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We investigate the thermal properties of interacting spin-orbit coupled bosons with contact in-
teractions in two spatial dimensions. To that end, we implement the complex Langevin method,
motivated by the appearance of a sign problem, on a square lattice with periodic boundary condi-
tions. We calculate the density equation of state non-perturbatively in a range of spin-orbit couplings
and chemical potentials. Our results show that mean-field solutions tend to underestimate the aver-
age density, especially for stronger values of the spin-orbit coupling. Additionally, the finite nature
of the simulation volume induces the formation of pseudo-condensates. These have been observed
to be destroyed by the spin-orbit interactions.

I. INTRODUCTION

The experimental realization of ultracold atomic sys-
tems with spin-orbit coupling (SOC), nearly a decade
ago [1–3], opened an exciting new set of directions for the
exploration of the properties of matter in extreme (yet
highly controllable) conditions. The SOC, which couples
the atomic pseudo-spin (which itself denotes the parti-
cle species or ‘flavor’) to momentum, is realized as the
coupling of conventional nonrelativistic neutral particles
to a synthetic non-abelian background gauge field [4–6].
Such a construction has potential applications for the
exploration of a variety of physical situations (including
Rashba- [7] and Dresselhaus-type [8] couplings). Notably,
these systems have been under intense scrutiny in recent
years as they may be used experimentally to realize exotic
phases of matter such as supersolids [9–11], superfluids
with a crystalline structure, and study exotic topological
properties [12–14].

More generally, ultracold bosons subject to SOC are
known, at mean field level, to exhibit stripe or plane
wave phases [15, 16]: the ground state wave function in
the former is composed of two plane waves propagating
in opposite directions, leading to an interference pattern,
while on the latter it has only one plane wave. Many
recent studies have investigated mean-field properties of
different types of SOC [17], and also first order (one loop)
quantum corrections [14, 18]. Recent theoretical studies
of spin-orbit coupling include its effect combined with fi-
nite angular momentum [19] and a harmonic trap [20].
As in other systems, characterizing the thermodynamics
and phase transitions of SOC particles in a precise fash-
ion requires non-perturbative approaches, such as Monte
Carlo simulations, which take full account of quantum
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and thermal effects. [Notably, Ref. [17] performed a clas-
sical Monte Carlo study, where thermal fluctuations were
assumed to be much larger than quantum ones.]

In this work, we use a lattice Monte Carlo approach to
characterize, in a non-perturbative fashion, some of the
basic thermodynamic observables of SOC bosons with
quartic interactions. Specifically, we use the complex
Langevin method to study of such a non-relativistic Bose
gas on a spacetime lattice, determining the density equa-
tion of state, pressure and pseudo-condensate fraction. In
our lattice formulation, the SOC interaction is compact-
ified and appears as a constant background non-abelian
gauge field. This allows for an easy study of the limit of
very large SOC compared to the momentum. We focus
on two spatial dimensions, as that is the smallest num-
ber of dimensions in which a finite temperature phase
transition is expected. Additionally, because we work in
the grand-canonical ensemble, it is no more expensive to
calculate with 100 particles than with 1 or 2, provided
that finite-size effects are under control.

II. MODEL AND LATTICE FORMULATION

We consider a system of (2 + 1)-dimensional non-
relativistic bosons with two hyperfine (pseudo-spin)
states, denoted by ↑ and ↓, in Euclidean spacetime. They
are subject to a Rashba-Dresselhaus spin-orbit coupling
(SOC) and density-density contact interactions. More
specifically, we will use the Euclidean action

S =

∫
d2xdτ L, (1)

where L = L0 + Lint,

L0 =Φ†(∂τ − µ)Φ

− Φ†
(−i11∂x − κxσx)2 + (−i11∂y − κyσy)2

2m
Φ , (2)
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is the free part, and

Lint =
λ

4

[(
φ†↑φ↑

)2
+
(
φ†↓φ↓

)2]
+
g

2

(
φ†↑φ↑φ

†
↓φ↓

)
, (3)

is the interacting part. In the above equations, Φ =
[φ↑ φ↓]

T , µ is the chemical potential for both species,
m is the mass, λ and g are the intra- and inter-species
couplings, and κx and κy characterize the spin-orbit in-
teraction coupled to the σx and σy Pauli matrices. Note
that, by virtue of the SOC, neither particle number is
individually conserved, but the total particle number is,
such that µ is a sensible chemical potential.

In order to perform our lattice studies, we discretise
the system in a hypercubic lattice of size N2

x × Nτ and
spacings a and aτ in the spatial and temporal directions,
respectively. The temperature is given by T = β−1 =
1/aτNτ . We assume periodic boundary conditions in all
directions: this is necessary in the temporal direction for
bosonic fields. The SOC enters the action in the same
way as a background SU(2) gauge field, similar to a min-
imal coupling. On the lattice, the SOC is treated as a
background non-abelian gauge field and it is discretized
in the same way [21, 22]. The discretized version of the
action, with the fields and couplings being rescaled by
appropriate powers of the lattice spacing, is given by

S = ξ
∑

~x,τ

{
Φ†(~x,τ)

(
Φ(~x,τ) − eξµΦ(~x,τ−aτ )

)
ξ−1

− 1

2m

∑

j

Φ†(~x,τ)

[
vjΦ(~x+aĵ,τ) + v†jΦ(~x−aĵ,τ) − 2Φ(~x,τ)

]

+
λ+ g

8

(
Φ†(~x,τ)Φ(~x,τ−aτ )

)2

+
λ− g

8

(
Φ†(~x,τ)σzΦ(~x,τ−aτ )

)2}
, (4)

where ĵ represents a unit vector in the j-th direction,
vj = e−iκjσj , and ξ = aτ/a is the lattice spacing
anisotropy factor. The chemical potential has been intro-
duced using the standard lattice formulation [23]. The
contact interactions have been regularized in the same
way as the number density operator. This formulation
displays explicitly the global SU(2) flavor symmetry of
the contact interactions when λ = g, and the conserva-
tion of the total particle number by all interactions due
to the global U(1) symmetry.

In this work, we study the interplay between the self-
coupling λ and the spin-orbit couplings κx and κy. The
choice of λ > g leads to, at mean field level, a ground
state described by a single plane wave [17], where we
focus our studies for this work. We choose g = 0 for
simplicity1. The coupling g between different pseudo-
spins is left for a future publication.

1 Rotational properties of a similar system, but in three dimen-
sions, have been studied in [19].

A. Exact solution in the quadratic case

When the quartic terms are not present, the action
(hereafter referred to as Sfree) can be written in momen-
tum space as

Sfree =
∑

~p,ω

Φ̃†(~p,ω)M(~p, ω, µ,~κ)Φ̃(~p,ω) , (5)

with

M =

[
T + v+x + v−x + v+y + v−y v+x − v−x − i(v+y − v−y )
v+x − v−x + i(v+y − v−y ) T + v+x + v−x + v+y + v−y

]
,

(6)
where v±j = ξ sin2((pj±κj)/2)/m, and T = (1−eξµeiωq ).
The lattice momenta and Matsubara frequencies are
given by pj = 2πkj/Nx, with kj = 0, . . . , Nx − 1, and
ωq = 2πq/Nτ with q = 0, . . . , Nτ − 1, respectively. The
tildes represent Fourier transforms. The matrix M can
be diagonalized via a change to the helicity basis:

[
ϕ+

ϕ−

]
=




(v+x −v
−
x )+i(v+y −v

−
y )√

2[(v+x −v−x )2+(v+y −v−y )2]

1√
2

− (v+x −v
−
x )+i(v+y −v

−
y )√

2[(v+x −v−x )2+(v+y −v−y )2]

1√
2



[
φ↑
φ↓

]
, (7)

with eigenvalues

λ±(~p, ω, µ,~κ) = T + v+x + v−x + v+y + v−y

±
√

(v+x − v−x )2 + (v+y − v−y )2 . (8)

leading to the grand thermodynamic potential Ω via

βΩfree(µ,~κ) = − lnZfree

=
∑

~p,ω

[lnλ+(~p, ω, µ,~κ) + lnλ−(~p, ω, µ,~κ)] . (9)

It is clear from the above equation that, since px and py
run over the same interval, the free energy is symmet-
ric under κx ↔ κy. Moreover, the partition function on
the lattice is an even, periodic function of the spin-orbit
couplings, with period π (in lattice units). This periodic-
ity is a lattice artifact that disappears in the continuum
limit.

The average density of the noninteracting case can be
obtained by differentiation with respect to βµ:

〈n〉 =
1

V

∂ lnZ
∂(βµ)

=
∑

s=±

∑

~p,q

1

1−Xs(~p, µ)e−iωq
, (10)

where

Xs(~p, µ) = e−ξµ(1 + λs − T ). (11)

It can be shown that the sum over the Matsubara fre-
quencies can be carried out, which yields

〈n〉 =
1

V

∑

s=±

∑

~p

1

[Xs(~p, µ)]Nτ − 1
. (12)
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In the ξ → 0 limit,

[Xs(~p, µ)]Nτ → eβ(εs(~p,~κ)−µ) (13)

where, in the continuum limit,

ε±(~p,~κ) =
|~p|2 + |~κ|2

2m

± |~p||~κ|
m

√
cos2(θκ) cos2(θp) + sin2(θκ) sin2(θp) ,

(14)

with θp = tan−1(py/px) and θκ = tan−1(κy/κx).
The continuum eigenvalues are given by

λ± = −iω − µ+ ε±(~p,~κ). (15)

Notice that, for ω = |~κ| = 0, λ± vanishes at zero mo-
mentum and µ = 0, signaling the well known instability
associated with Bose-Einstein condensation. For |~κ| 6= 0,
the instability shifts to µ 6= 0 and exists for both |~p| = 0
and |~p| 6= 0. The continuum eigenvalues have been stud-
ied in three dimensions in the Hamiltonian formulation
for isotropic spin-orbit coupling in Ref. [24]. Addition-

ally, one can see that N± = ϕ†±ϕ± are conserved, and
that N+ +N− = N↑ +N↓.

Using trigonometric identities it is possible to show
that v+i + v−i = ξ(1− cos(pi) cos(κi))/m→ (p2i +κ2i )/2m
and v+i −v−i = ξ sin(pi) sin(κi)/m→ piκi/m. The arrows
represent the behaviour in the näıve continuum limit. It
is then clear that κi = ±π/2 makes the p2i term vanish on
the lattice, corresponding to the limit where |κi| � |pi|
in the continuum, such that the p2i term can be ignored.
When |~κ| � |~p|, such that the |~p|2 term is negligible,
the single particle Hamiltonian becomes an anisotropic
Weyl Hamiltonian with ~v0 = ~κ/m playing the role of the
(anisotropic) speed of light and an effective chemical po-
tential of −m|~v0|2/2. A similar case has been discussed,
in the context of ultracold fermionic atoms, in Ref. [25].

III. MANY-BODY METHOD

The first order time derivative in the action is a non-
Hermitian operator, making e−S a complex weight for
the path integral; this is known as phase (or sign)
problem. This prevents the use of traditional Monte
Carlo methods, since they use e−S as a probability
weight. One alternative in this scenario is the complex
Langevin technique, which has been used to study the-
ories with sign problems such as those with repulsive
interactions [26] as well as polarized [27, 28] and mass-
imbalanced fermions [29] (see Ref. [30] for a review), finite
density QCD with staggered quarks [31–34], random ma-
trix models [35, 36], rotating bosons [37, 38], superstring-
inspired matrix models [39], among others.

The complex Langevin method is an extension of
stochastic quantisation [40]. The latter method consists

of evolving the fields along a fictitious time dimension, θ,
according to the Langevin equation

∂φs(x, τ)

∂θ
= − δS

δφs(x, τ)
+ ηs(x, τ) , (16)

where ηs(x, τ) is a Gaussian white noise field satisfying

〈ηs(x, τ)〉η = 0 , (17)

〈ηs(x, τ)ηs′(x
′, τ ′)〉η = 2δ(x− x′)δ(τ − τ ′)δss′ , (18)

with 〈·〉η indicating an ensemble average over the noise
field. Quantum expectation values are obtained as

〈Ô〉 = lim
θ→∞
〈Ô(φ↑(θ), φ↓(θ))〉η , (19)

where O is some observable. In practice, the Langevin
equations are solved numerically with a step size ε > 0,
chosen adaptively [41]. We follow an Euler-like dis-
cretization scheme in this work. This generates a se-
quence of field configurations. Ensemble averages are
performed as simple averages of the observables calcu-
lated using the configurations generated after the system
reaches its steady state.

In order to deal with theories that have a complex ac-
tion, each of the fields has to be complexified [42–48].
For complex fields, both the real and imaginary parts
become complex and obey the Langevin equation (16).
We choose the noise to remain real [49]. Expectation
values are calculated in the same way as in the case with
real action. Note that real observables do become com-
plex in this method, but their imaginary parts should be
statistically compatible with zero.

In the complex Langevin method the fields obey a
(Langevin-)time dependent real probability distribution
P defined on a complexificationMc of the original man-
ifold M. It can be shown that if the observables and
action are holomorphic functions with sufficiently fast de-
cay in the imaginary directions ofMc, limθ→∞ P ∝ e−S ,
which is the weight on the path integral (for a more de-
tailed description, see [48, 49]). Effects of slow decay in
the imaginary directions have been studied in [50, 51].

The average density was calculated as

〈n〉 =
1

V

∂ lnZ
∂(βµ)

=
1

V

∑

x,τ

〈nx,τ 〉

=
eξµ

V

∑

x,τ

〈
Φ†(x,τ)Φ(x,τ−aτ )

〉
, (20)

where the angular brackets on the right-hand side in-
dicate an average over configurations generated by the
Langevin process. Mean-field results can be obtained by
solving the Langevin equation without noise, which finds
the minimum of the action.

We have performed our simulations on a periodic lat-
tice of volume 202 × 64, a spacing anisotropy of ξ = 1/8,
and mass m = 1. These parameters lead to a thermal
wavelength of ∼ 7 in lattice units, which is consistent
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FIG. 1. Average particle number density, in units of the spa-
tial lattice spacing a, as a function of the spin-orbit couplings
at λ = 0. The simulations were performed at βµ = −0.8.

with the continuum limit window 1� λT /a� Nx. This
also guarantees that effects due to the choice of boundary
conditions should be small. The Langevin step size was
chosen adaptively, with average of O(10−4). We have
estimated the auto-correlation time via the method pro-
posed in [52]. The error bars shown in our plots represent
statistical errors.

IV. RESULTS

A. Quadratic case

We have studied the case of non-interacting (λ = 0) ex-
actly on the lattice. The average particle number density
can be seen in Fig. 1. One can see that the density has its
minimum when the system becomes Weyl-like, i.e., when
the p2 term in the Hamiltonian is much smaller than ~σ ·~p
and can be neglected.

At βµ ≥ 0 and κx = κy = 0 the condensation of
bosons in the ground state makes the simulation unsta-
ble. This condensation is sharper at T = 0 and softer
at T > 0, which is our case. For non-zero spin-orbit
couplings, however, the chemical potential where such
condensation happens is pushed to larger values due to
the κ2 term behaving as an effective chemical potential.
To better visualise this, we have calculated the average
density as a function of κx and κy by including only their
effect on the chemical potential, i.e., the terms propor-
tional to cos(κj), and ignoring the sin(κj) terms (~σ · ~p
in the continuum). The result is shown in Fig. 2. The
figure further shows that the ~σ · ~p term in the continuum
action has a non-trivial effect on the average density.

0.00π 0.25π 0.50π
aκx

0.00π

0.25π

0.50π

a
κ
y

0 0.005 0.01 0.015 0.02 0.025

FIG. 2. Average particle number density, in units of the spa-
tial lattice spacing a, as a function of the spin-orbit couplings
at λ = 0 and ignoring the sin(κj) terms. The simulations
were performed at βµ = −0.8.
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−1.6 −1.2 −0.8 −0.4 0 0.4

Im
[ a

2
〈n
〉]

βµ

aκ = 0.1π/2
aκ = 0.3π/2
aκ = 1.0π/2

FIG. 3. Imaginary part of the average density, in units of
the spatial lattice spacing a, as a function of βµ for differ-
ent values of the spin orbit coupling. We have considered an
interaction between particles of the same pseudo-spin, with
coupling λ/a = 0.5. Points have been slightly shifted hori-
zontally for clarity.

B. Interacting case I – isotropic SOC

As an initial check on the ability of the complex
Langevin method to give correct results, we have looked
at the imaginary part of the density. Despite the sign
problem in the Euclidean formulation, the density is ex-
pected to be (statistically compatible with) zero. This
can be verified in figure 3. Throughout this section we
have used κx = κy ≡ κ. Complex-valued densities would
indicate a failure of the simulations.

The repulsive quartic couplings, similarly to the spin-
orbit couplings, have the effect of keeping the system
stable at small but positive chemical potentials. This
can be seen in Fig. 4, where we show the average density
as function of βµ for different values of (isotropic) SOC
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aκ = 0.1π/2
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aκ = 0.6π/2

FIG. 4. Average total density, in units of the spatial lat-
tice spacing a, for different values of aκ as a function of βµ
at λ/a = 0.5. We also show the non-interacting results for
SOC of κ = 0 (short dashes), aκ = 0.1π/2 (long dashes),
aκ = 0.4π/2 (dotted), and aκ = 0.6π/2 (dash-dotted). The
continuous lines indicate the mean field result at κ = 0
(darker) and aκ = 0.1π/2 (lighter).

at λ/a = 0.5. As in the case of λ = 0, indicated by the
long-dashed, short-dashed, dotted and dash-dotted lines
for each κ, we observe smaller densities as the spin-orbit
coupling increases.

The mean field average density is also shown in the
figure. For each flavour, it is given by

〈ns〉 =
2eξµ(eξµ − 1− ξ/m(cos(κx) + cos(κy)− 2))

ξλ
,

(21)
and is zero when the right-hand side is negative. For the
larger values of κ shown in the figure, the mean field den-
sity becomes positive at much higher values of βµ. The
mean field average density for aκ = 0.4π/2 and 0.6π/2 is
very small for the chemical potentials considered and not
shown on the figure. It is clear that the average density
is not well described by the mean field result for µ ≤ 0
and/or κ > 0.

In order to have a better look at the effect of the SOC
over the bosonic system, we show in Fig. 5 how the av-
erage density changes as we vary κ. For comparison, we
also show the mean field density at βµ = 0.4 and non-
interacting results at βµ = −0.4 and βµ = 0.0. In all
cases, an increase in the spin-orbit coupling has led to
decreasing average densities as the system gets closer to
the Weyl-like state.

We have also calculated the pressure difference from a
reference value via the Gibbs-Duhem relation

P (µ)− P (µ0) =

∫ µ

µ0

〈n(µ′)〉dµ′ . (22)

The numerical integration has been carried out using the
trapezoid rule, with βµ0 = −1.6 as reference point. We
have estimated the errors via bootstrapping with 1000
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0.40
0.45

0.0π 0.1π 0.2π 0.3π 0.4π 0.5π

a
2
〈n
〉

aκ

βµ = 0.4
βµ = 0.0
βµ = −0.4
MF(βµ = 0.4)

FIG. 5. Average total density, in units of the spatial lattice
spacing a, as a function of aκ at λ/a = 0.5. The solid line
indicates the mean field result at βµ = 0.4, while the dashed
line and dotted lines show the non-interacting results for βµ =
−0.4 and βµ = 0.0, respectively.
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2 T
β
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(β
µ
)
−
P
(−
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aκ = 0.4π/2
aκ = 0.6π/2

FIG. 6. Pressure difference as a function of βµ for differ-
ent spin-orbit couplings aκ. We have used the pressure at
βµ0 = −1.6 as reference for each SOC, and plotted in units
of (βλ2

T )−1.

samples. The results are shown in figure 6. The pressure
difference in the plot is shown in units of 1/βλ2T . One
can see that the pressure, as function of µ and κ behaves
similarly to the density, which should be expected from
the Gibbs-Duhem relation. As the chemical potential
increases, we see an accompanying increase in the pres-
sure, given the larger number of particles within the box.
Fig. 6 shows that the SOC decreases the density, and a
similar effect is observed in the pressure, although with
lesser intensity.

The confined nature of the simulation volume can in-
duce the formation of (pseudo-)condensates at finite tem-
perature. These condensates manifest themselves as off-
diagonal long range order in the correlation function be-
tween similar spins. The correlation function is, in gen-
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FIG. 7. Pseudo-condensate fraction as function of the spin-
orbit coupling aκ for different chemical potentials βµ. The fig-
ure shows how the off-diagonal long-range order is destroyed
by increasing the SOC.

eral, given by

Gss′ (|~x− ~y|) =
〈
φ†s(~x,τ)φs′(~y,τ)

〉
. (23)

We show, in figure 7, the condensate fraction,

Rss′ =
Gss′(aNx/2)

Gss′(0)
, (24)

between two pseudo-spin “up” fields, as a function of κ
and different values of βµ. A similar result is obtained
for two “down” spins. At κ = 0 we observe a finite con-
densate fraction, which tends to zero as κ increases, and
is larger for higher values of βµ. Beyond aκ > 0.1π, our
results for R are compatible with zero and thus excluded
from the plot. The correlations between fields of different
spins have been measured to be statistically compatible
with zero for all values of κ and µ considered.

The above results indicate a destructive interplay be-
tween the spin-orbit coupling and condensation in fi-
nite systems in two spatial dimensions. A similar phe-
nomenon has been observed in three dimensions with an
inter-species coupling in [18], and isotropic s-wave cou-
pling [53].

C. Interacting case II – anisotropic SOC

We have investigated the effects of anisotropic spin-
orbit coupling, i.e., κx 6= κy, on the density equation of
state by using κy = ηsocκx, with 0 ≤ ηsoc ≤ 1. Because
of the symmetry κx ↔ κy in the partition function there
is no need to consider ηsoc > 1.

In figure 8 we plot the average density as function of
|~κ|. The x-axis has been normalized so that the max-
imum value of |~κ| is the same for all anisotropies. We
observe a slower decay of 〈n〉 as a function of |~κ| for
ηsoc < 1. We remind the reader that the mean field
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a
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a|~κ|/
√
1 + η2soc

ηsoc = 1.00
ηsoc = 0.50
ηsoc = 0.00

FIG. 8. Average number density, in units of the spatial
lattice spacing a, as function of the absolute value of the spin-
orbit coupling vector for βµ = −0.2. The lines display the
results for the non-interacting case of λ = 0: short dashes
shows ηsoc = 1.0, long dashes stand for ηsoc = 0.5, and the
dotted line represents ηsoc = 0.0.
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FIG. 9. Density equation of state, in units of the spatial
lattice spacing a, for anisotropic spin-orbit couplings at aκx =
0.25π/2 and λ/a = 0.5. Also shown are the non-interacting
results for ηsoc = 1.0 (short dashed line), ηsoc = 0.5 (long
dashed line), and ηsoc = 0.0 (dotted line). Mean field results
are very small and were omitted.

densities for negative chemical potentials are zero. At
ηsoc = 0.0 there is a periodic behaviour of period 2π/Nx
on the average density for both non-interacting and in-
teracting cases. In the former, we have verified it to be
a property of the partition function as a whole, and not
of the eigenvalues. Some remnant of this periodicity can
be seen at ηsoc = 0.5 for small values of |~κ|.

The density equation of state for different SOC
anisotropies is shown in figure 9 for both interacting
(points) and non-interacting (lines) cases. We have used
aκx = 0.25π/2. Mean field results are very small in com-
parison to those in the figure and therefore omitted. The
figure shows that the distincion between the interacting
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FIG. 10. Plot of the pseudo-condensate fraction as function
of the absolute value of the spin-orbit coupling magnitude,
for different SOC anisotropies at βµ = 0.4. The off-diagonal
long-range order survives longer for smaller values of ηsoc.

and non-interacting equation of states becomes more pro-
nounced as ηsoc decreases, and is stronger for larger chem-
ical potentials.

As with the isotropic spin-orbit case, we have investi-
gated the condensate fractions for ηsoc < 1. Figure 10
shows the results for R↑↑ as a function of |~κ|. Similar to
the ηsoc = 1 case, R↓↓ displayed a similar behaviour. We
observe a slower decay of both of the (pseudo)-condensate
fraction for larger SOC anisotropies. This effect has been
seen in three dimensions in [54].

V. SUMMARY AND OUTLOOK

We have investigated the effects of an artificial spin-
orbit coupling on the density equation of state for a
bosonic system of two pseudo-spins, as well as contact
interactions between similar boson species using non-
perturbative numerical methods. The action is complex
in Euclidean spacetime due to the first order time deriva-
tive, and therefore our method of choice for the simula-
tions was the complex Langevin technique.

Due to how the spin-orbit term enters the lattice for-
mulation, it was possible to investigate how the equa-
tion of state changes in the range 0 ≤ κx, κy < ∞. In
particular, the Hamiltonian becomes Weyl-like when the
spin-orbit coupling is much larger than the momentum.

We have obtained the density and pressure equations of
state for different values of the spin-orbit coupling in the
isotropic case, where κx = κy ≡ κ. The average number
density has been seen to be a decreasing function of κ,
having its minimum value when aκ = π/2 (which corre-
sponds to κ→∞ in the continuum). A comparison with
mean field results has shown that quantum effects play

a bigger role for larger values of κ and positive chemical
potentials. For µ ≤ 0 the mean field average density is
zero, in clear contrast with the simulations, which include
all quantum effects.

We have also investigated the case of anisotropic spin-
orbit coupling, with κy = ηsocκx. A periodic behaviour
of the number density as a function of the spin-orbit cou-
pling, induced by the finite volume, has been observed in
both interacting and non-interacting cases when the SOC
anisotropy ηsoc = 0. As ηsoc is increased from 0 towards
1, the aforementioned decaying behaviour of the density
is recovered.

For both isotropic and anisotropic spin-orbit couplings,
we have carried out comparisons between the interacting
and non-interacting equations of state. The distinction
between them is smallest for large SOC, and becomes
more apparent as |~κ| → 0. Moreover, the finite vol-
ume of the simulations allows the formation of a pseudo-
condensate, which is depleted by the spin-orbit coupling.

Our investigations have shown that physical pictures
based on mean field results break down in this system.
Comparisons with results in three spatial dimensions
show similar behaviour, despite the differences to that
case, in particular how each of them renormalises.

The effects of spin-orbit coupling over the bosons is
very noticeable in the density equation of state: as
the SOC increases, the gas becomes more dilute. We
have also observed that even at chemical potentials large
enough to support the formation of a pseudo-condensate,
the presence of the spin-orbit interaction increases the
average inter-particle distance, such that the pseudo-
condensates cannot form.

Possible future studies include non-perturbative inves-
tigations of the interplay between the spin-orbit coupling
and rotation, as well as different types of SOC [55]. More-
over, the determination of physical quantities such as the
scattering length or binding energy, which help connect-
ing with experimental results, can be done via Lüscher’s
method [56] or the second virial coefficient [57].
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theory and then specialise for the SOC. Moreover, we
will consider one-dimensional fields, as the generalisation
to higher dimensions is straightforward. This derivation
follows those in [21, 22].

The kinetic term for a two component field in the con-
tinuum reads

K = Φ†(x)(−i∂î)2Φ(x) , (A1)

where î represents a unit vector in the x direction and a
is the lattice spacing. Upon discretisation, it becomes

Klat = −
Φ†xΦx+aî + Φ†xΦx−aî − 2Φ†xΦx

a2
. (A2)

After applying a local gauge transformation, Ωx ∈ SU(2),
the fields become

Φx±aî → Ωx±aîΦx±aî ,

Φ†x → Φ†xΩ†x , (A3)

and the gauge-transformed kinetic term is now

Klat = −
Φ†xΩ†xΩx+aîΦx+aî + Φ†xΩ†xΩx−aîΦx−aî − 2Φ†xΦx

a2
.

(A4)

In order to preserve gauge invariance, the derivative
must be modified such that

Φ†xΦx+aî → Φ†xUx,̂iΦx+aî ,

Φ†xΦx−aî → Φ†xU
†
x−aî,̂iΦx−aî , (A5)

where the new field U transforms as

Ux,̂i → ΩxUx,̂iΩ
†
x+aî

. (A6)

By having Ux,̂i = exp[iaAx,̂i], where Ax,̂i is the discre-

tised version of the continuum gauge field Ai(x) ∈ su(2),
we have the connection between continuum and lattice
versions of the covariant derivatives. Finally, choosing
Ai(x) = κiσi gives the spin-orbit coupling of eqs. 2 and 4.
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