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Abstract

The computation of excited electronic states with commonly employed (approximate) methods

is challenging, typically yielding states of lower quality than the corresponding ground state for a

higher computational cost. In this work, we present a mean field method that extends the previ-

ously proposed eXcited Constrained DFT (XCDFT) from single Slater determinants to ensemble

1-RDMs for computing low-lying excited states. The method still retains an associated computa-

tional complexity comparable to a semilocal DFT calculation while at the same time is capable

of approaching states with multireference character. We benchmark the quality of this method

on well-established test sets, finding good descriptions of the electronic structure of multireference

states and maintaining an overall accuracy for the predicted excitation energies comparable to

semilocal TDDFT.
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I. INTRODUCTION

Models of molecules and materials typically require the knowledge of excited electronic

states and must be able to approach complex dynamical regimes. For example, in energy

sciences and photochemistry, often the dynamics involve interaction with external electro-

magnetic fields or require to characterize states that are very close in energy. Thus, the task

at hand is formulating a computationally efficient model of electronic excited states capable

of handling the many difficult cases that, unfortunately, routinely arise.

Density Functional Theory (DFT) has been the workhorse of electronic structure theory

for the computation of excited electronic states and their dynamics via its time-dependent

extension (TDDFT). Unfortunately, TDDFT has some notable shortcomings when it is im-

plemented in the adiabatic and the semilocal density approximations. Conical intersections,

charge transfer states and Rydberg states are among those cases where practical implemen-

tations of TDDFT struggle to provide a physical model. More recently, multiconfigurational

DFT methods, such as ensemble DFT [1–5], constrained DFT [6–8], block-localized DFT

[9, 10], DFT/MRCI [11], and even flavors of ground state DFT [12] have been proposed

as innovative protocols for extracting excitation energies in a computationally efficient way

while still making use of density functionals in their formulation.

Constrained DFT [13] is particularly interesting because it does not need an active space

and, instead, targets directly the excited states with the wanted character [14]. Tradition-

ally it has been employed for generating charge and spin-localized states (diabatic states).

However, recent works including our own have borrowed the general constrained DFT idea

and proposed methods for computing valence excited states [6, 7, 15–17].

In this work, we continue the development of the eXcited Constrained DFT (XCDFT)

method[7]. In XCDFT, a variational procedure produces excited states energies and densities

of similar quality to the ground states ones for a similarly comparable computational cost. In

essence, XCDFT exploits the machinery of ground state Kohn-Sham DFT for the generation

of excited states [18–20]. Inspired by density functional perturbation theory [21], XCDFT

does not require the use of unoccupied bands (virtuals) as it resolves the space of virtuals

by projection. The Fock operator is then augmented by a nonlocal and orbital dependent

constraining potential exerting a force on the electrons, leading to a selfconsistent solution for

the targeted excited state. XCDFT is similar in spirit to ∆SCF without the inconvenience
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of incurring in variational collapses. In our previous publication [7], we carried out a careful

comparison of XCDFT against ∆SCF, and linear-response semilocal TDDFT and found

that its accuracy compares to them (about 0.5 to 1.0 eV deviation from benchmark values

for the chosen test set).

Unfortunately and similar to ∆SCF, due to the fact that XCDFT makes use of a single

Slater determinant, when approaching degenerate excited states it fails to produce correct

electronic structures. This is problematic because degenerate electronic excited states are

ubiquitous.

In this work, we take inspiration from ensemble DFT methods and propose the use of

ensemble one-body reduced density matrices (1-RDMs) for describing the electronic struc-

ture of excited states. We dub the resulting method τXCDFT. This allows us to partially

occupy excited state’s Kohn-Sham orbitals and reach an accurate depiction of a multirefer-

ence excited state at merely the expense of needing to compute a larger number of occupied

orbitals.

The paper is organized as follows: we first describe the theory and implementation of

τXCDFT and clearly show the involved approximations. After a short description of the

computational details, needed for the reproducibility of the results, we apply τXCDFT on

the same test set considered previously [7], as well as additional complex large molecules,

such as anthracene, tetracene and fullerene. These are included because the description of

their excited states’ electronic structure may require more than single excitations from the

reference determinant. Due to the variational nature of τXCDFT, the orbitals are relaxed to

infinite order making up for the relaxation effects that are captured by multiple excitations

in those wavefunction-based methods exploiting a reference determinant.

II. THEORY AND BACKGROUND

The starting point of an XCDFT calculation is a reference ground state (gs) obtained

from a regular KS calculation. From that, a projection operator P̂ g
o over the occupied space

of gs, {|ig〉}, is constructed. Namely,

P̂ g
o =

occ∑
ig=1

|ig〉〈ig|. (1)
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The electronic excitations are obtained by applying a nonlocal potential, Ŵc, whose

action is to “fish out” a custom number of electrons (i.e., Nc, which we take to be Nc = 1

throughout this work) into the virtual space of the reference gs. In the basis of the atomic

orbitals (customarily indicated by Greek letters, ν and µ), such potential is written as:

(
Ŵc

)
µν

= 〈µ|1̂− P̂ g
o |ν〉, (2)

which then is used to define the constraint that only Nc electrons should be excited to the

virtual space of the reference gs,

Nc =
occ∑
j=1

〈je|1̂− P̂ g
o |je〉 ≡ Tr

[
Ŵcγ̂e

]
= Ne −

occ∑
ig ,je=1

〈je|ig〉〈ig|je〉. (3)

Where γ̂e is the 1-RDM of the excited state, Ne is the total number of electrons, Nc the

number of excited electrons (which is typically taken to be Nc = 1), and |je〉 are the ex-

cited state occupied orbitals which are selfconsistently determined by the following KS-like

equation, [
−1

2
∇2 + vs(r) + VcŴc

]
|je〉 = εje|je〉, (4)

where vs(r) is the Kohn-Sham potential, εje are the orbital energies and Vc is an appropriate

Lagrange multiplier that ensures the constraint Eq.(3) is satisfied. In other words,

δE[γ̂e]

δNc

= −Vc, (5)

where E[γ̂e] is the total energy functional [7, 22]. In this context, Vc equals the value of the

excitation energy (i.e., the work needed to excite one electron) and needs to be determined

selfconsistently.

XCDFT yields excitation energies in semiquantitative agreement with TDDFT and

benchmark calculations, however, we noticed [7] that whenever it is required to go beyond a

single Slater determinant, spurious contributions from more than singly excited configura-

tion state functions arise degrading the excited state’s electronic structure. One particularly

deteriorating factor is the resulting significant overlap with the gs KS wavefunction. As

this problem only arises when multreference excited states are considered, we turned to the

several studies carried out to understand and deal with static correlation in Kohn-Sham
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DFT[23–25]. It is known that when near degeneracies arise (typical case of a multireference

system), an ensemble of noninteracting electrons provides a more convenient reference than

typical single Slater determinants[24, 26]. Thus, in this work, we allow XCDFT excited

states to probe ensemble 1-RDMs as follows:

γ̂e =
∑
je

|je〉fje〈je|, (6)

with fje are the occupation numbers which are determined by the Fermi-Dirac distribution

function,

fje ≡ f(εje − µ) = [1 + exp(β(εje − µ))]−1 , (7)

with β = 1
kBτ

(a parameter of the method), µ can be thought of as a chemical potential.

Smearing the orbital occupations is a well-known strategy that has been used in mean-field

calculations[27] of both finite and periodic systems when degeneracies appear.

Thus, Eq.(3) is modified to

Nc = Tr
[
Ŵcγ̂e

]
= Ne −

occ∑
ig

∞∑
je

〈ig|je〉fje〈je|ig〉. (8)

We dub the resulting method τXCDFT.

III. COMPUTATIONAL DETAILS

All XCDFT and τXCDFT excited state calculations are performed with a development

version of the Amsterdam Density Functional (ADF) 2019 program[28]. To assess the per-

formance of τXCDFT, we consider the lowest excited state for a set of fifteen molecules

[7] with the addition of the anthracene, tetracene and fullerene. As described above (see

theory section) we rely on the approximation that smearing provided by the Fermi–Dirac

distribution function is sufficient to account for the fractional occupations resulting from the

multireference character of certain excited states. This smearing can be achieved by employ-

ing a Fermi–Dirac distribution with τ = 500 K which is consistently applied to all systems

considered. The chemical potential, µ, is obtained by imposing the number of electrons be

equal to Ne through finding the root by bisection of the function f(µ) = N(µ)−Ne. After
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FIG. 1: Comparison of the computed differential densities for Acrolein (top) and benzene
(bottom). We show all DFT functionals used against EOM-CCSD. The standard

deviation, σ, of each density difference against EOM-CCSD densities (calculated using
Gaussian [34]) are shown.

TDDFT ∆SCF XCDFT τXCDFT EOM-CCSD
0.081 0.069 0.058 0.057

0.053 0.066 0.063 0.033

some testing, the numerical convergence of this root-finding algorithm could not be achieved

for τ values much lower than 500 K. Therefore, τ = 500 K is a choice that avoids unwanted

occupations of high-lying virtual orbitals while delivering a stable algorithm. The GGA

functional PBE[29], and the metaGGA functionals M06L[30], SCAN[31] and revTPSS[32]

are employed across the entire study along with the TZP basis set. We report XCDFT and

τXCDFT excitation energies by using the value of the corresponding Vc Lagrange multiplier.

In addition, the differential densities obtained with XCDFT are compared against the ones

obtained from TDDFT, calculated with ORCA [33].

IV. RESULTS AND DISCUSSION

A. Quality of the electron density

We carried out an analysis of the electronic densities by comparing the differential den-

sities (i.e., the density difference between the excited state and ground state densities,

∆(r) = ρe(r) − ρg(r)) obtained form τXCDFT, XCDFT, TDDFT and EOM-CCSD. In

Figure 1, ∆(r) is displayed for acrolein and benzene.

EOM-CCSD is accurate for these systems, as both single and double excitations are ac-

counted for in the method. In Figure 1, we can see that the τXCDFT densities are improved

with respect to the other methods. In our previous work [7], we showed that XCDFT densi-
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FIG. 2: Fullerene density differences divided by contribution ∆(r) > 0 in blue (top), and
∆(r) < 0 in red (bottom). All isosurfaces are plotted with the same cutoff.

TDDFT XCDFT τXCDFT

ties (especially benzene) are as inaccurate as the ones computed with ∆SCF and the results

of Figure 2 confirm this observation also for other molecules featuring exact degeneracy

(such as fullerene). We notice that τXCDFT is able to capture more accurately the electron

density of the excited states compared to the original XCDFT. TDDFT is overall in good

agreement with the benchmark, however, it lacks some small features. For example, the

negative equatorial component in the EOM-CCSD density of benzene is partially present

in τXCDFT but absent in TDDFT (as we could verify by inflating the isosurfaces and

double checking the cube files). Such nodal structure in the differential densities are com-

monly found in the literature and are expected when substantial orbital relaxation occurs.

Accounting for orbital relaxation in linear-response TDDFT has been a matter of intense

study. For example Tom Ziegler’s work on constricted varitaional TDDFT[15–17, 35] aimed

at capturing orbital relaxation via a variational energy minimization wrt orbital rotations.

For acrolein, there are no degeneracies and thus τXCDFT and XCDFT deliver the same

result which compares well against EOM-CCSD.

The orbital relaxation is also seen in fullerene (see Figure 2), where the τXCDFT differ-

ential density follows the TDDFT one but is more delocalized indicating relaxation. Unfor-

tunately, due to the large computational expense involved, we do not have an EOM-CCSD

calculation available to further confirm our findings.

From the above analysis, it is clear that the restriction in XCDFT and ∆SCF to a single

Slater determinant is detrimental to the quality of the electronic structure of multireference
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excited states. In particular, focussing on the benzene molecule, we notice that in order to

satisfy the criterion of excitation of a single electron, XCDFT’s excited state orbitals are

mixed (e and g superscripts indicate excited and ground state, respectively):

φeH(r) =
1√
2

[
φgH + φgL+1

]
, (9)

φeH−1(r) =
1√
2

[
φgH−1 + φgL

]
. (10)

As a result, the excited state wavefunction can be represented by the following superpo-

sition of configuration state functions built from the reference ground state and associated

excited Slater determinants. Namely,

Ψe =
1

2
Ψg +

1

2
ΨL
H−1 +

1

2
ΨL+1
H +

1

2
ΨL,L+1
H−1,H . (11)

The above, clearly indicates that the XCDFT excited state wavefunction, Ψe, has strong

overlap with the ground state wavefunction, Ψg, and an equally strong double excitation

character arising from the ΨL,L+1
H−1,H term.

In our trial calculations (not reported), we have noticed that the above described issue is

shared among aromatic chromophores, casting serious doubts about the physicality of ∆SCF

excited states which are frequently used as initial conditions for nonadiabatic dynamics

simulations.

In Figure 3, we plot the frontier occupied and virtual orbitals of the ground, XCDFT and

τXCDFT excited states. The figure indicates that the τXCDFT orbitals largely resemble the

ground state orbitals with some small deviations due to orbital relaxation effects (typically

accounted for in wavefunction methods by high order excitation contributions). Instead, the

XCDFT orbitals are very different from the ground state ones indicating that in XCDFT,

in order to satisfy the imposed constraint in Eq.(3), the frontier orbitals have mixed and

rotated dramatically exposing an unphysical character. Thus, we can conclude this analysis

by stating that for multireference excited states, τXCDFT orbitals indicate a degree of

relaxation compared to the ground state orbitals while still retaining the overall character

resulting in differential densities in agreement with EOM-CCSD calculations. A similar

analysis can be carried out for Fullerene, although it is not reported.
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FIG. 3: Comparison of the frontier molecular orbitals of benzene obtained with τXCDFT
and XCDFT against the corresponding ground state orbitals. The occupation numbers of

these orbitals are shown.

Ground State XCDFT τ–XCDFT

1 1 0.5

1 1 0.5

0 0 0.5

0 0 0.5
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B. Quality of the excitation energies

We summarize in Table I the excitation energies computed with τXCDFT along with

available benchmark data [36–41]. The performance of τXCDFT improves against XCDFT

as the character of the states involved are now corrected. We find that for multirefer-

ence excited states (pyrrole, benzene, and fullerene) the energies are slightly closer to the

benchmark. In addition, in Figure S2 of the supplementary information, we show the

electronic entropy computed for every excited state. By “electronic entropy” we refer to

the electronic Gibbs entropy which in this context can also be called Shannon entropy,

S = −
∑

i pi ln(pi) + (1 − pi) ln(1 − pi). Entropy in this context has no thermodynamical

meaning, rather it has an information theory meaning. I.e., it describes distributions (in

this case distributions of occupation numbers) that are not infinitely narrow, but instead

have a finite width. As expected, benzene and fullerene are those systems with the highest

multireference character. In our previous work (Ref. 7 and an erratum to appear, see also

supplementary materials Table S2), we used a different descriptor for detecting multirefer-

ence character. Specifically, we used the eigenvalues of the difference between the excited

state and the ground state 1-RDMs which led us to label as “mixed” additional molecules to

the ones mentioned here such as naphthalene, pentcene and adenine. These molecules still

display a multireference excited state in the context of the preset work, however, most likely

the multireference character is captured already at the level of the orbital relaxation with

no need to involve fractional orbital occupations. This explains why the entropy for these 3

systems is negligible, while the descriptor previously used flags them as multireference.

In principle τXCDFT should lead to higher accuracy excitation energies than XCDFT

for mixed excited states. In practice, however, both XCDFT and ∆SCF take advantage

of error cancellation [7]. As we have seen in our previous work, while for HOMO-LUMO

excitations ∆SCF performs well [42], in the presence of a degenerate excited state, single-

reference methods will result in HOMO-LUMO mixing (and mixing of lower/higher-lying

orbitals depending on the system, see Eq.(9–11)). This generates an excited state Slater

determinant that is a mix of ground, single excitations and double excitations. The single

excitations are associated with an accurate energy, the double excitation are associated

with a much higher energy, and the ground state contribution effectively hedge the double

excitations. In our tests, τXCDFT never generates occupied-virtual mixed orbitals and
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TABLE I: τXCDFT excitation energy values (in eV) for all exchange-correlation
functionals considered. In bold font the excitation energies of systems with excited states

of mixed character as seen in Figure S2.

System PBE M06–L SCAN revTPSS Benchmark

Ethylene 6.06 6.14 5.90 6.08 7.80

Tetrafluoroethylene 6.23 6.59 6.42 6.35 7.08

Isoprene 4.99 4.53 4.35 5.32 5.74

1,3-Butadiene 4.56 4.51 4.35 4.56 6.18

Formaldehyde 3.95 3.48 2.86 3.48 3.88

Propanamide 5.76 5.51 5.11 5.79 5.72

Acrolein 3.89 3.28 2.68 3.42 3.75

Pyrrole 5.46 5.73 5.52 5.57 6.37

Thiophene 5.28 5.30 5.03 5.13 5.64

Benzaldehyde 3.75 3.31 2.67 3.49 3.34

Adenine 4.55 4.68 4.46 4.66 5.25

Cytosine 4.31 4.87 4.67 4.61 4.66

Benzene 5.19 5.47 5.37 5.36 5.08

Naphthalene 4.01 3.94 3.77 3.97 4.24

Anthracene 3.12 3.04 2.89 3.06 3.55

Tetracene 2.14 2.03 1.90 2.06 2.95

Pentacene 1.96 1.87 1.73 1.88 2.30

Fullerene 1.59 1.73 1.69 1.65 1.75

delivers higher quality electronic structures.

In Table II, we show the mean unsigned error (MUE) for the excitation energies computed

with τXCDFT, XCDFT, ∆SCF, and TDDFT. The MUE shows that τXCDFT and XCDFT

are comparable to TDDFT and significantly better than ∆SCF. We see that among all

metaGGA functionals, revTPSS is the better performing. In an effort to explain some of the

trends, in Figure 4 we report a histogram of a measure of spin contamination τXCDFT and

XCDFT collecting all exchange-correlation functionanls considered (i.e., overlap between the

α and β orbitals). The histograms show that overall the spin contamination is well handled

by XCDFT and τXCDFT. However, we notice that in τXCDFT the spin contamination

is less prevalent, and we also note that the systems with high contamination (above 0.5)

correspond to benzene and fullerene (i.e., where there are strong degeneracies among the
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FIG. 4: Histogram of the spin contamination for all XCDFT and τXCDFT excited states
collecting all exchange-correlation functionals.

frontier orbitals) computed with the SCAN functional.

TABLE II: Mean unsigned error (MUE) against benchmark values across the entire set of
all excitation energies computed for all exchange-correlation functionals and methods

considered.

Method PBE M06–L SCAN revTPSS

XCDFT 0.677 0.447 0.378 0.503

τXCDFT 0.566 0.591 0.816 0.557

∆SCF 1.320 0.790 1.660 1.420

TDDFT 0.390 0.620 0.513 0.375

For sake of a complete presentation, we carry out an analysis of the sensitivity of the

results with the chosen Fermi-Dirac smearing. We report our finding in Figure S1 and Table

S1 of the supplementary information. Generally, τXCDFT energies improve if the KS gap is

much smaller than the true gap of the interacting system. This points to a negative aspect of
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using unnecessarily broad smearing parameters (τ > 500), i.e., the Fermi-Dirac distribution

may populate high-lying virtual orbitals, which is not desired.

V. CONCLUSIONS

In conclusion, we developed, implemented in the ADF program, and benchmarked a

mean field method for the computation of low-lying electronic excited states, τXCDFT. This

method is capable of accounting for degenerate energy levels often present in excited states,

such as aromatic chromophores. We show that quality low-lying excited states are found

by using ensemble 1-RDMs. We also show that when considering multireference excited

states, mean field methods that employ a single Slater determinant (such as ∆SCF and

XCDFT) completely fail in predicting the electronic structure. τXCDFT, instead reproduces

the electronic density of these excited states, avoids incorrect rotation among the frontier

orbitals and correctly features effects of orbital relaxation.
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