degenerate seed frequencies. (b)
the blue line is the total flux at each seed frequency obtained
as the integral of the spectra in panel (a), while the red line
indicates doubly-overlapped seeding at degenerate seed fre-
quencies also shown in (a). (c) Doubly-overlapped seeded
flux obtained with independently-varying seed frequencies.
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FIG. 6. For the frequency non-degenerate source configura-
tion: (a) Colored continuous lines indicate spectra obtained
from singly-overlapped seeding, while the dotted line indicates
doubly-overlapped seeding at degenerate seed frequencies. (b)
the blue line is the total flux at each seed frequency obtained
as the integral of the spectra in panel (a), while the red line
indicates doubly-overlapped seeding at degenerate seed fre-
quencies also shown in (a). (c) Doubly-overlapped seeded
flux obtained with independently-varying seed frequencies.

531nm, for the case where both the pump and seed are
monochromatic. Again, we assume a pump power of
200mW and a seed power of 10mW. Fig. 6(a) shows
the emitted spectra (colored solid lines) N1(λr) obtained
for a number of different seed frequencies λseed, as de-
rived from singly-overlapped seeding. The dashed line
shows the doubly-overlapped (i.e. frequency-degenerate
double seed) throughput obtained in the presence of a
single seed frequency ωseed at frequencies ωr which fulfil
the energy conservation constraint ωr = 2ωp − ωseed.

Fig. 6(b) shows (blue curve) the total flux expected
for each seed frequency, obtained by integrating the in-
dividual singly-seeded spectra from panel (a). So as to
compare with the degenerate double-seed case, we also
present in the same axis the doubly-seeded behavior (red
curve), already shown in panel (a). As for the degener-
ate source configuration, the doubly-seeded case leads to
three orders of magnitude greater flux as compared to the
singly-seeed cases. Also note that in contrast with the de-
generate source configuration, the frequency-degenerate
doubly-seeded case is in the form of two sharp peaks
while the singly-seeded contribution is spectrally broad.
Finally, panel (c) shows the doubly-seeded throughput
obtained by letting the two seed frequencies ωseed1 and
ωseed2 vary independently. Note that we can recover the
red curve in panel (b) by evaluating this non-degenerate
doubly-seed response along the line ωseed1 = ωseed2. Also
note that in contrast with the degenerate source configu-
ration this N2 behavior with non-degenerate arguments
is in the form of a ring instead of a single broad peak.

We have contrasted the behavior, under singly- and
doubly- overlapped seeding, of the degenerate and non-
degenerate source configurations. In order to compare
for each of these configurations the behavior when each of
the pump and seed are allowed to be pulsed or monochro-
matic, we select four spectral points from Figs. 5 and 6,
and show the resulting throughputs in Table I. Point
A, with λ1 = 1596nm, corresponds to the location of
the maximum rate of seeded throughput for the degen-
erate source configuration. In the presence of a single
seed wavelength for the non-degenerate source configu-
ration, Point B with λ1 = 1521nm, corresponds to one
of two maxima of the singly-overlapped seeded through-
put, while point C with λ1 = 1557nm, corresponds
to one of two maxima of the doubly-overlapped seeded
throughgput. Finally, point D with λ1 = 1532nm and
λ2 = 1664nm, corresponds to a non-degenerate selection
of seeds, both exhibiting overlap with the JSI.

Note, for point A, that while the throughput difference
between the doubly-overlapped and singly-overlapped
cases is 3 orders of magnitude for the monochromatic-
monochromatic situation (as was already pointed out),
this difference grows to a remarkable 8 orders of mag-
nitude for the pulsed-pulsed situation. Points B and C
illustrate that at a singly-overlapped (and non-doubly-
overlapped) spectral location (i.e. point B), N2 drops
sharply as expected, compared to point C where both
types of overlap occur. Nevertheless, the drop in N2 for
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point B is orders of magnitude less severe for the pulsed-
pulsed situation, as compared to the monochromatic-
monochromatic situation, since for the former the non-
zero bandwidths involved ensure that some overlap with
the JSI survives. Point D illustrates that for double-
overlap with dissimilar seed frequencies, the result-
ing throughput is similar as compared to the case of
frequency-degenerate seeds.
In obtaining the values shown in the table, we have

assumed for the pulsed configurations a pump band-
width of σp = 4.7× 1012/2π Hz and a seed bandwidth
σs of a tenth of this value, i.e. σs = σp/10, while
we have assumed a repetition rate of 10MHz (for both
pump and seed). In the case where both fields are
pulsed we have assumed that they are perfectly tempo-
rally matched. It is clear from these results that the
pulsed-pulsed situation leads to the greatest emitted flux,
4 (9) orders of magnitude larger as compared to that
obtained in the monochromatic-monochromatic situa-
tion for singly-overlapped (doubly-overlapped) seeding.
The mixed cases, i.e. monochromatic-pulsed and pulsed-
monochromartic, are clearly less interesting with a much
reduced flux due to the resulting hampered temporal
matching between pump and seed. Obtaining perfect
temporal matching between a pulsed pump and a pulsed
seed may be challenging in practice unless one of them
gives rise to the other through an appropriate non-linear
process [42]. In cases where such pulsed temporal match-
ing is unfeasible, the monochromatic-monochromatic sit-
uation is claerly the best alternative.

V. CONCLUSIONS

In conclusion, we have analyzed theoretically as well as
numerically, the process of stimulated third-order para-
metric downconversion (STOPDC). The work is based
on our previous studies of third-order spontaneous para-
metric dowcnonversion (TOSPDC), with the addition of
seeding. We present a calculation leading to expressions
for the seeded throughput, which is a direct generaliza-
tion of previously-reported studies [29] on second-order
stimulated parametric downconversion. In our analysis,
we allow the seed or seeds to overlap one or two of the
TOSDPC modes, and likewise we allow the pump and
seed fields to be either monochromatic or pulsed. We
present general expressions for the spectra and flux pro-
duced by the STOPDC process, as well as a numeri-
cal study for a particular source design. We conclude
from our numerical study that doubly-overlapped seed-
ing can lead to a considerably greater flux (in the cases
shown by up to eight orders of magnitude) as compared
to singly-overlapped seeding. We furthermore describe

how doubly-overlapped seeding may be employed as the
basis for stimulated emission tomography which allows
for the reconstruction of the three-photon joint spectral
amplitude. We find that among the different combina-
tions of monochromatic and pulsed nature for the pump

TABLE I. Comparison of the resulting seeded throughput for
pump and seed in different combinations of being pulsed and
monochromatic (MC), at spectral points A (pertaining to the
degenerate, D , source configuration), and points B,C, and
D (pertaining to the non-degenerate, N D , source configura-
tion), as indicated in Figs. 5 and 6.

Wavelength NI(λ) [photons·s
−1] NII(λs1 , λs2) [photons·s

−1]

P
u
ls
ed

-P
u
ls
ed D A λ1 = 1596nm NI(λ1) = 4.0× 106 NII(λ1, λ1) = 1.025 × 1014

N
D

B λ1 = 1521nm NI(λ1) = 4.0× 106 NII(λ1, λ1) = 1.1× 1011

C λ1 = 1557nm NI(λ1) = 3.8× 106 NII(λ1, λ1) = 9.8× 1013

D λ1 = 1532nm NI(λ1) = 4.8× 106 NII(λ1, λ1) = 3.6× 1011

λ2 = 1664nm NI(λ2) = 4.4× 106 NII(λ2, λ2) = 1.3× 1010

NII(λ1, λ2) = 1.0× 1014

M
C
-M

C
D A λ1 = 1596nm NI(λ1) = 2.8× 102 NII(λ1, λ1) = 2.6× 105

N
D

B λ1 = 1521nm NI(λ1) = 3.0× 102 NII(λ1, λ1) = 14
C λ1 = 1557nm NI(λ1) = 82 NII(λ1, λ1) = 2.2× 105

D λ1 = 1532nm NI(λ1) = 1.25× 102 NII(λ1, λ1) = 2.6
λ2 = 1664nm NI(λ2) = 2.0× 102 NII(λ2, λ2) = 88

NII(λ1, λ2) = 2.5× 105

P
u
ls
ed

-M
C

D A λ1 = 1596nm NI(λ1) = 9.7× 10−12 NII(λ1, λ1) = 1.4× 10−9

N
D

B λ1 = 1521nm NI(λ1) = 8.9× 10−12 NII(λ1, λ1) = 4.8× 10−13

C λ1 = 1557nm NI(λ1) = 8.418 × 10−12 NII(λ1, λ1) = 1.1× 10−9

D λ1 = 1532nm NI(λ1) = 1.1× 10−11 NII(λ1, λ1) = 2.3× 10−12

λ2 = 1664nm NI(λ2) = 1.3× 10−11 NII(λ2, λ2) = 1.8× 10−12

NII(λ1, λ2) = 1.4× 10−9

M
C
-P

u
ls
ed

D A λ1 = 1596nm NI(λ1) = 3.8× 10−10 NII(λ1, λ1) = 6.0× 10−3

N
D

B λ1 = 1521nm NI(λ1) = 4.0× 10−10 NII(λ1, λ1) = 0
C λ1 = 1557nm NI(λ1) = 1.1× 10−10 NII(λ1, λ1) = 5.7× 10−3

D λ1 = 1532nm NI(λ1) = 1.7× 10−10 NII(λ1, λ1) = 3.0× 10−7

λ2 = 1664nm NI(λ2) = 2.6× 10−10 NII(λ2, λ2) = 3.7× 10−27

NII(λ1, λ2) = 5.2× 10−3

and seed fields, the pulsed-pulsed and monochromatic-
monochromatic cases lead to much greater throughputs
as compared to the mixed pulsed-monochromatic cases.
While the pulsed-pulsed situation is the ideal one permit-
ting the greatest seeded flux, the difficulty of attaining
temporal matching between two independent pulse trains
makes the monochromatic-monochromatic an attractive
alternative. We hope that this work will guide future ex-
perimental work on seeded third-order parametric down-
conversion.
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