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Abstract
The long-range interactions among two- or three-atom systems are of considerable importance

in the cold and ultracold research areas for many body systems. For an ion and an atom, the long-

range interaction potential is dominated by the induction (or polarization) potential resulting from

the (classical) effect of the ion’s electric field on the atom and the leading term of the induction

potential is much stronger than the (quantum mechanical) dispersion (or van der Waals) interac-

tion. The present paper focuses on the long-range interaction of the Li(2 2S)-Li(2 2S)-Li+(1 1S)

system, to see what changes this induction effect (originating in the electric field of the Li+ ion)

yields in the long-range additive and nonadditive interactions of this three-body system. Using

perturbation theory for energies, we evaluate the coefficients Cn in the potential energy for the

three well-separated constituents, where n refers to the corresponding order in inverse powers of

distance, obtaining the additive interaction coefficients C4, C6, C7, C8, C9 and the nonadditive

interaction coefficients C7, C9. The obtained coefficients Cn are calculated with highly accurate

variationally-generated nonrelativistic wave functions in Hylleraas coordinates. Our calculations

may be of interest for the study of three-body recombination and for constructing precise potential

energy surfaces. We also provide precise evaluations of the long-range potentials for the two-body

Li(2 2S)-Li+(1 1S) system. For both the two-body and three-body cases, we provide results for the

like-nuclei cases of 6Li and 7Li.

PACS numbers: 34.20.Cf, 32.10.Dk, 34.50.Dy
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I. INTRODUCTION

Considerable attention has been given to the study of the Axilrod-Teller-Muto interaction
between three S-state atoms [1–7], for which the leading nonadditive (not expressible as a
sum of pairs) term in the mutual potential energy occurs in third-order perturbation theory
and contains a geometrical factor depending on the relative orientation of the three atoms.
This kind of nonadditive interaction has shown its importance recently in, for example, the
study of cold collisions [8–14], three-body recombination [3, 15, 16], and Efimov effects [17–
19].

Experimentally, the multi-body interactions have been observed as inelastic loss res-
onances in three- and four-body recombinations of atom-atom and atom-molecule colli-
sions [20, 21]. With recent experimental advances in manipulating ultracold atoms and
ions, there is a growing interest in studying such a few-body hybrid system containing an
ion [22, 23]. The long-range part of the ion-atom interaction is well-known to be especially
important for cold and ultracold physics and chemistry, see, for example, Refs. [24, 25].
The highly successful use of a single ion in three-body reaction in an ultracold atomic gas
has renewed theoretical interest in studying long-range interactions of many-body systems
with cold trapped ions [26]. Recently, three-body recombination rates were measured for
Rb+-Rb-Rb [26] and for Ba+-Rb-Rb [27].

Theoretically, long-range additive and nonadditive interactions for two- or three-neutral-
atom system, including ground states [1, 2, 5, 6] and excited states [28, 29], have been fully
characterized and given very clear explanations. The long-range interactions for two-body
atom-ion systems have also been widely studied and deeply analyzed [22, 23]. The interaction
between ionic and neutral particles is dominated by the induction component, which can be
understood in terms of the interaction of the charge of an ion with the electronic cloud of a
neutral partner [30, 31]. For example, recently a method of utilizing Rydberg molecules to
initialize the ultracold ion-atom scattering event for the lithium ion-atom (6Li+-6Li, 7Li+-
7Li) system has been proposed by Schmid et al. [32]; further improvement may need a
highly accurate calculation of the long-range interactions for these two systems, which we
will describe below.

The main purpose of the present paper is to investigate the influence of an ion on the
long-range interaction in a three-body system. Indeed, we find that the presence of an
ion will lead to new types of nonadditive induction interactions in the third- or higher-
order energy corrections. In the present work, we will start with the second-order induction
and dispersion forces. Also, we will demonstrate the third-order additive and nonadditive
interactions.

Using perturbation theory up to fourth-order, we derive the formulas for the long-range
interaction coefficients for the Li(2 2S)-Li(2 2S)-Li+(1 1S) system, and evaluate these coef-
ficients with highly accurate, variationally determined wave functions in Hylleraas coordi-
nates. Defining “additive” to mean pairwise amongst the three particles, and “nonadditive”
to mean collectively amongst the three particles, we present the second-order additive inter-

action coefficients C
(IJ)
4 , C

(IJ)
6 , C

(IJ)
8 ; the third-order additive interaction coefficients C

(23)
7 ,

C
(31)
7 , C

(23)
9 , C

(31)
9 and the fourth-order additive interaction coefficents C

(23)
8 , C

(31)
8 . The non-

additive interaction coefficients C
(12,23)
9 , C

(31,12)
9 , C

(12,23,31)
7 and C

(12,23,31)
9 contain dependen-

cies on the geometrical arrangement of these three particles. We will give general formulas,
which can be used to evaluate their numerical values in any geometrical configuration. The
numerical values of these nonadditive coefficients for an equilateral triangle configuration
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will be given as an example. We also give, as a consequence of our accounting for additive
effects, a highly accurate result for the long-range potential of the Li(2 2S)-Li+(1 1S) system.

II. THEORETICAL FORMULATION

In this section, the expressions for the long-range interactions coefficients are given specif-
ically for the Li(2 2S)-Li(2 2S)-Li+(1 1S) system. The detailed derivation of these coefficients
is given in the supplemental materials; the formulas given there are readily applicable to
other ion-atom A(n0 S)-A(n0 S)-A+(n′0 S) systems as well.

A. Hamiltonian and the zeroth-order wavefunction

The total Hamiltonian for the Li(n0
2S)-Li(n0

2S)-Li+(n′0
1S) system can be written as

H = H1 +H2 +H+
3 +H ′ , (1)

where H1 and H2 are the unperturbed Hamiltonian of the two neutral atoms, H+
3 is the

unperturbed Hamiltonian of the ion, and H ′ is the perturbation Hamiltonian,

H ′ = V123 = V12 + V23 + V31 , (2)

where V12, V23, and V31 represent the mutual electrostatic interactions among the atom 1, 2
and the ion 3. We label the particles by I, J , and K, respectively. When the labels I, J or
K appear, it is understood that cyclic permutation would be used.

The zeroth-order wavefunction for the non-degenerate Li(n0
2S)-Li(n0

2S)-Li+(n′0
1S) sys-

tem is written as ∣∣Ψ(0)
〉

= |n00;n00;n′00〉 , (3)

where |n00〉 and |n′00〉 represent the wave functions of the initial states for the Li atoms and
Li+ ion, respectively.

B. The perturbation theory

According to the perturbation theory, the energy correction for the Li(n0
2S)-Li(n0

2S)-
Li+(n′0

1S) system,

∆E = ∆E(1) + ∆E(2) + ∆E(3) + ∆E(4) + · · · , (4)

where

∆E(1) = 〈Ψ(0)|V123|Ψ(0)〉 = 0 , (5)

∆E(2) = −
′∑

nsntnu

∑
LsLtLu

∑
MsMtMu

|〈Ψ(0)|V123|Ψstu〉|2

Ensntnu − En0n0n′
0

, (6)
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∆E(3) =
′∑

nsntnu
n′
sn

′
tn

′
u

∑
LsLtLu
L′
sL

′
tL

′
u

∑
MsMtMu
M ′

sM
′
tM

′
u

D1

(Ensntnu − En0n0n′
0
)(En′

sn
′
tn

′
u
− En0n0n′

0
)

+
′∑

nsntnu

∑
LsLtLu

∑
MsMtMu

D2

(Ensntnu − En0n0n′
0
)2
, (7)

∆E(4) =
′∑

nsntnu
n′
sn

′
tn

′
u

n′′
sn

′′
t n

′′
u

∑
LsLtLu
L′
sL

′
tL

′
u

L′′
sL

′′
t L

′′
u

∑
MsMtMu
M ′

sM
′
tM

′
u

M ′′
s M

′′
t M

′′
u

(
C
F1

− δ(n′s, n0)δ(n
′
t, n0)δ(n

′
u, n

′
0)

C
F2

) , (8)

where D1, D2, C, F1 and F2 are expressed as

D1 = 〈Ψ(0)|V123|Ψstu〉〈Ψstu|V123|Ψs′t′u′〉 〈Ψs′t′u′|V123|Ψ(0)〉 , (9)

D2 = −〈Ψ(0)|V123|Ψ(0)〉|〈Ψ(0)|V123|Ψstu〉|2 = 0 , (10)

C = 〈Ψ(0)|V123|Ψstu〉〈Ψstu|V123|Ψs′t′u′〉〈Ψs′t′u′|V123|Ψs′′t′′u′′〉〈Ψs′′t′′u′′ |V123|Ψ(0)〉 , (11)

F1 = (En0;n0;n′
0
− Ens;nt;nu)(En0;n0;n′

0
− En′

s;n
′
t;n

′
u
)(En0;n0;n′

0
− En′′

s ;n
′′
t ;n

′′
u
) , (12)

F2 = (En0;n0;n′
0
− Ens;nt;nu)(En0;n0;n′

0
− En′′

s ;n
′′
t ;n

′′
u
)2 , (13)

where the first-order energy correction is zero. D2 = 0 is because 〈Ψ(0)|V123|Ψ(0)〉 = 0.
En0n0n′

0
= En0 + En0 + En′

0
is the total energy for the initial state of three-body sys-

tem. Ψstu = |nsLsMs;ntLtMt;nuLuMu〉, Ψs′t′u′ = |n′sL′sM ′
s;n
′
tL
′
tM
′
t ;n
′
uL
′
uM

′
u〉 and Ψs′′t′′u′′ =

|n′′sL′′sM ′′
s ;n′′tL

′′
tM

′′
t ;n′′uL

′′
uM

′′
u 〉 represent the intermediate states with the energy eigenvalues

Ens;nt;nu = Ens + Ent + Enu , En′
s;n

′
t;n

′
u

= En′
s

+ En′
t

+ En′
u

and En′′
s ;n

′′
t ;n

′′
u

= En′′
s

+ En′′
t

+ En′′
u
,

respectively. The prime in the summation indicates that the terms with Ens;nt;nu = En0n0n′
0
,

En′
s;n

′
t;n

′
u

= En0n0n′
0

and En′′
s ;n

′′
t ;n

′′
u

= En0n0n′
0

should be excluded.

C. Choice of coordinates

In this work, the selection of coordinates for the Li(n0
2S)-Li(n0

2S)-Li+(n′0
1S) system is

shown in Fig. 1. We set the two Li atoms as particles 1 and 2 and the Li+ ion as particle 3.
Specifically, we choose atom 1 as the origin of our coordinate system and the plane formed
by the three-body system is taken as the x-y plane. We set the x -axis to be R12 and the
z -axis perpendicular to the x-y plane by the right-hand convention. The interior angles of
the triangle formed by the three particles are denoted as α, β, and γ.

D. Coulomb interaction potential energy expansion

VIJ can be expanded according to Refs. [2, 28, 33],

VIJ =
∑
lI lJ

∑
mImJ

TlI −mI
(σ)TlJmJ

(ρ)WmI−mJ
lI lJ

(IJ) . (14)
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The geometry factor WmI−mJ
lI lJ

(IJ) is expanded as [28, 29]

WmI−mJ
lI lJ

(IJ) =
4π(−1)lJ

RlI+lJ+1
IJ

(lI + lJ −mI +mJ)!(lI , lJ)−1/2

[(lI +mI)!(lI −mI)!(lJ +mJ)!(lJ −mJ)!]1/2

× PmI−mJ
lI+lJ

(cos θIJ) exp[i(mI −mJ)ΦIJ ] , (15)

where RIJ = RJ − RI is the relative position from particle I to particle J , the notation
(a, b, . . .) = (2a+ 1)(2b+ 1) · · · . Noting that θ12 = θ23 = θ31 = π/2 in Fig. 1, the associated
Legendre functions can be simplified according to

Pm
l (0) =

1

2l+1
[1 + (−1)l+m](−1)

l+m
2 (l +m)!

[(
l +m

2

)
!

]−1[(
l −m

2

)
!

]−1
. (16)

The angles Φ12, Φ23, and Φ31 satisfy Φ12 = 0, Φ23 = π − β, and Φ31 = π + α, which can be
used to simplify the exponential function exp[i(mI −mJ)ΦIJ ] of the geometry factor.
TlI−mI

(σ) and TlJmJ
(ρ) are the multipole tensor operators, which are defined by

TlI−mI
(σ) =

∑
i

Qiσ
lI
i YlI−mI

(σ̂i) , (17)

TlJmJ
(ρ) =

∑
j

qjρ
lJ
j YlJmJ

(ρ̂j) . (18)

In the Eqs.(17) and (18), if lI = 0 or lJ = 0, we have

T00 =
1√
4π

∑
i

Qi , (19)

where
∑

iQi represents the total charge of the system. For a neutral atom, T00 = 0.
However for an ion, the nonzero T00 results in the occurrence of induction interaction for
the Li(n0

2S)-Li(n0
2S)-Li+(n′0

1S) system.

E. The second-order energy correction

According to the perturbation theory, the nonzero energy correction for the Li(n0
2S)-

Li(n0
2S)-Li+(n′0

1S) system starts from the second-order,

∆E(2) = −
[
C

(12)
6,disp

R6
12

+
C

(12)
8,disp

R8
12

]
−
[
C

(23)
4,ind

R4
23

+
C

(23)
6,ind + C

(23)
6,disp

R6
23

+
C

(23)
8,ind + C

(23)
8,disp

R8
23

]
−
[
C

(31)
4,ind

R4
31

+
C

(31)
6,ind + C

(31)
6,disp

R6
31

+
C

(31)
8,ind + C

(31)
8,disp

R8
31

]
− · · · , (20)

where the terms C
(12)
2n,disp in the first square bracket are the additive two-body long-range

dispersion interaction coefficients between two Li atoms, which have been reported in the
Ref. [34]. The terms in the second and third square brackets represent the long-range
interaction between one Li atom and the Li+ ion. Because the Li(2 2S)-Li+(1 1S) long-range
interaction of itself is of interest for ultra-cold atom-ion applications, we will discuss it in
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some detail in Sec. III A. The terms of C
(IJ)
2n,ind appear in Eq.(20), are the induction interaction

coefficients [30, 31], which can be interpreted as the interaction between the charge of the
Li+ ion and the induced dipole moment of the Li atom

C
(23)
2n,ind = C

(31)
2n,ind =

4πQ2

(2`+ 1)2

′∑
ns

|〈n00‖T`‖nsLs〉|2

Ens − En0

=
1

2
Q2α` , (21)

where Q is the charge of the ion (here Q = 1 for the Li+ ion), α` are the 2`-pole static
polarizabilities α` of the Li atom.

The C
(IJ)
2n,disp terms, which involve the label 3, represent the additive two-body dispersion

interaction coefficients between the Li atom and the Li+ ion. They can be expressed as

C
(23)
6,disp = C

(31)
6,disp =

32π2

27

′∑
nsnt

|〈n00‖T1‖ns1〉|2|〈n′00‖T1‖nt1〉|2

(Ens − En0) + (Ent − En′
0
)

, (22)

C
(23)
8,disp = C

(31)
8,disp =

16π2

15

′∑
nsnt

{
|〈n00‖T2‖ns2〉|2|〈n′00‖T1‖nt1〉|2

(Ens − En0) + (Ent − En′
0
)

+
〈n00‖T1‖ns1〉|2|〈n′00‖T2‖nt2〉|2

(Ens − En0) + (Ent − En′
0
)

}
.

(23)

F. The third-order energy correction

The third-order energy correction for the Li(n0
2S)-Li(n0

2S)-Li+(n′0
1S) system can be

written as

∆E(3) = −
[
C

(23)
7,ddq

R7
23

+
C

(31)
7,ddq

R7
31

]
−
[
C

(23)
9,dqo + C

(23)
9,qqq + C

(23)
9,rind

R9
23

+
C

(31)
9,dqo + C

(31)
9,qqq + C

(31)
9,rind

R9
31

]
− C

(12,23,31)
7 (1, 1, 0)

R3
12R

2
23R

2
31

− C
(12,23,31)
9 (1, 1, 1)

R3
12R

3
23R

3
31

− C
(12,23,31)
9 (1, 2, 0)

R4
12R

3
23R

2
31

− C
(12,23,31)
9 (2, 1, 0)

R4
12R

2
23R

3
31

− C
(12,23)
9 (1, 1, 2, 1, 1, 2)

R6
12R

3
23

− C
(12,23)
9 (1, 1, 1, 2, 2, 1) + C

(12,23)
9 (1, 2, 1, 1, 1, 1)

R7
12R

2
23

− C
(31,12)
9 (1, 1, 2, 1, 1, 2)

R6
12R

3
31

− C
(31,12)
9 (1, 1, 1, 2, 2, 1) + C

(31,12)
9 (1, 2, 1, 1, 1, 1)

R7
12R

2
31

− · · · ,

(24)

From the Eq. (24), we can find that the third-order correction include both addi-
tive and nonadditive interaction terms. Among them, the nonadditive interaction term

C
(12,23,31)
9 (1, 1, 1)/R3

12R
3
23R

3
31 is the dispersion term; the rest are all induction interaction

terms.

1. The additive interaction

The additive two-body induction interaction coefficients C
(23)
7,ddq and C

(31)
7,ddq, which can also

be interpreted as the interaction of the charge of the ion and the moment of the Li atom,
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are expanded as

C
(23)
7,ddq = C

(31)
7,ddq = −8π

√
6π

125
Q3

′∑
ntn′

t

〈n00‖T1‖nt1〉〈nt1‖T2‖n′t1〉〈n′t1‖T1‖n00〉
(Ent − En0)(En′

t
− En0)

− 16π
√

10π

225
Q3

′∑
ntn′

t

〈n00‖T1‖nt1〉〈nt1‖T1‖n′t2〉〈n′t2‖T2‖n00〉
(Ent − En0)(En′

t
− En0)

= −1

2
Q3B , (25)

where B is the static dipole-dipole-quadrupole polarizability [35, 36] of the Li atom.

The additive two-body induction coefficients C
(23)
9,dqo and C

(31)
9,dqo, which are related to the

dipole-quadrupole-octopole polarizability, include three terms

C
(23)
9,dqo = C

(31)
9,dqo =

16π
√

15π

525
Q3

′∑
ntn′

t

〈n00‖T1‖nt1〉〈nt1‖T3‖n′t2〉〈n′t2‖T2‖n00〉
(Ent − En0)(En′

t
− En0)

+
16π
√

21π

735
Q3

′∑
ntn′

t

〈n00‖T1‖nt1〉〈nt1‖T2‖n′t3〉〈n′t3‖T3‖n00〉
(Ent − En0)(En′

t
− En0)

+
16π
√

35π

1225
Q3

′∑
ntn′

t

〈n00‖T2‖nt2〉〈nt2‖T1‖n′t3〉〈n′t3‖T3‖n00〉
(Ent − En0)(En′

t
− En0)

, (26)

The additive two-body induction coefficients C
(23)
9,qqq and C

(31)
9,qqq, which are related to the

quadrupole-quadrupole-quadrupole polarizability, include one term,

C
(23)
9,qqq = C

(31)
9,qqq =

8π
√

14π

875
Q3

′∑
ntn′

t

〈n00‖T2‖nt2〉〈nt2‖T2‖n′t2〉〈n′t2‖T2‖n00〉
(Ent − En0)(En′

t
− En0)

, (27)

and the rest of the induced (denoted by “rind”) interaction coefficients, C
(23)
9,rind and C

(31)
9,rind,

include the following five terms,

C
(23)
9,rind = C

(31)
9,rind = −96π2

√
2π

1215
Q

′∑
ntn′

tnu

|〈n′00‖T1‖nu1〉|2〈n00‖T1‖nt1〉〈nt1‖T2‖n′t1〉〈n′t1‖T1‖n00〉
(En′

t
+ Enu − En0 − En′

0
)(Ent + Enu − En0 − En′

0
)

− 64π2
√

30π

675
Q

′∑
ntnun′

t

|〈n′00‖T1‖nu1〉|2〈n00‖T1‖nt1〉〈nt1‖T1‖n′t2〉〈n′t2‖T2‖n00〉
(En′

t
+ Enu − En0 − En′

0
)(Ent + Enu − En0 − En′

0
)

− 64π2
√

6π

135
Q

′∑
ntn′

tn
′
u

|〈n′00‖T1‖n′u1〉|2〈n00‖T1‖nt1〉〈nt1‖T2‖n′t1〉〈n′t1‖T1‖n00〉
(En′

t
+ En′

u
− En0 − En′

0
)(Ent − En0)

− 64π2
√

10π

225
Q

′∑
ntn′

tn
′
u

|〈n′00‖T1‖n′u1〉|2〈n00‖T1‖nt1〉〈nt1‖T1‖n′t2〉〈n′t2‖T2‖n00〉
(En′

t
+ En′

u
− En0 − En′

0
)(Ent − En0)

− 192π2
√

10π

2025
Q

′∑
ntn′

tn
′
u

|〈n′00‖T1‖n′u1〉|2〈n00‖T2‖nt2〉〈nt2‖T1‖n′t1〉〈n′t1‖T1‖n00〉
(En′

t
+ En′

u
− En0 − En′

0
)(Ent − En0)

.

(28)
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2. The nonadditive interaction

There are two types of nonadditive interations terms in the Eq. (24): Some of them are
related to R12R23R31, the rest are related to R12R23 or R12R31. The nonadditive three-body
coefficients that are related to R12R23R31 can be expanded respectively as

C
(12,23,31)
7 (1, 1, 0) = −256π3

81
Q2

[
cosα cos β + cos(α− β)

]
T3(1, 1, 0) , (29)

C
(12,23,31)
9 (1, 2, 0) = −64π3

75
Q2

[
cosα + cosα cos 2β + 2 cos(α− 2β)

]
T3(1, 2, 0) , (30)

C
(12,23,31)
9 (2, 1, 0) = −64π3

75
Q2

[
cos β + cos 2α cos β + 2 cos(2α− β)

]
T3(2, 1, 0) , (31)

C
(12,23,31)
9 (1, 1, 1) = −256π3

243

[
3 cosα cos β cos γ + 1

]
T3(1, 1, 1) , (32)

where C
(12,23,31)
9 (1, 1, 1) is the long-range dispersion coefficient, which originates in the in-

stantaneous dipole moment of the two Li atoms and Li+ ion. The rest are the induction
coefficients, which result from the induced effect of the Li+ ion. The reduced matrix element
T3(Ls, Lt, Lu) is expressed as

T3(Ls, Lt, Lu) =
′∑

nsntnu

|〈n00‖TLs‖nsLs〉|2|〈n00‖TLt‖ntLt〉|2|〈n′00‖TLu‖nuLu〉|2

×
(Ens + Ent + Enu − 2En0 − En′

0
)

(Ens + Ent − 2En0)(Ent + Enu − En0 − En′
0
)(Ens + Enu − En0 − En′

0
)
,

(33)

where the energy factor of the above formula is same with that of the triple-dipole (Axilrod-
Teller-Muto) interaction terms [1, 2, 5, 37–39]. The nonadditive three-body coefficients that
are related to R12R23 or R12R31, can be expanded as

C
(12,23)
9 (1, 1, 1, 2, 2, 1) = −96π2

√
2π

405
Q cos β

[
2
√

3D3(1, 1, 2, 1) +
3
√

5

5
D′3(1, 1, 1, 2)

]
, (34)

C
(12,23)
9 (1, 1, 2, 1, 1, 2) = −8π2

√
2π

405
Q(3 cos 2β + 1)

[
6
√

5

5
D3(1, 1, 1, 2) +

√
3D′3(1, 1, 2, 1)

]
,(35)

C
(12,23)
9 (1, 2, 1, 1, 1, 1) = −96π2

√
10π

675
Q cos β

[
2D3(1, 2, 1, 1) + D′3(1, 2, 1, 1)

]
, (36)

where the D3(Ls, Lt, l1, L
′
t) and D′3(Ls, Lt, l1, L

′
t) are

D3(Ls, Lt, l1, L
′
t) =

′∑
nsntn′

t

|〈n00‖TLs‖nsLs〉|2〈n00‖TLt‖ntLt〉〈ntLt‖Tl1‖n′tL′t〉〈n′tL′t‖TL′
t
‖n00〉

(Ens + Ent − 2En0)(En′
t
− En0)

,

(37)

D′3(Ls, Lt, l1, L
′
t) =

′∑
nsntn′

t

|〈n00‖TLs‖nsLs〉|2〈n00‖TLt‖ntLt〉〈ntLt‖Tl1‖n′tL′t〉〈n′tL′t‖TL′
t
‖n00〉

(Ens + Ent − 2En0)(Ens + En′
t
− 2En0)

.

8



(38)

The expansion of C
(31,12)
9 (Ls, Lt, Lu, L

′
s, L

′
t, L
′
u) can be obtained by replacing the interior

angle β with α in Eqs. (34), (35), and (36).
Compared with a three-body system consisting of three ground-state S atoms, the

leading-terms of the Li(n0
2S)-Li(n0

2S)-Li+(n′0
1S) system in Eq.(24) are the additive two-

body induction interaction coefficients C
(23)
7,ddq, C

(31)
7,ddq and the nonadditive three-body co-

efficients C
(12,23,31)
7 (1, 1, 0) due to the induction effect of Li+ ion. For the C9 coeffi-

cients, the new types of the additive induction coefficients of C
(23)
9,dqo, C

(31)
9,dqo, C

(23)
9,qqq, C

(31)
9,qqq,

C
(23)
9,rind, C

(31)
9,rind, and the nonadditive induction coefficients of C

(12,23)
9 (Ls, Lt, Lu, L

′
s, L

′
t, L
′
u)

and C
(31,12)
9 (Ls, Lt, Lu, L

′
s, L

′
t, L
′
u) appear.

G. The fourth-order energy correction

The fourth-order energy correction for the Li(n0
2S)-Li(n0

2S)-Li+(n′0
1S) system contains

many more intermediate states and the detailed derivation is complicated. Therefore, since
the leading term of the fourth-order correction is related to the eighth power of the distance
between particles, we deduce the leading term of the fourth-order energy correction, in order
to guarantee the completeness of the expansion for the interaction potential in the present
paper. Thus,

∆E(4) = −
C

(23)
8,hyp

R8
23

−
C

(31)
8,hyp

R8
31

− · · · , (39)

where the induction interaction coefficients of C
(23)
8,hyp and C

(31)
8,hyp are related to the static

hyperpolarizability γ0 [34, 40–42] of the ground-state Li atom,

C
(23)
8,hyp = C

(31)
8,hyp =

16π2

9
Q4

[
1

9
T4(1, 0, 1) +

2

45
T4(1, 2, 1)

]
=

1

24
Q4γ0 , (40)

with the expression of T4 is [34]

T4(Lt, L
′
t, L
′′
t ) =

′∑
ntn′

tn
′′
t

〈n00‖T1‖ntLt〉〈ntLt‖T1‖n′tL′t〉〈n′tL′t‖T1‖n′′tL′′t 〉〈n′′tL′′t ‖T1‖n00〉
(Ent − En0)(En′

t
− En0)(En′′

t
− En0)

− δ(Lt, 0)(−1)Lt+L′′
t

′∑
ntn′′

t

|〈n00‖T1‖nt1〉|2|〈n01‖T1‖n′′t 〉|2

(Ent − En0)(En′′
t
− En0)

2
. (41)

III. RESULTS AND DISCUSSION

In the present work, using accurate variational wave functions for the Li atom and Li+ ion
in Hylleraas coordinates [34], we evaluate the additive second-order, additive and nonadditive
third-order, and part of additive fourth-order coefficients for the Li(2 2S)-Li(2 2S)-Li+(1 1S)
system. As part of the analysis, we also obtain the terms that correspond to the Li(2 2S)-
Li+(1 1S) long-range interaction potential. Finite mass effects are treated as in Refs. [34, 43],
see for example Eq. (1) of [34]. In the present calculations, we used the nuclear mass
10961.8977 for 6Li and 12786.3916 for 7Li in units of the electron mass.
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A. The additive dispersion interaction coefficients

For the newly generated polarization terms under the second-order energy correction of
the Li(2 2S)-Li(2 2S)-Li+(1 1S) system, since the additive long-range dispersion coefficients

of the C
(12)
6,disp and C

(12)
8,disp terms between two Li atoms are listed in the Ref. [34], we will not

repeat these values for simplicity. Also, for these additive interaction terms, this three-body

system can be seen as three two-body systems and we have C
(23)
n = C

(31)
n . Moreover, as

we will show, these coefficients give an accurate representation of the long-range Li(2 2S)-
Li+(1 1S) interaction potential.

Table I lists the additive long-range coefficients of the C
(23)
4 , C

(23)
6 , C

(23)
8 terms between

the Li atom interacting with the Li+ ion, and their each components: the induction inter-

action terms C
(23)
4,ind, C

(23)
6,ind, C

(23)
8,ind, the dispersion interaction terms C

(23)
6,disp, C

(23)
8,disp and the

hyperpolarizability terms C
(23)
8,hyp. The induction interactions can be seen as the interaction

between the induced electric dipolar, quadrupole, octupole moment of the Li atom and the
charge of the Li+ ion, which are related to the static polarizability of the atom. They always
give the biggest contribution to the total corresponding interactions. The dispersion interac-
tion terms describe the interaction between instantaneous dipole-dipole, dipole-quadrupole
moment of the ion and atom, which give the next biggest contribution. The hyperpolariz-
ability terms result from the induced hyperpolarizability of the atoms and the charge of the
ion and give the smallest contribution to the corresponding total interaction.

Table II lists the third-order additive interaction coefficients C
(23)
7,ddq, C

(23)
9,dqo, C

(23)
9,qqq, C

(23)
9,rind

and the total numerical values C
(23)
9,dqo+C

(23)
9,qqq+C

(23)
9,rind. The induction interaction coefficient

C
(23)
7,ddq is related to the dipole-dipole-quadrupole polarizability [35, 40]; C

(23)
9,dqo is related to the

dipole-quadrupole-octupole polarizability; C
(23)
9,qqq is related to the quadrupole-quadrupole-

quadrupole polarizability; C
(23)
9,rind is the rest of the induced (denoted “rind”) interaction

terms. For these terms of C
(23)
9 in Table II, we can find that C

(23)
9,dqo gives the biggest contri-

bution; C
(23)
9,qqq gives the next biggest contribution; and C

(23)
9,rind gives the smallest contribution.

Table III shows the comparison of the dipole-dipole-quadrupole polarizability B between
our calculations and other available results. Our calculation shows good agreement, to
within 0.026%, with the result of Pipin and Bishop [40]. For the hyperpolarizability γ0 a
comparison of our calculations with other available ones was presented in Ref. [34].

Using the data in Tables I–II, we can write down the long-range interaction potential for
the ∞Li(2 2S)-∞Li+(1 1S), 6Li(2 2S)-6Li+(1 1S), and 7Li(2 2S)-7Li+(1 1S) systems, which are
applicable to scattering calculations at ultra-low energies [25, 44, 45]. For example, with R
the internuclear distance, we have, taking the “(23)” terms in Eqs. (20), (25), (26), (27),
(28), and (39), the result for ∞Li nuclei:

V∞Li-∞Li+(R) ∼ −82.056/R4−714.951/R6−27143.0/R7−20105.0/R8−1080753.2/R9. (42)

This result is expected to be substantially more accurate than the form given in Ref. [25],

where the dispersion coefficient (our C
(23)
6,disp in Table I) was estimated to be 263.5 by fitting

to an ab initio potential energy curve calculated in Ref. [44]. We note that a recent density
functional theory calculation of the dispersion coefficient [46] is in good agreement with our
calculation, yielding a value 3.37 (obtained using the benchmark set ModelPGG Scaled.dat
provided in the supplementary data of [46]). We note that the long-range potential used
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in Ref. [45] does not account for the dispersion interaction at O(R−6). While there has
been little systematic work on the contribution of higher-order terms to ultra-cold energy
ion-atom scattering—conventionally terms beyond O(R−6) are considered unimportant—it
has been shown in the case of quantum defect theory for Na-Na+ that an important length
scale is set by the ratio of the coefficients of the 1/R4 and 1/R6 terms [24, 47]. In addition, in
Ref. [48], Li and Gao carried out calculations on H-H+ using a long-range potential accurate
to O(R−9). Our result, Eq. (42), might enable similar calculations for Li-Li+, especially
given recent advances in calculations of the Li+2 potential curve [44, 49]. We now leave aside
the particular case of the Li(2 2S)-Li+(1 1S) interactions, and complete the discussion on the
evaluation of the three-body terms.

B. The nonadditive interaction coefficients

Similarly to the triple-dipole (Axilrod-Teller-Muto) interaction terms, the nonaddi-
tive interaction coefficients contain a dependence on the geometrical structure of these
three particles. Table IV lists the values of T3(1, 1, 0), T3(1, 2, 0), T3(2, 1, 0), T3(1, 1, 1);
D3(1, 1, 1, 2), D3(1, 1, 2, 1), D3(1, 2, 1, 1), D′3(1, 1, 1, 2), D′3(1, 1, 2, 1) and D′3(1, 2, 1, 1) of the
Li(2 2S)-Li(2 2S)-Li+(1 1S) system. With these values and the formulas shown in the Section
II F, we can evaluate the nonadditive interaction coefficients of Li(2 2S)-Li(2 2S)-Li+(1 1S)
system in any configurations. For example, in the case of the three nuclei forming an equi-
lateral triangle, we have α = β = γ = π/3. Thus, with these given interior angles, we can
obtain all the nonadditive interaction coefficients, which are shown in the table V.

IV. CONCLUSION

We theoretically investigated the long-range interactions between a ground state Li+

ion and two ground state neutral Li atoms with highly accurate variationally-generated
wave functions in Hylleraas coordinates. Using perturbation theory for the energies up
to the third-order and partially to the fourth-order, we evaluated the long-range additive
interaction coefficients C4, C6, C7, C8 and C9, and the nonadditive interaction coefficients
C7 and C9 for the three-body system. For these additive coefficients C4, C6, C8, we also

showed each contributor to these coefficients: the induction interaction terms C
(IJ)
4,ind, C

(IJ)
6,ind,

C
(IJ)
8,ind; the dispersion interaction terms: C

(IJ)
6,disp, C

(IJ)
8,disp; and the hyperpolarizability terms

C
(IJ)
8,hyp, which enter in the fourth-order correction. In addition, some different new types of

nonadditive interactions that are related to R12R23, R12R31 and R12R23R31 were found to
appear in the third-order energy correction. In this paper, we give the universal formulas to
calculate these nonadditive coefficients and demonstrate their applications using the example
of an equilateral triangle configuration. All the nonadditive interaction coefficients depend
on the geometrical configurations of three particles. Our calculation may be useful in the
study of cold collisions, the three-body recombination of an ion and two neutral atoms,
and in constructing accurate three-body potential curves. We also, as a consequence of
accounting for additive terms, give a precise result for the long-range interactions of the
Li(2 2S)-Li+(1 1S) system.
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Lett. 107, 175301 (2011).

[22] B. Gao, Phys. Rev. Lett. 104, 213201 (2010).

[23] C. Zipkes, S. Palzer, C. Sias, and M. Köhl, Nature 464, 388 (2010).
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TABLE I: The additive interaction coefficients C
(23)
4 , C

(23)
6 and C

(23)
8 of the Li(2 2S)-Li+(1 1S)

system in atomic units. The numbers in parentheses represent the computational uncertainties.

Coefficienta ∞Li 7Li 6Li

C
(23)
4,ind = α1/2 82.056(5) 82.080(5) 82.084(5)

C
(23)
6,ind = α2/2 711.631(1) 711.706(1) 711.718(1)

C
(23)
6,disp 3.3208(5) 3.3227(5) 3.3229(4)

C
(23)
6,ind + C

(23)
6,disp 714.951(1) 715.028(1) 715.041(1)

C
(23)
8,ind = α3/2 19824.64(1) 19826.85(1) 19827.22(1)

C
(23)
8,disp 152.884(3) 152.948(2) 152.960(3)

C
(23)
8,hyp = γ0/24 127.5(9) 117.5(9) 115.8(9)

C
(23)
8,ind + C

(23)
8,disp + C

(23)
8,hyp 20105.0(9) 20097.3(9) 20096.0(9)

aThe polarizabilities α1, α2, α3, and the hyperpolarizability γ0, are taken from Tang et al. [34].

TABLE II: The additive interaction coefficients C
(23)
7 and C

(23)
9 of the Li(2 2S)-Li+(1 1S) system

in atomic units. The numbers in parentheses represent the computational uncertainties.

Coefficient ∞Li 7Li 6Li

C
(23)
7,ddq 27143.0(2) 27153.8(1) 27155.4(2)

C
(23)
9,dqo 995387.75(6) 995678.23(2) 995726.60(2)

C
(23)
9,qqq 81722.20(1) 81738.36(1) 81741.05(1)

C
(23)
9,rind 3643.2(1) 3645.7(1) 3646.1(1)

C
(23)
9,dqo+C

(23)
9,qqq+C

(23)
9,rind 1080753.2(1) 1081062.4(1) 1081113.9(1)

TABLE III: Comparison of the dipole-dipole-quadrupole polarizability B for the ground state 2 2S

of ∞Li, in atomic units.

Reference B = −2C
(23)
7

Maroulis & Thakkar [35](1989) −54930

Pipin & Bishop [40](1992) −54300

This work −54286.0(4)
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TABLE IV: Values of T3(1, 1, 0), T3(1, 2, 0), T3(2, 1, 0), T3(1, 1, 1); D3(1, 1, 1, 2), D3(1, 1, 2, 1),

D3(1, 2, 1, 1), D′3(1, 1, 1, 2), D′3(1, 1, 2, 1) and D′3(1, 2, 1, 1) of the Li(2 2S)-Li(2 2S)-Li+(1 1S) system,

in atomic units. The numbers in parentheses represent the computational uncertainties.

Coefficient T3(1, 1, 0) T3(1, 2, 0) D3(1, 1, 1, 2) D3(1, 1, 2, 1) D3(1, 2, 1, 1)

T3(1, 1, 1) T3(2, 1, 0) D′3(1, 1, 1, 2) D′3(1, 1, 2, 1) D′3(1, 2, 1, 1)
∞Li 274.840(4) 6620.95(6) −21486.0(1) −35427.2(5) −29332.6(5)

8.2033(3) 6620.95(6) −14674.2(3) −17785.61(2) −14674.2(3)
7Li 275.002(4) 6623.60(6) −21497.6(1) −35447.6(6) −29348.6(4)

8.2103(3) 6623.60(6) −14682.5(2) −17795.82(1) −14682.5(2)
6Li 275.029(4) 6624.04(6) −21499.4(1) −35450.8(5) −29351.3(4)

8.2115(3) 6624.04(6) −14683.7(3) −17797.50(1) −14683.7(3)

TABLE V: The nonadditive interaction coefficients of the Li(2 2S)-Li(2 2S)-Li+(1 1S) system, where

the three nuclei form an equilateral triangles, in atomic units. The numbers in parentheses represent

the computational uncertainties.

Coefficient ∞Li 7Li 6Li

C
(12,23,31)
7 (1, 1, 0) −33666.2(5) −33686.1(5) −33689.4(5)

C
(12,23,31)
9 (1, 1, 1) −368.45(2) −368.77(2) −368.82(2)

C
(12,23,31)
9 (1, 2, 0) −218977(2) −219064(2) −219079(2)

C
(12,23,31)
9 (2, 1, 0) −218977(2) −219064(2) −219079(2)

C
(12,23)
9 (1, 1, 1, 2, 2, 1) 417562(5) 417800(5) 417840(5)

C
(12,23)
9 (1, 1, 2, 1, 1, 2) −21613.97(6) −21625.91(6) −21627.99(4)

C
(12,23)
9 (1, 2, 1, 1, 1, 1) 288502(2) 288661(2) 288687(2)

C
(31,12)
9 (1, 1, 1, 2, 2, 1) 417562(5) 417800(5) 417840(5)

C
(31,12)
9 (1, 1, 2, 1, 1, 2) −21613.97(6) −21625.91(6) −21627.99(4)

C
(31,12)
9 (1, 2, 1, 1, 1, 1) 288502(2) 288661(2) 288687(2)
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FIG. 1: Coordinate for atoms 1, 2 and ion 3: the z -axis is perpendicular to the plane of the three

nuclei and the x -axis is parallel to R12. The angles satisfy Φ12 = 0, Φ23 = π − β, Φ31 = π + α.

The nuclei lie in the x-y plane.
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