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We propose a practical high-dimensional quantum key distribution protocol based on mutually
partially unbiased bases utilizing transverse modes of light. In contrast to conventional protocols
using mutually unbiased bases, our protocol uses Laguerre-Gaussian and Hermite-Gaussian modes of
the same mode order as two mutually partially unbiased bases for encoding, which leads to a scheme
free from mode-dependent diffraction in long-distance channels. Since only linear and passive optical
elements are needed, our experimental implementation significantly simplifies qudit generation and
state measurement. Since this protocol differs from conventional protocols using mutually unbiased
bases, we provide a security analysis of our protocol.

Key words: High-dimensional quantum system, Quantum key distribution, Photon’s orbital an-

gular momentum

INTRODUCTION

Quantum key distribution (QKD) is one of the well-
known applications of quantum information, which
promises secure communication—the Holy Grail of com-
munication security—based only on the laws of physics
[IH5]. A typical QKD protocol involves two parties who
aim to generate a secret key by exchanging quantum sig-
nals over an insecure communication channel [6HI5]. Se-
curity is assessed against the most powerful attack on
the channel, where an eavesdropper perturbs the quan-
tum systems using the most general strategies allowed by
physical laws [I6H20]. Traditionally, QKD protocols are
performed with qubits, where the information is encoded
in an ensemble of two-level quantum systems. In these
binary QKD systems, the information capacity is limited
to 1 bit per photon. To improve the information capacity
of QKD systems, high-dimensional QKD has experienced
rapid developments in recent years [2IH31]. However, due
to limited performance of generation and measurement
techniques, the potential of high-dimensional QKD has
not yet been fully exploited [32].

The orbital-angular-momentum states of photons form
a promising state space that can be used to realize
high-dimensional quantum systems [33H35]. The orbital-
angular-momentum states of quantum number ¢ span an
infinite-dimensional Hilbert space and thus more than 1
bit information can be encoded onto each photon [36].
Due to the severe mode mixing in multimode fibers,
the orbital-angular-momentum modes have been com-

monly applied in free-space communications. Free-space
communication can be advantageous in various circum-
stances, such as satellite-to-ground and inter-satellite
communication or connecting end users to network nodes
where installing optical fibers is time-consuming and ex-
pensive. A number of studies have investigated the ben-
efits of employing orbital-angular-momentum modes in
free-space quantum cryptography [37H43]. However, the
existing realization of high-dimensional QKD protocols
with orbital-angular-momentum encoding is still imprac-
tical in a realistic free-space link, and one important rea-
son is the low efficiency in measuring single photons in
two bases — the orbital-angular-momentum basis and its
complementary Fourier conjugate angular basis [38]. The
problem comes from the fact that the states in these two
bases with different quantum number £ have ¢-dependent
diffraction. This mode-dependent diffraction will lead
to mode-dependent propagation phase (analogous to the
Gouy phase for Laguerre-Gaussian states) as well as
mode-dependent loss in the case of finite-sized apertures
and long-distance propagation [3T]. In this realistic sce-
nario, current techniques for measuring the photons have
a low efficiency and relatively high crosstalk, which lead
to a system more vulnerable to quantum attacks.

Here, we propose a practical high-dimensional QKD
protocol that overcomes the above challenges. Conven-
tional QKD protocols are based on the mutual unbiased
bases (MUBs). In a set of MUBs { By, By, Ba, ....., B,}, a
state in the By, basis can be written as an equal superpo-
sition of all states in the B; basis for any j # k. It can be



shown that a Laguerre-Gaussian mode can be expressed
as a coherent superposition of Hermite-Gaussian modes
of the same mode order and vice versa [44], suggesting
that the Laguerre-Gaussian and Hermite-Gaussian bases
can be used in a QKD protocol. Since the Laguerre-
Gaussian and Hermite-Gaussian bases are not fully mu-
tually unbiased, we name this choice of bases as a set
of mutually partially unbiased bases (MPUBs). For a
practical realization of high-dimensional QKD, using the
proposed MPUBs leads to a stable propagation by over-
coming the mode-dependent diffraction. By using a pas-
sive /2 mode converter [44], both Laguerre-Gaussian
and Hermite-Gaussian modes can be easily generated and
measured [45]. A security proof based on an asymptotic
scenario is given in this work to confirm the security of

the MPUB-based QKD protocol.

MUTUALLY PARTIALLY UNBIASED BASES

By using the relation between Hermite and Laguerre
polynomials, a Laguerre-Gaussian state |l,, ,,,) of order
(n,m) can be decomposed into a set of Hermite-Gaussian
states |hn_g ) with the same mode order as [44]:
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where the integer number k € [0, N], and N =n +m is
the mode order. The factor i* in Eq. (1) corresponds to
a /2 relative phase difference between successive com-
ponents. Similarly, a Hermite-Gaussian state rotated by
45° |h,, ,,,) can be decomposed into exactly the same con-
stituent basis set

N
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with the same real coefficients b(n, m, k) as above.

With the relations shown above, we can construct
two MPUBs {l,,,,} (the Laguerre-Gaussian basis) and
{hpm} (the Hermite-Gaussian basis), which are given
by two sets of basis vectors:
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with L = Up, HH' . Urpg is the transformation matrix re-
lating these two bases. The elements of Upy are given

by
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where N is a positive integer. The (N + 1)-dimensional
QKD protocol is given as follows:

e Alice generates log,(N + 1) random bits (all the
random bits we mentioned are generated with equal
probability) as information to be encoded and one
extra random bit P4 to decide the encoding basis:
{ln,m)} or {|hy )} Then Alice sends the corre-
sponding (N + 1)-dimensional qudit state to Bob.

e Bob generates one random bit Pg to determine the
measurement basis. Upon receiving the state, Bob
measures the qudit state in {|l,m)} or {|h, )}
basis. From the measurement result, Bob receives
logy (N + 1) bits of information.

e Alice and Bob repeat steps 1 and 2 for many rounds
and keep their bits as raw data for later use.

e Sifting process: Alice and Bob announce and com-
pare all the P4, Pp data. They compare P4 and
Pg, discard raw data where P4 # Pp and keep
their bits with P4 = Pp as the raw key.

e Alice randomly chooses half of the remaining events
as test bits in order to estimate the bit error rate on
the code bits and announces her selection to Bob.
They compare the values of their test bits, aborting
the protocol if the error rate is too high.

e By public discussion, they run classical error cor-
rection and privacy amplification protocols to share
a secret key.

According to [40], a fully random choice of basis is not
necessary. An important advantage of {ln,m} and {h,, ,,}
bases is that they have the same mode order so that
the mode-order-dependent diffraction can be avoided.
In addition, since the Laguerre-Gaussian and Hermite-
Gaussian states in the same mode order can be directly
expressed as states with certain azimuthal quantum num-
ber ¢ and radial quantum number p, the generation
and detection of Laguerre-Gaussian modes and Hermite-
Gaussian modes is much simpler compared to that of
orbital-angular-momentum state and its Fourier conju-
gate angular state.

PRACTICAL PERFORMANCE

Analysis of mode-dependent diffraction

MPUBEs are free from mode-dependent diffraction be-
cause all modes used in the protocol have the same



mode order, which leads to considerate transmission ro-
bustness. Compared with the MPUB-based QKD, the
traditional orbital-angular-momentum encoding protocol
suffers severe information loss due to mode-dependent
diffraction. In the traditional protocol, one basis con-
sists of orbital-angular-momentum states while the com-
plementary basis is the Fourier conjugate angular basis
[47). The commonly used Fourier conjugate angular state
of index j prepared by Alice is defined as
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where d = 2L + 1 is the dimension of the encoding space
and L is the maximum orbital-angular-momentum quan-
tum number used in the protocol. The Fourier conju-
gate angular basis By = {|j)} and angular momentum
quantum basis B; = {|I)} are mutually unbiased to each
other. However, as we mentioned above, different orbital-
angular-momentum modes diffract differently according
to the quantum number. Hence, if an Fourier conjugate
angular mode is prepared as an equal superposition of all
orbital-angular-momentum modes, the received Fourier
conjugate angular mode will be different from the trans-
mitted state due to different propagation phases. In
other words, the received state becomes a superposition
of Fourier conjugate angular states in the prepared ba-
sis [3I]. Therefore, the error rate will increase when the
mode-dependent diffraction is taken into consideration.

In order to show the performance of MUB and MPUB
under the influence of mode-dependent diffraction, we
assume a free-space link with distance z. In the case
of a pair of circular apertures, the mode transmission
efficiency is a function of the Fresnel number product
Ny, which is given by

7TD1D2
Ny = 7
v (7)

where Dy and Dy are the diameters of the transmitting
and receiving aperture respectively, and A is the wave-
length [48].

The mutual informations between Alice and Bob Isp
in the MUB and MPUB cases are shown in Fig. 1, In
the MUB case, there are huge differences between small
Ny and larger Ny. In this case, the detection proba-
bility distribution of orbital-angular-momentum states is
non-uniform. Therefore, it is difficult to use these modes
(with different mode orders) in long-distance QKD sys-
tems. The error induced by mode-dependent diffraction
can be reduced by a sophisticated mode sorter, which
increases experimental complexity. In the MPUB case,
since the states have the same mode order, the mutual
information is independent of Ny , which means the in-
fluence of mode-dependent diffraction can be fully elimi-
nated.

w
]

=% pininininininininininininininininiii—
s 3 Td=9 T T T T T T T T T -
5 = R ==
525
E= d=5
£ 2
—
O | A
‘£15 d=3
©
1
2 —— MUB
=}
Sos + /|- MPUB
0 1 2 3 4 5

FIG. 1. The mutual information per detected photon I4p as
a function of Ny, d is the dimension of the encoding space.
The solid lines show 45 in MUB case, while the dashed lines
give Iap in MPUB case. Since the states in MPUBs have
same mode order, the mutual information is independent of
Ny, which means the influence of mode-dependent diffraction
is fully eliminated in this case.

Resistance to turbulence

For practical applications, the main problem of the
transverse mode encoding QKD is the atmospheric tur-
bulence. In this section, we simulate the practical per-
formance of our MPUB-based protocol in a turbulence
model [49] and compare it with the traditional MUB-
based protocol with orbital-angular-momentum encoding
in the same condition.

According to the method of reference [49], the cumu-
lative effect of the turbulence over the propagation path
can be modeled as a pure phase perturbation exp[i¢(r, 6)]
on the beam at the output plane. So after going through
the turbulence, the conditional probability of measuring
a photon initially with Laguerre-Gaussian mode number
lp to be [ is given by

() = /O T R(r 2) PO — lo)dr, (8)

where ©(r,l — ly) is the circular harmonic transform of
the rotational coherence function, which is given by
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where Cy (7, 8) is the rotational coherence function of the
phase perturbations at radius r. For the Kolmogorov
turbulence model, the rotational coherence function at
radius r is

Cy(r, B) = exp [ = 6.88 % 2%/3(=) " sin (§)|5/3], (10)
0

where rg is the Fried parameter [57]. The orbital-angular-
momentum quantum number probability distribution for



various Laguerre-Gaussian states propagating through
Kolmogorov turbulence can be evaluated using Eqs. (8)-
(10). For different mode orders, the effect of the phase
perturbations depends on the radial power distribution
of the beam, which for the LGY is

(r?)y = /ioo Ry p(r)r?dr = (2p + |I] + 1)b?, (11)

where the azimuthal index [ = n—m and the radial index
p = min(n,m). Equation (11) gives a characteristic
relative mean-squared beam radius rp,; = b/2p + |I| + 1.

The simulation results of the practical secure key rates
(per detected photon) for the two protocols of different
dimensions and in different turbulence levels are shown
in Fig. 2. Apertures with a sufficiently large size are
used for these simulations. The Fried parameter rq cor-
responds approximately to the spatial coherence length
of the aberrations. For b < rq, the reduction in the se-
cure key rate caused by phase aberrations is small due to
limited inter-mode crosstalk, but it increases rapidly as
b becomes comparable to ry. The simulation shows that
when the encoding dimension d < 4, the behaviors of the
two protocols are similar and the traditional MUB-based
protocol has slightly better performance. When the di-
mension increases, the difference between the two pro-
tocols’ behaviors becomes larger and the MPUB-based
protocol has a higher key rate when d > 4.

To explain this, we should notice inter-mode crosstalk
is more severe in higher-dimensional state space at a high
level of turbulence. Therefore, the influence of turbulence
takes a central role and causes the key rates to decrease
when d > 10 in the MUB case and d > 12 in the MPUB
case. This result reveals that the MPUB based protocol
is more resistant to the effects of turbulence. This re-
sistance comes form the fact that the same mode order
states obtain same beam radius 7,; in transmission pro-
cess. The key rates are calculated from the average bit er-
ror rate, which is the average of the bit error rates in two
bases and can be directly calculated from the simulation
data when p(l = ly) is known. In the MPUB protocol,
during the measurement process, the Hermite-Gaussian
states are converted to corresponding Laguerre-Gaussian
states by using a m/2 converter. Therefore, the probabili-
ties of measurement outcomes in Hermite-Gaussian basis
are calculated in the same way as above (Eqs. (8)-(11)).

Figure 3 shows the calculated key rates at a fixed tur-
bulence level. The parameters here are set as b = 0.01
m and 79 = 0.08 m, which corresponds to a moder-
ate ground-level turbulence strength turbulence strength
C? = 10~ "m~2?/% and wavelength A\ = 1 ym [49]. The
results clearly show the difference between the two pro-
tocols analyzed above.

In this case, only the simulated turbulence influences

the QKD system. The key rate K is given by [58] (59|,

d+1
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where @ is the average error rate calculated from p(l =
lo).

Comparison with traditional QKD in free space

The first demonstration of free-space QKD over an
atmospheric channel outside the laboratory was per-
formed in 1996 [B0]. Since then, several prepare-and-
measure [5IH53] and entanglement-based [54H56] system
have been implemented. A common feature of the above
systems is the use of polarization encoding. The depolar-
izing property of the atmospheric channel is so weak that
the states of polarization can be well maintained even af-
ter long-distance propagation. However, two-dimensional
systems have a very limited information capacity, and
such limitation can not be resolved without involving
other degrees of freedom.

Fortunately, the capacity limitation can be overcome
in the MPUB based system. By using the 7/2 converter
to transform Hermite-Gaussian states into Laguerre-
Gaussian states, the system only needs to prepare and
measure the Laguerre-Gaussian states, which simplified
the implementation and can be easily extended to higher
dimensions. Furthermore, Hermite-Gaussian states and
Laguerre-Gaussian states both have symmetrical spatial
constructions, because of which the encoded states are
less influenced by rotation.

Above all, the development of traditional free-space
QKD is approaching its upper limit. On the con-
trary, the orbital-angular-momentum based free-space
QKD systems are more promising in the near fu-
ture to achieve higher speed free-space communication.
Moreover, the conventional QKD protocol with orbital-
angular-momentum encoding suffers from turbulence dis-
tortion and diffraction loss, while these negative effects
are minimized when using MPUB protocol. There-
fore our work presents a step towards practical high-
dimensional QKD.

SECURITY ANALYSIS BASED ON
UNCERTAINTY RELATIONSHIP.

In this part, we prove the security analysis of MPUB-
based QKD system using the uncertainty relationship
[60-63]. Suppose there are two bases X = {|x;)} and
Z ={|z)}(i = 1...L) in an L-dimensional Hilbert space
‘H. The projection operators relative to these bases are
{z:) (z;|} and {|z) (2:]}. Hx(p) and Hz(p) are the



Shannon entropies of the probability distributions of the
outcomes when measuring X and Z respectively. From
the previous works, the entropy uncertainty relationship
is given by

1
Hx(p) +Hz(p) > log(g) =qmu Vp€EH, (13)
where ¢ is defined as the maximum overlap of any two
states from the two bases

c=maxcij, ¢ = |{@ilz)), (14)

0.
and gpp = —log(c). For the two orthonormal but not
fully unbiased bases {|l;)} and {|h;)} (these states are
defined in Eq. (1) and (3)), the maximum overlap ¢ =
max (|u, ;|?), where u, ; is defined in Eq. (5). Hence,
the entropic uncertainty relationship for {|/;)} and {|h;)}
is given by

Hra(p) + Hug(p) > —log(max |u,, ;%) Vo e H. (15)

For the security analysis, a tripartite uncertainty rela-
tion is usually needed to constrain information available
to an eavesdropper. In a tripartite scenario (as shown
in Fig. 4), the initial state papg is divided into three
parts A, B, E that are sent to Alice, Bob and Eve, re-
spectively. Suppose the subsystem held by Alice is pa,
and there are two complementary measurement bases (X
and Z). The complementarity statement [64] says that
the information Bob could obtain about one observable
X 4 by measuring his system B, plus the information Eve
could obtain about the other observable Z4 by measur-
ing E, cannot exceed a prescribed bound. So there is
a certain unavoidable amount of uncertainty or entropy
about the two observables conditioned on respective mea-
surements of the two systems B and E. This uncertainty
relationship [65] is given by,

H(X4|B) +H(ZA|E) > quu, (16)

where H(X|Y') = H(pxy)—H (py) is the conditional Von
Neumann entropy. H (X 4|B) denotes Bob’s uncertainty
on X measurement result and H(Z4|F) denotes Eve’s
uncertainty on Z measurement.

We take Devetak-Winter’s approach [66] for security
analysis, which is based on the entanglement distillation
of an entanglement-based QKD protocol. For our BB84-
like protocol, an equivalent entanglement-based protocol
can be easily defined. Two protocols are equivalent with
respect to Eve if and only if:

e The quantum state transmitted by Alice and all the
classical signals revealed are the same.

e All announced classical information is the same.

e Alice and Bob perform the same measurement on
the same quantum states to obtain the raw key bits.

e Alice and Bob use the same postprocessing to ex-
tract secure secure key bits.

Suppose Alice prepares the state

N N
1 1 e
Po \/m;zo| >A| > N + 1 ;ZO:' >A| >

(17)
which is defined on Hilbert space H 4 ® H. The qudit on
space H 4 is the ancillary state kept by Alice which is used
to determine the encoded information. Bases {|l;) ,} and
{|h;) 4} are two orthonormal bases on H 4 which ensures
Eq. (17) holds.

Alice then randomly chooses basis {|1;) ,} or {|;) 4} to
measure her ancillary qudit based on the random bit P4
she generates. She keeps her measurement result as raw
data a and sends the qudit in space H to Bob. Bob per-
forms step 2 of the protocol described above. It is easy to
show that, with respect to Eve, this entanglement-based
protocol is equivalent to the proposed protocol without
entanglement. Let Mp(A) (Mr(B)) denotes the mea-
surement that Alice (Bob) performs on system A(B) to
derive the raw key. The asymptotic key rate K, for the
entanglement-based protocol is given by the Devatak-
Winter formula [66]

Ko =H(ML(A)|E) — H(ML(A)|ML(B)), (18)
and
par a8y = O Trl(M] @ Mp)pas] [17) (15 @ 1) (Il

7.k
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prniam = DI (1] © Tral(Mf © Dpag). (20)
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{M}]} and {M}} are the sets of positive operator val-
ued measure elements associated with Alice’s and Bob’s
measurements. The H(Mp(A)|Mp(B)) term in Eq. (18)
reflects the cost for classical error correction, which is
equal to the classical conditional Shannon entropy of the
measurement results My (A), My (B). Using the tripar-
tite uncertainty relationship (Eq.(16)), we have

H(ML(A)|E) + H(Mu(A)|B) > quu, — (21)

where ¢y defined in Eq. (13) can be calculated from
the basis transform matrix Upy. Combining Eq. (18)

and Eq. (21), we can obtain
K, > —log(max |uy,;|*) — H(Mp (A)|Mu(B)) (22)
— H(M(A)|ML(B)).

PROTOCOL DESCRIPTION WITH A
DIMENSION d =4

Based on the above analysis, our protocol can be re-
alized based on two MPUBSs {l,,,,,,} and {h™, ., } for any



Hilbert space dimension d > 2. Under realistic atmo-
spheric turbulence, our protocol beats the MUB-based
protocol when the dimension d > 4. Therefore, we con-
sider the case of a four-dimensional QKD with N = 3 as
an explicit example of the protocol’s operation. Figure 5
shows the states used in our protocol (Hermite-Gaussian
and Laguerre-Gaussian modes of order 3). Each time the
state Alice chooses for information encoding is one of the
eight states including |I;) and |h;) with i = 0,1,2,3. The
transformation matrix is given by

i V3 —VBi -1
1+i| V3  —i 1 —V3i
4 —/3i 1 —i /3

-1 —V/3i V3 i

U =

Figure 6 shows a sketch of a proof-of-principle ex-
periment for the four-dimensional QKD protocol. The
Laguerre-Gaussian state generators are used to prepare
the original LGY states including LG}, LG%,, LG} and
LGL,. All the generators are modulated by acousto-
optical modulators. By using a digital radio frequency
driver, acousto-optical modulators can quickly switch the
generators, while a random number generator is used
to control these acousto-optical modulators for choosing
which state to be sent. In the state preparation and mea-
surement part, the Laguerre-Gaussian mode states and
the Hermite-Gaussian mode states can be transformed to
each other with the help of a 7/2 mode converter [44]. In
our protocol, both the orbital-angular-momentum modes
and radial modes are used, so at Bob’s side a mode sorter
is needed to detect the radial and azimuthal indices of
LG? states, which can be realized with recent advances
in mode sorting [67H69]. Our protocol avoids generating
and selecting grating patterns on active devices, which is
the traditional method of MUB-based QKD for generat-
ing encoded states.

A promising potential of our protocol should be men-
tioned here. Due to the limitation of current optics tech-
nologies, there are no devices that can manipulate or
switch the 7/2 converter at a considerable speed. Once
such set of devices is available, we can control the con-
verter to switch between these two bases so that only
one independent setup (generator or sorter) is needed
for both Alice’s and Bob’s sides. Under such circum-
stance, the construction and operation of MPUB based
high-dimensional QKD system could be as easy as the
one of two-dimensional phase encoding QKD. However,
it should be noted that our proposed protocol is still im-
plementable in the absence of a switchable pi/2 converter
as shown in Fig. 6.

CONCLUSION

In summary, we have proposed a practical high-
dimensional QKD protocol. The MPUBs are used to
avoid the mode-dependent diffraction and simplify the
mode generation and detection so as to improve the se-
cure key rate in practical application. For the experimen-
tal realization, a detailed approach based only on linear
optical devices is presented, in which the speed of state
generation mainly depends on acoustic-optical modula-
tors which can reach GHz repetition rate. Moreover,
it is straightforward to extend our protocol to higher-
dimensional Hilbert spaces. Given its provable security
and reasonable implementation, we believe that our pro-
tocol presents an important step towards realistic free-
space quantum communication.
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FIG. 2. Simulation of the key rates (per photon) as a function
of the encoding dimension d and b/ro. The Fried parameter
ro corresponds approximately to the spatial coherence length
of the aberrations and b is the width of the Laguerre-Gaussian
mode. When b < 19, the effects of the phase aberrations are
weak and the inter-mode crosstalk is small, but they increase
rapidly as b becomes comparable to rg. For any encoding di-
mension d < 4, the behaviors of the two protocols are very
similar. When the encoding dimension increases, the differ-
ence of the two protocols’ behaviors becomes more obvious
and MPUB based protocol has a greater key rate.
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FIG. 3. Simulation of the key rate K as a function of dimen-
sion of the MPUB-based QKD (red circles) and MUB-based
QKD (blue squares) at a fixed turbulence level. The parame-
ters are set as b = 0.01 m and 7o = 0.08 m, which corresponds
to moderate ground-level turbulence strength C2 = 10'*
m~2/% and wavelength A = 1 ym [49].
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