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We propose a quantum algorithm for projecting a quantum system to eigenstates of any Hermitian
operator, provided one can access the associated control-unitary evolution for the ancilla and the
system, as well as the measurement of the controlling ancillary qubit. Such a Hadamard-test like
primitive is iterated so as to achieve the spectral projection, and the distribution of the projected

eigenstates obeys the Born rule.

This algorithm can be used as a subroutine in the quantum

annealing procedure by measurement to drive the system to the ground state of a final Hamiltonian,
and we simulate this for quantum many-body spin chains.

I. INTRODUCTION

The measurement postulate of quantum mechanics
states that when measuring an observable 6, only its
eigenvalues o, will be observed and the state of the sys-
tem will be projected to the corresponding eigenstate
|on), for which 6lo,) = onlo,), immediately after the
measurement. Furthermore, the Born rule prescribes the
probability of such an outcome for an initial quantum
state [1o) as p, = [{on]t0)|?>. Whether one can derive
the rule and hence remove it from the postulates of quan-
tum mechanics is still of fundamental interest [1]. From
the perspective of quantum information processing, gen-
eral construction of such spectral projection is also of
practical importance. For example, Ref. [2] constructs a
quantum walk approach to achieve this and emphasizes
its utility in carrying out a key step of the quantum sim-
ulated annealing (QSA) algorithm for optimization prob-
lems [3]. The latter can be used as an alternative to the
adiabatic quantum computation (AQC) [4, 5]. In fact,
the standard quantum phase estimation (QPE) [6] and
its variants [7-9] can also achieve approximate spectral
projection when the system is not in an eigenstate.

The QPE is crucial in many quantum information pro-
cessing applications [6], including factoring and, more
relevant to the present paper, the quantum-walk spec-
tral measurement in Ref. [2], as well as related methods
for preparing a thermal Gibbs state [10-13]. The stan-
dard QPE uses O(t,) controlled unitary gates of the form
c—U?" (for k = 0 to t,—1) to encode the t, binary digits
of the phase value (in unit of 27) and it requires O(t2)
gates in the inverse quantum Fourier transform to re-
trieve the phase [6]. Regarding the accuracy of QPE, in
order to have the phase accurate in m binary digits with
the success probability of at least 1 — ¢, the total number
of ancillary qubits needed is t;, = m + log(2e 4 1/2¢) [6].
In other words, using ¢, ancillary qubits allows the phase
value to be accurate in t, — log(2€ + 1/2¢) binary digits.
The accuracy in the phase is thus limited by the number
of available ancillas employed in representing the value of
the phase, and when used as spectral projection subrou-
tine, the eigenstate the system is projected by the QPE to

is only approximate. The unitary U may be implemented
by e~%At and in the QPE, the power in the unitary U
needs to go as large as 2t~ 1; equivalently, the timing At
needs to be made accurate to 2% (for k = 0 to t, — 1).
Maintaining the stability of U and coherence of the quan-
tum register when carrying out the QPE is important for
noisy intermediate-scale quantum processors.

Here, we apply a simple iterative approach to achieve
the spectral projection of an associated observable 6, and
in each step of the iteration only one ancilla is used as
the control to enact a unitary evolution (c—e™*A*) on
the system, conditioned on the ancillary state being |1).
Then only the ancilla is measured in the Pauli X basis.
After sufficient number of steps have been carried out
(see below), the system is projected to an eigenstate of
the operator 6. We demonstrate by numerical simula-
tions that our procedure can lead to spectral projection
by varying the parameter At and the ancilla’s state pa-
rameter.

To understand that repeated application of the prim-
itive eventually leads to spectral projection, we provide
two perspectives. First, we show that on average the en-
ergy variance of the system will decrease; see Eq. (13). If
the energy variance decreases to zero, then an eigenstate
is reached. Second, an intuitive picture of our procedure
emerges: at each step, the measurement of the ancillary
qubit gives rise to a random walk in the operator action,

i.e. with either e?0 or e?! acting on the system. The
choice of which operators depends on the measurement
outcome; see Fig. 1 below. The key notable difference
from the conventional random walk is that the outcome
probability is state dependent. However, we calculate the
average random-walk action poQo + p1 @1 per step that
is valid in the small At limit, and find that it leads to
a map, see Eq. (19), that when repeated will drive the
system to an eigenstate. Both viewpoints validate that
our procedure can lead to spectral projection, as eigen-
states have no energy (or observable-value) variance and
are fixed points of the iterative procedure.

We emphasize that the time At here, unlike in the
QPE, does not need to be exactly of the form 2. Thus,
in some sense the protocol for spectral projection does
not require exact timing and can tolerate fluctuations and



imprecision in timing. In addition, the range of At used
needs not span over many orders of magnitudes related
to the accuracy of the QPE, i.e., max{At}/ min{At} can
be much smaller than 2f~!. Moreover, the ancilla state
does not need to be in the |+) state right before the con-
trolled unitary and it can be in almost any pure state. As
seen below, we can also used a fixed At in our procedure
to achieve the spectral projection.

Given that spectral projection can be achieved, one im-
mediate question is what governs the distribution of the
projected eigenstates. For this we show that the distri-
bution of this eigenstate projection obeys the Born rule.
Fundamentally, our algorithm can be regarded as a pro-
cedure to achieve the effect described in the measurement
postulate. As an application, we simulate the use of our
spectral projection algorithm in two spin-chain models,
and demonstrate that ground states at different trans-
verse field strengths can be successfully obtained, when
there is a gap in the Hamiltonian throughout the param-
eter range of interest.

Our initial motivation for this study comes from the
incentive to devise a simple quantum version of Lanc-
zos algorithm. An approach was recently proposed in
Ref. [14] by implementing an effective unitary evolution
e~ therrAT to simulate the effect of imaginary time evolu-
tion ™27 on a quantum state. We wish to develop an
alternative approach that does not require the searching
of the effective Hamiltonian h.g. However, we could not
make the procedure to work due to high-order effect, and
we describe such a failed attempt in the Appendix. How-
ever, it was by analyzing this that leads us to the spectral
projection algorithm and the understanding why the at-
tempt failed.

The remaining of the paper is organized as follows. In
Sec. IT we discuss a primitive that slightly generalizes the
Hadamard test by using a general ancillary state. By re-
peating this primitive with sufficient number of times,
we argue that it will project the system to an eigenstate.
In Sec. III we describe the approach to classically simu-
late the above procedure and verify by simulations that
it indeed leads to an eigenstate or spectral projection al-
gorithm. There, we use random Hermitian matrices for
illustration and also demonstrate that such spectral pro-
jection obeys the Born rule for the final distribution of
projected eigenstates. In Sec. IV we give illustrations
of our spectral projection algorithm using the quantum
transverse-field Ising spin chain. In Sec. V we discuss the
effect of decoherence. In Sec. VI we illustrate the use of
our spectral projection algorithm in the quantum anneal-
ing for two different spin chains. Finally, in Sec. VII, we
make some concluding remarks.

II. THE PRIMITIVE AND THE ALOGRITHM
FOR SPECTRAL PROJECTION

The primitive that our algorithm is based on is sim-
ilar to the Hadamard test and will be described below.
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FIG. 1: Basic picture of our algorithm. (a) The primi-
tive: one ancilla is used as the control qubit for the con-
trol unitary, which is jointly applied to the ancilla and
the system, cU = [0)(0] @ I + [1)(1] ® e~*At" followed
by a measurement on the ancilla in the X = ¢% basis.
(b) Summary of the action on the input system state:

[9!.) ~ e9m|¢). This leads to a random walk picture for
the algorithm.

The algorithm itself is a repeated application of such a
primitive. We will provide analysis to support that our
algorithm can achieve spectral projection.

A. The Hadamard test and the primitive

The basic idea of our approach is to entangle a system
with an ancilla qubit prepared in a certain state, and then
measure the ancilla in a chosen basis, similar to the so-
called Hadamard test. This is commonly used in many
quantum information processing protocols [6]. We will
describe a slightly varied primitive, in which the ancilla
needs not be in the |+).

Let the system be in an initial state |¢)) and an ancilla
in |A) = a|0) +B|1) with |a|?+|3|?> = 1. We entangle the
ancilla (as the control) and the system (as the target) by
the controlled operation ¢ — U = |0){(0| @ 1 + |1){(1| @ U,
where U = exp (—ihAt) is the unitary evolution under
a Hamiltonian & within a duration At. We then mea-
sure the controlling ancillary qubit in the basis (|0) £
¢’€]1))/v/2, with the + associated with the measurement
outcome m = 0 or 1, respectively. This is equivalent to
measuring the observable cos(§)o, + sin(§)o, on the an-
cilla. We shall see below that we can take £ = 0 without
loss of generality, and thus the measurement will corre-
spond to the Pauli X basis, and the primitive is illustrated
in Fig. 1.

The measurement of the ancilla then collapses the sys-



tem to the unnormalized state:

) = \%w + (~1)me (1] [al0) ) + BILTT)]
= Lot (cnymeigpeitanyy, (1)

V2
and the corresponding probability of obtaining the out-
come m is

1
P = Ymll* =

N

(2)

Here we see that the phase factor e~% from the measure-
ment basis can be absorbed into the ancilla’s initial state
parameter 3, and thus we can set £ = 0 from now on
without loss of generality, resulting in the ancilla mea-
surement to the fixed the Pauli X, whose eigenstates are
simply |£) = (|0) £ [1))/v2.

Eigenstates are fixed points of the primitive. It
is easy to see that for any eigenstate |E;) with eigenen-
ergy E;, the post-measurement state is still |E;), but the
probability of getting the m-th outcome is

Djm = %|04 + (_1)mﬁe—iEjAt|2 (3)
= S 2(-1)"Re(0”Be BN ()

The probabilities for ‘0’ and ‘1’ outcomes add up to unity:
pj,0 + pj1 = 1. Moreover, their difference p;o — pj1 =
2Re(a* Be™Eirt) = 2|af| cos(¢p — E;At) can be used to
determine E;At up to an overall sign and multiples of 27,
where o* 3 = |a|e’®. To uniquely determine E;, one can
use a different set of (o, 8) and At to obtain different dis-
tributions for estimation. Note that in order to achieve
optimal determination we can maximize |af|, which is
achieved when |a| = |3| = 1/v/2 and corresponds to us-
ing an ancillary state |A) = (]0)+e?|1))/v/2. The choice
of |+) is the typical ancillary state in the Hadamard test.

Suppose we have two different energy eigenstates with
distinct energies E; # Ej, generically the two distri-
butions are different, p;,, # pg,m, unless the choice of
(o, ) and At coincidentally make Re(a*Be Fist) =
Re(a*Be™"FrAt) . Hence, by accumulating enough statis-
tics, one can determine whether the two eigenstates have
the same energy or not. One can use different ‘distance’
measures, such as the relative entropy to quantify the
distinguishability. Quantities such as the Chernoff bound
can also be used to quantify the likelihood of deviating
from the average values and thus the degree of distin-
guishability for a finite number of measurements per-
formed.

For the system’s initial state being [¢)) = >, c;-o) |Ej),
then the probability of getting outcome m in the ancilla’s
measurement can be shown to be p,(g) =2, |c§-0)|2pj’m,
which is a convex mixture of the extremal distributions

Dj,m from the eigenstates. This means that the knowl-

(©

edge of the distribution pm) is not sufficient to infer

[1+2(—1)"Re(a*Be ™ (]e~ P2 ).

uniquely the compositions of the eigenstates. If we are
given only a copy of |¢) and if it is not in an eigenstate,
then it is not possible to estimate p$,3> by any measure-
ment.

Energy change.

First, we can ask how much the energy has changed
after one such a primitive step: AE(,,) = T Ty -
(p|h|p), where |, ) = |47,)//Pm is the normalized
post-measurement state. By using the expressions for
the post-measurement state [¢],) (1) with £ = 0 and the
probability p,, (2), we can calculate AE(,,) explicitly and
arrive at (see Appendix B for derivations)

2(=1)"(Rn = (W)R1)

AE( =
(m) 1+2(—1)"R,

(5)
where parameters R, and Ry, are defined as

Ri = Re(a"Blyle” " y)), (6)

R = Re(a”B(yle " h|y)). (7)
In order to obtain some intuition of the above expres-
sion, we can expand it to the first nonvanishing order.
We find that for Im(a*3) # 0, the lowest nonvanishing
contribution occurs at the first order in At,

2(=1)™Im(a*p)

1+ 2(—1)mRe(a*p)

AE(,,) = (AR?)At, (8)

where the expectation (---) is evaluated w.r.t. [¢), e.g.
(hY = (A1), and the (AR)2) = (B[A2[) — (lhlp)? is
the energy variance of the state |¢)). Thus, generically the
change in the energy after one step is proportional to the
energy variance before the application of the primitive.

We note that, however, when Im(a*f) = 0, the change
in energy is in the second order,

Re(a*B) () — (h?)(h)) (At)?
11 2(—1)"Re(a*f)

AE(m) = - (9)

Of course, the exception is when Re(a*3) = £1/2, which
corresponds to the case of the ancillary state being |+).
In the case of using |+) of the ancilla, the change in
energy to the first nonvanishing contribution is

LR = (h%)(h)) (A2, m =0,
AE=9 ., (10)
Egzi - <i7’>7 m=1,

The above two outcomes are switched, if the ancilla’s
state is |—).

It is interesting to observe that in general the energy
will always change if |¢) is not an eigenstate, except when
the ancilla’s state satisifies Im(a*/3) = 0 (e.g. in the |+£)
state) and the system satisfies (h3) — (h2)(h) = 0, then
the energy will not change.



B. The algorithm

The algorithm is simply a procedure that repeats the
above primitive many times. In each step, the ancilla
parameters («, ) and the duration At can be different.
In the following, we provide argument to support that
our algorithm indeed will achieve spectral projection, by
analyzing two quantities that characterize the average
effect, in terms of the energy variance and the average
action of a random walk.

Before we proceed to the analysis, we need to first ask
the question: how do we know the algorithm has pro-
duced a converged eigenstate? Assume that the system
converges to an eigenstate |E;). Applying the ¢ —U gate
to the ancilla (initially in «|0) + 5|1)) and the system
leaves the system intact but changes the relative phase
in the ancilla: «|0) + Be~*i4t[1). Following the idea
in the so-called eigenstate witness method [15], one can
perform quantum state tomography on the identically
prepared ancillary qubit after applying the control uni-
tary. A single-qubit tomography involves measurement
in Pauli X, Y, and Z bases, as for a general one-qubit
mixed state p, = (I +>_,_,, 7i07)/2, its parameters
can be obtained from measurement: r; = Tr(p,0;). In
our algorithm, we perform X measurement, but measure-
ment in Y can also achieve spectral projection, as we have
argued that the measurement phase ¢ in |0) + e%[1) was
conveniently aborbed in the ancilla parameter 5. We can
also perform Pauli Z measurement, which will project the

ancilla and the system to |0)|¢) or [1)e”"A4), and it
does not affect the spectral projection. If the state to-
mography shows that it remains in a pure state, then
the system must be in an eigenstate and hence it is con-
verged. One can use the purity of the resultant ancillary
state as a measure for convergence. Moreover, from the
tomography, the quantity E£;A¢ can also be determined
(up to multiple of 27). By using different sets of At, one
can then uniquely determine F;.

Perspectives from probability distribution. As we
shall see below, successive coupling of individual ancil-
las with the system and measurement on ancillas help to
drive the system to an eigenstate, therefore arriving at
the final distribution p,, = pj- m for some j* labeling the
eigenstate |Ej«). The procedure gives rise to a sequence
of 0/1 outcomes, namely a bit string 0,1,1,0,... from
the ancillas’ measurement. From the persective of prob-
ability distribution, it starts with p£2>, and after succes-
sive application of the primitive, the distribution flows:
p,(g) — p,(%) — .- -pg,?), and after n steps, psﬁ) will be close
to some pj» 1. (In terms of coins, there are n+1 different
coins.) We stress, however, that in the process we cannot

obtain the distributions pg,lf ) from measurement as we are
given only one copy of the system, but we only obtain the
a sequence of 0 and 1. From this sequence we can only es-
timate the average probability of getting 0 and 1, i.e. Pyy,.
In the case of the eigenstates, such average distribution
can be used to distinguish whether two given eigenstates

have different energy or not (as the eigenstate does not
change, and hence the ‘coins’ are identical, as we have
discussed previously). However, for an arbitrary initial
state of the system, does the knowledge of p,,, guarantee
the projection?

Given that our algorithmic procedure enables the pro-
jection to eigenstates (as argued and numerically demon-
strated below), then from the bit string and the knowl-
edge of the initial state of the system, one can indeed
infer the distributions qu’i), as well as whether and what
energy eigenstate is arrived and what the corresponding
eigenenergy is by direct classical simulations. However,
for large system sizes, classical simulations will not be
possible. How do we argue that our procedure indeed
leads to spectral projection? How do we explain that in
the limit of long seqence p,, will eventually flow to an
extremal or fixed-point distribution p;- ,,,? In the follow-
ing, we provide two physically motivated approaches to
understand the spectral projection.

Energy variance. If the energy variance of a quan-
tum state is zero, theA state is an energy eigenstate,
Le, Vp(¥) = 0 & hly) = El), where Vp(v) =
(I AR2I0) = (W1A20) — (BlA[E)2. Thus, energy vari-
ance is an important indicator to how close the state
has converged to an eigenstate. Carrying out the prim-
itive yields the outcome ‘0’ with probability py and
the normalized post-measurement system state [¢)) =
|46)/+/Po, and the outcome ‘1’ with probability p; and
the normalized post-measurement system state |¢})/ =
|¥1)/y/P1- Given the probabilistic nature due to mea-
surement, it is thus natural consider the average change
of the energy variance after one step:

Ve = [po (o h® i) — (ol hlibg)?)
o1 (DR [05) — (1 1R191)%)] — (I(AR)? ).

Since the expectation value of h and its function such as

h? are conserved, the above change can be simplified to
be

Ve = (0Ihl)® = [po(Wplhldo)? + p(dr|hl4)?]. (11)

By using the expressions for the post-measurement
state (1) and the probability (2), we can calculate dVg
explicitly and arrive at (see Appendix B for derivations)

—4

Ve =9z AR2

(Ri(h) —Ra)?, (12)
where the two parameters R; and Ry are defined pre-
viously as in Egs. (6) and (7), respectively. Given that
|a* 3] < 1/2, the parameter R; satisfis R? < 1/4. Thus,
0VE < 0 and generically 6§V < 0.

In order to obtain some intuition about §Vg, we can
expand it in series of At, and we find that when Im(«f8) #
0, it is nonvanishing at the second order:

_%(W(Ah)QIW)Q(At)?. (13)

Vg =



The factor, c(a, 8) = Im(a*B)?/[1 — 4Re(a* 8)?] is max-
imized with a value 1/4 when 8/a = €' and |a| = |B| =
1/ V2. Such a choice represents a maximum ‘rate’ of
change in the energy variance. Moreover, the change is
also proportional to the square of the energy variance of
the system’s state before carrying out the primitive.

We note that, however, when Im(a*3) = 0,

Re(a* )2 (%) — (h2)(h))*(At)*

Ve = —
E 1 — 4Re(a* )2 ’

(14)

except when a = 1/v/2 and 8 = +1/v/2, the average
change in the energy variance is
- Son 72
((h%) = (*)(R))
4(h2)

Vi = — (At)% (15)

We observe that the quantity (h3) — (h2)(h) has previ-
ously appeared in the change of the energy (10).

The above analysis suggests that we should usually

choose ancillary parameters such that Im(a*3) # 0, ex-
cept when a = 1/4/2 and B = £1//2, so as to make the
average energy variance decrease in O(At?). If the en-
ergy variance continues to decrease closely to zero, then
an energy eigenstate is approached. We remark that as
demonstrated below it is not necessary to use the same
ancillary state and time duration At in every step of the
procedure. Varying ancilla’s state away from |+) can be
useful to avoid the system state to get stuck in states
that have (h3) — (h2)(h) = 0. See also below in Sec. IV
for further discussions on this.
Random-walk approach. As the procedure outputs a
pure state if the input is also pure, a question arises as
to how we can analytically understand how the system
is eventually driven to an eigenstate? Let us analyze
the post-measurement states |1/}, ) by expanding it to the
second order in At,

at (=B, —ihAt — L(hAt)?
V2 1+ (=1)™a/p

We can rewrite the above equation to find the exponen-
tiated action on |¢), i.e., [¢),) ~ ef|¢)) and ignore the
overall constant. As shown in Appendix B, we find that

to the second order in At
~ —ihAt—L(hAt)? 1 (hAt)?
Tl (=Dma/B 2[4 (—1)ma/B?

[ ).

(16)

As P, is a polynomial of B, one can separate it into
two commuting parts: one Hermitian and the other
anti-Hermitan, P, = (P,, + P} )/2 + (P,, — P})/2 =:
Qm + i]:Zm. As theApart iRm is anti-Hermitian, its corre-
sponding action e** is a unitary, and it does not modify
the relative weight in the decomposition of energy eigen-
states, so we can ignore it when we consider eigenstate

projection. Thus, we focus on |¢)] ) ~ eQm 1), where
Qm = (Pm—i—P?L)/Q.

After a long sequence of iterations, we will have a long

product of operators e?’s (which commute with one an-
other) acting on the initial state |¢), such as

te(Q,B’At)er(aﬁ,At)te(lX,ﬂ,At) .. e@o(a;/B,At), (17)

which looks like a sequence of ‘random walk’ using the
two operators in the exponent. However, the key differ-
ence from a typical random walk is that there is a quan-
tum state that changes after every step and the probabil-
ity of moving to the left or right py,; is state dependent,
as in Eq. (2).

Here, as an approximation for the average action

e@(@B.A) which is valid in the limit At — 0, we ig-
nore the subsequent state dependence and use the ini-
tial po/1(¢) to calculate the average in the exponent:

po(¥) - Qo + p1(¥) - Q1, and we arrive at

Z mem = -

m=0,1

Im(a*B)2At2 - 5 so
) Sl = (0 = ()

(18)

Thus, the average one-step action gives rise to a map on
the system:

) — o—claB)AL (h—(h))? ). (19)

The factor ¢(a, 8) > 0 is defined earlier and is maximized
with a value 1/4 when 8/a = €' and |a| = |B] = 1/V2.
This represents the optimal choice of ancillary parame-
ters to maximize the converge rate, consistent with re-
sults presented earlier.

The meaning of the above equation is that the pro-
cedure tends to suppress components of eigenstates that
have eigenvalues further away from hy, = (|h|1h). As one
repeatedly applies the primitive, the state |¢) itself will
change and hence so will the expectation value (|h|),
with the latter eventually approaching the energy eigen-
value and the system state approaching the correspond-
ing eigenstate. The random-walk analysis gives similar
conclusion as that by the change in the average energy
variance. We note that when Im(a*3) = 0 and the an-
cilla’s state not being |4), we need to carry out the ex-
pansion to the fourth order, but we do not perform the
calculation here.

III. PROCEDURE FOR CLASSICAL
SIMULATIONS

The primitive looks similar to the Hadamard test and
consists a controlled-unitary action on the ancilla and
the system, as well as a subsequent measurement on the
ancillary qubit. Since the effect is to update the state
vector of the system, for classical simulations of this pro-
cess, we only need to compute two (un-normalized) wave



functions Wﬁ,’?) and their norm squares p'y) = (1/)55 ) |¢§,’f)>
at each step, say, k-th,

|w£,’:>>=% arlw® D) + (1" BUL ¢ )L (20)

given the state, [y*~1), of the system from the end of
the previous step, the parameters aj and [, and the
unitary Uy (Aty) = e~ *Ateh,

One then decides to update the state |p*)) =
|w§,lf)>/\/]ﬂ by choosing m = 0 or m = 1 with prob-
ability pgf)‘ With a suitable choice of {(ax, Sx)} and
{Aty}, the long-iterated state [¢»(*>1)) will converge to
some eigenstate |E,), as illustrated below.

Simulating this procedure for spectral projection also
provides us a quantum-inspired classical algorithm to ob-
tain (randomly) excited states, whose accuracy does not
depend on other lower lying levels. The costly part is ap-
plying e ~*"A? to a state vector. However, for the purpose
of a short-range Hamiltonian, one can use the Trotter de-
composition and the individual e~ from h = 3 j h;.
Tensor-network representations can also be useful.

To obtain the entire set of eigenstates, we need to simu-
late the spectral projection as many times as the Hilbert

J

—0.0763231 *
—0.513284-0.0732759: 0.691614
0.516039+0.200047 —0.884252—0.2488851
—0.379429+0.303255: 0.0981619—0.6036797
0.01425264-0.421276¢ 0.635987+0.0817911%

Hs =

—0.484382—0.134895:
—0.450215—0.8089647 0.6387+40.1887117 0.736562

space dimension. One can start with the system in an
arbitrary initial |t¢g) state. Run the procedure to obtain
some eigenstate |¢1), then subtract the portion of |¢q)
from |1o): M) = |10) — (p1]10)|h1) and use the nor-
malized version of [¢[1) as the input of the procedure.
Repeat this until one exhausts all the eigenstates that
have nonzero overlap in |1g). For the remaining eigen-
states having zero overlap with [¢g), we can generate
another random state and remove the components of all
previously found eigenstates and use the resultant state
as the input. In this way, we can eventually exhaust all
eigenstates. The benefit of this method is that the accu-
racy of each eigenstate is independent of one another.

A. Simulation results: illustrative examples

Let us illustrate the algorithm by considering the sys-
tem to be five-level, i.e. qudit with d = 5. We generate a
5x5 Hermitian matrix Hs, with (Hs)i; = (Hs)j; = z+yi
and z and y uniformly sampled from the range [—1,1]
(except y = 0 for the diagonal elements). Here we only
display its elements in the diagonals and below:

* * *
* * *
—0.495554 * * , (21)

0.921927 *

whose eigenvalues E;’s, sorted from the smallest to largest, are {—1.51593, —0.700576, 0.388005, 1.0888,2.51793}. We
also randomly generate a 5-component normalized vector to be the initial state,

[10) = (0.506424, —0.370456 + 0.164849i, —0.444258 + 0.1948144, —0.0372888 — 0.33439i, —0.475495 — 0.0671035i)” .

(22)

The state |1g) has an expected energy being —0.525913, with the probabilities |(E;[1)|? in the five eigenstates being,

respectively,

{0.554875,0.0729256, 0.262368, 0.00841186, 0.10142}. (23)

Next, we explore various combinations of («,/3) and
At in our classical simulations. Given that the opti-
mal choice of (o, ) is such that |a8| = 1/2, i.e., within
the one-parameter family (1, e*?)/v/2, we first discuss the
choice of the phase ¢ in this family. We have carried our
a few simulations and displayed the results in Fig. 2.

(I) Iterations with fixed At and ¢. With sufficient
number of iterations, even fixing At = 1.0 and ¢ = 0
(i.e. the standard Hadamard test), eigenstates can be
reached with increasing accuracy as the number of itera-
tions increases. In the simulations, we terminate the it-
eration once the energy variance ((Ah)?) has reached be-
low 10719, The specific example run takes as long as 365

(

steps and converges to the eigenenergy E3 = 0.388005.

(IT) Iterations with fixed At but ¢ from a given
set. Bying fixing At = 1.0 but choosing ¢ from km/4
(with £ = 0,1,...,7), the specific example run takes 67
steps to converge to the eigenenergy Fs = —0.700576.

(III) Iterations with fixed At but random choice
of ¢ € [0,27). In the previous choice, ¢ is chosen from a
set of values, here we consider choosing ¢ randomly from
[0,27). In the example run, it takes 68 steps to converge
to the eigenenergy E; = —1.51593.

(IV) Iterations with varying A¢. In the pre-
vious three cases, we do not need to change Aft.
But by allowing At to vary, the efficiency can be
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FIG. 2: The iteration procedure using various choices of At (arbitrary unit) and ¢. See the main text for detailed
discussions of the four types of choices (I) to (IV). In (a) the energy is in an arbitrary unit and the values are recorded
in the iteration; in (b) the energy variances (also in an arbitary unit) are recorded.
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FIG. 3: The iteration procedure using various choices of At (arbitrary unit) and ¢ similar to those in Fig. 2, except

that a = v/3/2 and 3 = 1/2¢'. See the main text for detailed discussions of the four types of choices (I) to (IV).

In (a) the energy values (arbitrary unit) are recorded in the iteration; in (b) the energy variances (also in arbitrary
units) are recorded.

improved. For example, by recycling At from the
set {100,100/3,100/32,100/33,100/3%,100/3°} and us-
ing random ¢, it takes 43 steps to converge to the eigenen-
ergy E5 =2.51793.

We have also repeated the simulations using the above
four types of choices but for o = v/3/2 and 8 = €'¢/2,
and the results are shown in Fig. 3. We see that even
without the optimal ancillary parameters, spectral pro-
jection can still be achieved. The steps it take to converge
are not significantly larger than those using the optimal
choice of the ancilla.

Let us compare our procedure to the QPE, in which the
control-unitary needs to go as large power as ¢ — U 2%71,
in order to gain accuracy in m binary digits, i.e. accurate
up to 27, where m = t, —log(2¢+1/2¢) and 1 —¢ is the
lower bound on the success probability of the QPE. To
achieve the same accuracy as 2732 ~ 107!° in spectral
projection by the QPE, one needs the number of ancillary
qubits t4 to be more than 33, and the power in U differs
in magnitude by 233. In contrast, the ratio of the largest
At to the smallest used in our simulation (IV above) is

only 3% ~ 28. In the above (I)-(III), At is fixed, but it
takes more steps to converged to the desired accuracy.

In the QPE, the power of the unitary U2 needs to be
precise in order for the algorithm to work. The procedure
that we propose here does not require precise At. We
have tested that the ability for the spectral projection
does not depend on the precise values of At as above,
and other sequences can be used. For example, a different
sequence is used in Fig. 4 as an example by perturbing
the previous set of At, and spectral projection is still
achieved.

In all of the above simulations, in addition to the en-
ergy value, the energy variance ((Ah)?) is also recorded
as the procedure is carried out. We have seen that on
average, the energy variance indeed decreases.

B. Distribution of eigenstates: the Born rule

Given that the iterations based on the primitive in
Sec. II lead to a procedure for projecting a system to
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FIG. 4: The iteration procedure using varying At

and random ¢. This corresponds to the choice (IV)
in the main text. Here, At is chosen from the
set {100,100/3,100/32,100/33,100/3%,100/3°}, but per-
turbed by 1% of random fluctuations: At — At(1 +
0.01z) with « € [0,1). There are four different runs but
with the same initial state of the system. In (a) the en-
ergy values are recorded in the iteration; in (b) the energy
variances are recorded. Both the energy and its variance
are displayed in arbitary units.

eigenstates of an Hermitian operator h, here, we investi-
gate the distribution of eigenstates when this procedure
is repeated many times. We again take the Hs Hamil-
tonian (21) and the same initial state (22) of the system
and carry out simulations for our spectral projection al-
gorithm.

As seen from the results in Fig. 5 using 10,000 repeti-
tions of the procedure, the distribution of the eigenstates
agrees well with the Born rule, which predicts that the
probability of the n-th eigenstate |E,,) is p, = [(Ey,|¥0)|?.
That the Born rule applies can be explained as fol-
lowed. Since the controlled unitary ¢ — U = [0)(0] ®
1+ 1)1 ® e~iAth commutes with the Hamiltonian
of the system, and hence with any eigenstate projector
|E,){E,|. Therefore the expectation value of the observ-
able |E,)(E,| must be conserved and equals |{E,, |)|?.
Under the assumption and as observed above that the
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FIG. 5: Eigenstates distribution p, after the proce-
dure (simulations vs. ideal Born rule). The Born
rule predicts that p, = |(E.|[v0)|>. The model un-
der consideration is the Hs Hamiltonian in Eq. (21)
with the initial state in Eq. (22). The horizontal
axis n labels the index of eigenstates with eigenen-
ergies (E,) ordered from the lowest to the highest.
At € {100,100/3,100/32,100/3%,100/3%,100/3%} and
¢ is chosen randomly each time in [0,27), and for
each At value we iterate 5 times. Each run is ter-
minated when ((Ah)?) < 1070 and if more itera-
tions are needed when all values in the At list are
used, we recycle the At list from the beginning. The
statistics were obtaining by averaging over 10,000 runs.
The final distribution obtained from the simulations is
{0.5557,0.0733,0.2617,0.0077,0.1016}.

procedure leads to eigenstate projection, then the distri-
bution {¢,} of the projected eigenstates should remain
the same as the initial distribution, i.e. q, = [(E,|q)[?.

We note that there is nothing special about the Hamil-
tonian fz, and our proposed algorithm works for any Her-
mitian operator. The Born rule will also apply. One
may also regard our procedure as a method to realize the
statement in the measurement postulate.

Number of iterations. In addition to the Born rule, we
also investigate how many iterations are needed to reach
a desired accuracy, e.g. ((Ah)?) < 10710, In the same
simulation for the study of the Born rule above, we also
keep track of the number of iterations in each run it takes
to reach that accuracy. The results are shown in Fig. 6
using histograms. As observed, the number of required
iterations is not narrowly peaked and this reflects the
randomness in the ancilla measurement outcome and the
state dependence in the outcome probability.
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FIG. 6: Histograms of the number of iterations to reach an eigenstate with an accuracy ((Ah)?) < 10710,
IV. SPECTRAL PROJECTION ALGORITHM Condition),
APPLIED TO THE TRANSVERSE-FIELD ISING
MODEL Ny
Hrei(g) =Y [gofol, —(1—g)oi].  (24)

Here we consider physical models, such as the Ising
model in a transverse field (with the periodic boundary

=1

Our parameterization is slightly different from that in
the literature. The spin-spin coupling strength is J = ¢
(antiferromagnetic if J > 0) and the external field is
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FIG. 7: Example simulations on spectral projection for 5-qubit transverse field Ising model. (a) and (b) show the
traces of energy and its variance in arbitrary units, respectively. There are three different runs (but with the same
initial state of the system). Each run is terminated when ((Ah)?) < 1071°. The phase parameter ¢ in the ancilla
state is chosen randomly at each step and At is chosen from the set {100,100/3,100/3%,100/3%,100/3%,100/3%} and
each At repeated 5 times. The iterations continue by recycling the At set until the desired precision is met. (¢) The
bottom panel compares the distribution of projected eigenstates in 10,000 simulation runs with the ideal Born rule.

B = (1 —g). In Fig. 7, we take g = 0.5 (the critical
point in the large N, limit), N, = 5 and the initial state
[o) = |+ — + —+) and simulate the spectral projection
procedure. The values of ¢ are randomly chosen and
those of At are listed in the caption. We see in Fig. 7
that spectral projection can be achieved with accuracy
of 10710 by using At that ranges less than three orders
of magnitude. To use the QPE for spectral projection, it
will require the unitary controlled by the ancilla to raise
to at least 232, which is far from practical at present.

We also compare the distribution of projected eigen-
states in the simulation with the ideal Born rule. In the
case of degeneracy, we assign the portion according to the
overlap square with these degenerate eigenstates. This
again confirms the Born rule of our spectral projection
procedure in a spin model.

The use of the ancillary state |A) = |+). In our sim-
ulations for the Ising model we have encountered cases
where the use of |+) in the ancillary state has caused
the system to flow to certain class of states which under
further iterations do not change the energy, despite that
they were not eigenstates. But we have not observed
such phenomena in the random Hamiltonian case ex-
plored earlier. This can be explained by the expressions
in Eq. (10), which shows that when (h3) — (h2)(h) = 0,
the energy does not change to lowest order in A¢. This

occurs when

) = Z ai|E;) + Z bl Ej), (25)
i;Ei:—E j;Ej:E
as one can verify that
y=1{ > b= > lal*| B, (26)
§;B,=FE i;Bi=—F
(h?) = EZ, (27)
=1 > blP= D> el B (29)

J:E;=E G;Ei=—E

and, hence, the above condition is satisfied. The state
does change under the iteration, but not the magnitudes
la;|? and |b;|? (after proper normalization). In the case
of the transverse-field Ising model, there are eigenstates
of opposite energies, and thus it can happen the system
is driven to states of the form (25). In our example from
random Hermitian matrices, there are no eigenstates of
opposite energies.
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FIG. 8: Energy variance (in an arbitrary unit) in pres-

ence of decoherence. We apply the depolarizing channel

at each step of the iteration, with two different e = 1073

and 1075. Two runs are performed for each respective e.

The Hamiltonian is the transverse-field Ising model with

g = 0.5. It is seen that the energy variance is larger than
5€e. There are 204 steps in each run.

V. EFFECT OF DECOHERENCE

Our method in general does not protect against deco-
herence. Let us consider a simple depolarizing channel
D(p;) = (1 — €)p; + €l;/2 apply to every system qubit.
Here we assume the ancillary control qubit is relatively
error free, and this reminds us of the assumption in the
so-called DQC1 quantum computing model [16], where
only one qubit is clean. Due to the depolarizing chan-
nel, the state remains in the original un-decohered state
with a probability approximately (1 — €)™, where Ny is
the number of qubits in the system, but the remaining
portion 1 — (1 — €)"e can contribute substantially to the
energy change and its variance. If the decoherence is ap-
plied at each step, then our procedure will have an error
of order at least 1 — (1 — €)Ns & N,e for small € at each
step of the iteration. This is confirmed in our numerical
simulations, as shown by the record of energy variance in
Fig. 8.

However, we imagine a contrived scenario that the de-
polarizing channel acts only, e.g., every 30 steps. Then
the procedure can achieve better accuracy in between two
strikes of the decoherence. This is illustrated in Fig. 9.
The ‘disruptions’ due to decoherence are visible, espe-
cially in terms of the upward jump in the energy vari-
ance in Fig. 9b. If there can be sufficient number of it-
eration steps carried out before decoherence takes place,
then the system can converge close to an eigenstate. Of
course, the depolarizing channel takes the system out of
the eigenstate and the subsequent iterative spectral pro-
jection procedure may take the system towards another
eigenstate. Since the decoherence process does not com-
mute with the system’s Hamiltonian, our procedure in
the presence of decoherence may serve at best a robust
way of finding arbitrary eigenstates, rather than a robust
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FIG. 9: Energy (top) and energy variance (bottom),

similar to the simulations in Fig. 8, except that ¢ = 0.01

and the depolarizing channel applies only every 30 steps,

starting at step 1 and ending at step 181. There are 204

steps in each run of the three runs. Both the energy and
its variance are displayed in arbitary units.

way of spectral projection.

VI. SPECTRAL PROJECTION AS A
SUBROUTINE IN THE QUANTUM ANNEALING
ALGORITHM

We begin by describing the idea of quantum anneal-
ing and related algorithms. One of the first proposed
quantum annealing methods is to use imaginary-time
Schrodinger’s equation proposed by Finnila et al. [17].
The one that is close to the modern AQC [4, 5] is pro-
posed by Kadowaki and Nishimori [18], where the Hamil-
tonian is the combination of the time-independent Ising
model and a time-dependent transverse field. The evo-
lution of the quantum state was discussed in terms of
real-time Schrodinger’s equation that takes the system
in the ground state of the large-field limit towards that
of the zero-field limit. The AQC similarly has a Hamil-
tonian H(g) that interpolates between a simple Hamil-
tonian H(g = 0) with an easily prepared ground state
|G(0)) and the final Hamiltonian H (g = 1) that encodes
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FIG. 10: Application of our spectral projection algo-
rithm in the quantum annealing as the subroutine. The
figures display the energy (in an arbitrary unit) after pro-
jecting to the eigenstates vs. g for the transverse-field
XzY model at r = 0.5, i.e. Hx,y(g = 0,7 = 0.5) for
(a) N = 5 qubits, and (b) N = 6 qubits. The curves
represent eigenenergies as a function of g. The proce-
dure starts with two different initial states: (1) [(blue)
dots that start on the lowest curve| the ground state
|00000) of Hx,y(g = 0,7 = 0.5), and (2) [(red) dots
that start on the top curve] the highest-energy state
[11111) of Hx,y(g = 0,7 = 0.5). All the energy levels
of Hx,y(g,m = 0.5) are also shown by solid curves. (a)
Due to energy level crossings, the ground state transits
to a higher excited state after the crossing, and the high-
est energy state transits to a lower energy state after an
associated crossing. Quantum annealing does not work
if there is any level crossing. (b) Due the existence of a
respective small gap, the initial ground state ends up at
the final ground state and the initial highest-energy state
ends up also at the final highest-energy state.

the solution of certain problem in the ground state of
H(g =1). Provided the minimum gap of H(g) is not too
small, then evolving under the Hamiltonian via a suitable
path g(t) will take the initial ground state very close to
the final ground state at the end of the evolution,

[U(T)) = Te~tJo H6Wd|G(0)), (29)
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where T indicates that the integration is time-ordered,
and T is the total time duration.

The key idea of the QSA by Somma et al. [3] is to ex-
ploit the quantum Zeno effect and replace the unitary
evolution by measurement in the eigenbasis of H(g;),
in a successive sequence of discrete g; (0 < g1 < go <
-+- < gp = 1). If the overlap of successive ground state
(G(gr)|G(gr+1))| > 1 — p? is sufficiently close to unity,
then by the quantum Zeno effect, the final state after the
whole sequence of measurement should be very close to
the final ground state |G(¢g = 1)). The standard QPE
and a randomization procedure were proposed in Ref. [3]
to achieve the measurement approximately. Below, we
use our spectral projection algorithm for the measure-
ment in the QSA and perform classical simulations for
two different Hamiltonians, and we loosely refer to this
also as quantum annealing.

A. Transverse-field XzY model

Here, we consider a different spin chain [19] than the
Ising model:

N,
- 1 + r xT z T
Hxzy(g,7) = Z {—9 ( 5 0i-10i 01t (30)
i=1

1—1r . .
B J?—loi ‘7%,-5-1) -(1 _g)ai:| .

One reason of choosing this transverse-field XzY model
is because, for the qubit number N, being odd, there
is a crossing in the lowest few energy levels when the
parameter g is varied; see e.g. Fig 10. But for N, being
even, there is a small gap above the ground state (for
finite Ny). Therefore, it is interesting to compare the two
different cases (but in the same model) for the quantum
annealing. In our simulations, we will take r = 0.5.

We begin with the initial state either as the ground
state or the highest-energy state of Hx,y (g = 0,7 = 0.5)
and run the simulations for the quantum annealing with
our spectral projection algorithm as a subroutine. The
projection subroutine works by performing 180 times the
primitive in Sec. II, thereby approximately projecting the
system to eigenstates of Hx,y(jAg,r = 0.5), where in
this simulation Ag = 0.05 and j successively goes from 1
to 20, reaching g = 1 at the end. We see, in Fig. 10a with
N, = 5, that the quantum annealing does not work as
there is an energy level crossing and the state of the sys-
tem follows its path smoothly in the energy space cross-
ing the lowest energy curve, and similarly for the initial
highest-energy case. However, the quantum annealing
indeed does work when there is a gap throughout the
range of g (except at the end) for the N, = 6-qubit case
in Fig. 10b.
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FIG. 11: Application of our spectral projection algo-
rithm in the quantum annealing as the subroutine for the
transverse-field Ising model Hrpr(g). The figure shows
the energy (in an arbitrary unit) after projecting to the
eigenstates vs. g for the 5-qubit (top panel (a)) and
6-qubit (bottom panel (b)) transverse-field Ising model.
The procedure starts with two different initial states: (1)
[(blue) dots that start on the lowest curve] the ground
state |00000) of Hrpi(g = 0), and (2) [(red) dots that
start on the top curve] the highest-energy state [11111)
of HTFI(g = 0)

B. Transverse-field Ising model

Here, we return to the transverse-field Ising model (24)
and perform the quantum annealing with our spectral
projection as a subroutine. The ground state at ¢ = 0
is unique and is given by [0Ne). But the ground states
at ¢ = 1 are doubly degenerate, and they are |+®Va)
and |—®a). Similar to the previous section, we examine
small system sizes with N, = 5 and N, = 6, shown in
Fig. 11. Given that there is small gap in both cases, the
quantum annealing works.

In the above simulations we have used the e~**4? with-
out decomposing it into Trotter terms. In order to simu-
late larger systems, we separate the Hamiltonian into two
parts: He(g) and H,(g) for even and odd bonds, where
terms in H, commute with one another and similarly for
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the terms in H,. Thus we can apply a Trotter-Suzuki
decomposition to e~ HotHe)Al o g—iHoAtp—iHo Al - g
simulates the scenario that in the quantum circuit one
can apply simultaneously the commuting terms of the
controlled version of e*#°A* and subsequently those of
e~ At T our classical simulations, we use a 4-th order

Trotter-Suzuki decomposition [20, 21] for e~ #(Ho+He)AL,

efz(HoqLHc)At ~ efmlHDAtefzachAt (31)
eiagHeAtei(LQHDAte—iagHoAte—iagHeAte—iagHeAt

e—iagHoAteiagHoAteiazHeAte—ialHeAte—ialHoAt,

where a; = (2 +v2)/4, as = —aq, and a3 = (1 ++/2)/2.

As seen in Fig. 12 with N, = 114, 16, 18, 20, &22, the
annealing proceeds at initializing the state at the ground
state of Hrpr(g = 0), which is [00...0). Then the spec-
tral projection is applied successively at g = jAg for
j=1,2,...,40 and Ag = 0.025 (with the primitive be-
ing run 210 times in each projection procedure), ending
at g = 1 at the end of the annealing. The final energy af-
ter the anneal is seen to be close to the final ground-state
energy, which is —N,. The accuracy in this case can be
increased by making the Ag smaller and total number of
iteration steps larger. The energy variance is generally
the largest around g = 0.5, and this is expected as, in
the thermodynamic limit, there is a second-order quan-
tum phase transition at g. = 0.5, and it is known that
the gap closes as O(1/N) when g approaches g. from be-
low. As g approaches 1, the ground state becomes doubly
degenerate.

C. Effect of decoherence in the annealing

Here, we take into account of the decoherence effect
in our spectral projection and discuss how it affects the
quantum annealing. In general, our algorithm does not
project against decoherence, as discussed in Sec. V, and
hence the resulting quantum annealing will be worse than
the noise-free case. The degree of inaccuracy depends on
the error rate e. We use, as an illustration, the contrived
scenario discussed above that the decoherence with € =
0.01 occurs at every 31th step in our spectral projection
subroutine, in which the primitive is run for 210 steps.
We test this on the 5-qubit transverse-field Ising model
Hrri(g) and the results of three different runs for the
quantum annealing are shown in Fig. 13. As opposed to
the noise-free case, there is some probability (depending
on the noise rate and strength) that the final state may
end up far from the final ground state. But there is
also some probability that the final state is close to the
final ground state. Developing noise-protecting spectral
projection is thus a desirable goal that can yield a noise-
protecting quantum annealing algorithm.
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FIG. 12: Application of our spectral projection al-
gorithm in the quantum annealing as the subroutine
that carries out the measurement to project to eigen-
states [3]. (a) The top figure shows the energy (in an
arbitrary unit) after projecting to the eigenstates vs.
g. Different colors represent different qubit numbers
N, = 14,16,18,20,&22. The procedure starts with
the ground state [00---0) of Hrpr(g = 0). (b) The
bottom figures shows the energy variance (in an arbi-
trary unit) at each step of projection (showing only for
Ny = 14,18, &22 for illustration), which can be used as
a figure of merit for the error in the energy. Generally,
the variance is the largest around g = 0.5, which is
the critical point of the model in the thermodynamic
limit. The curves are drawn to connect dots and to
guide the eye. There are in total 210 steps in each
projection run. The parameter At is chosen from the
list with number of repetitions shown in the parenthesis:
[0.01(x10),0.1(x10),0.03(x50),0.01(x100), 0.003(x40)]
The ancillary state is chosen as (o = 1/v/2, 3 = ¢'?/v/2)
with ¢ chosen randomly in [0, 27).

VII. CONCLUDING REMARKS

We have proposed a quantum algorithm for projecting
to eigenstates of any Hermitian operator, provided one
can access the associated control-unitary evolution and
measurement of the controlling ancilla qubit. The pro-
cedure is iterative and the distribution of the projected
eigenstates obeys the Born rule. It is robust against im-
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FIG. 13: The effect of decoherence on the quantum
annealing. We use the contrived scenario that the deco-
herence with ¢ = 0.01 occurs at every 31th step in our
spectral projection subroutine, where the primitive is run
for 180 steps. We use the 5-qubit transverse-field Ising
model Hrrr(g) and carry out 3 different runs. The en-
ergy (a) [top] and its variance (b) [bottom] are shown as g
is varied. Both the energy and its variance are displayed
in arbitary units. The initial state is the ground state
|00000) of Hrrr(g = 0). The final grounds are doubly
degenerate and are | + —+ —+) and | — + — +—).

precision in timing. But it has only limited resilience
against decoherence; the iterative procedure takes the
system towards eigenstates, even after the influence of
decoherence such as a depolarizing. It has no capability
of error correction or prevention. We view our method
as a simpler algorithm to project the system into eigen-
states of a Hermitian observable than the standard QPE
and it can also be used to extract eigenvalues. We com-
pare our spectral decomposition to the standard QPE
and an iterative version in Table I. Our algorithm can
be used as a subroutine in the quantum annealing pro-
cedure by measurement [3] to drive to the ground state
of a final Hamiltonian. We have performed simulations
that demonstrate the utility of our algorithm. We note
that a previously proposed scheme of ground state cool-



Projection Phase Accurac
Methods || i | estimation |4t
P y capability
no. of ancillas &
QPE yes yes power in ¢ — U2k;
requires QFT
. 2k .
{OPE s o5 power in ¢ — U”
Q Y Y requires no QFT
no. of iterations;
SPA yes yes requires no QFT

TABLE I: Comparison of the standard QPE [6], the
iterative QPE (1QPE) [9] and our spectral projection
algorithm (SPA). QFT stands for quantum Fourier
transform. Both the QPE and iQPE have fixed
accuracy set by the choice of highest power in U 2" and
during the procedure the highest power cannot be
changed; the QPE is fixed by the total number of
ancillas and the iQPE needs to fix the highest power in
the beginning of the procedure. Both the QPE and
iQPE require precise execution of ¢ — U 2" for all k < tg.

On the other hand, our SPA uses ¢ — e~ "% and the
range of At can be fixed, but the accuracy can still be
improved by running more iterations. Our SPA does
not require At to be exact 2%, and in fact it can be
somewhat arbitrary. The drawback of our SPA is that
the number of required iterations for achieving a fixed
accuracy can vary from run to run.

ing quantum computation also uses ancilla measurement
for the cooling [22]. Our scheme uses ancilla measure-
ment for the spectral projection and the way it is used
in the QSA is similar to the quantum Zeno effect. It
will be useful to develop a noise-protecting spectral pro-
jection. A proof-of-principle demonstration of our spec-
tral projection algorithm on currently available quantum
computers will also be desirable.

Post-selection allows projection to the ground state,
but the probability for obtaining the desired post-selected
outcome is exceedingly small. The algorithm that we
have attempted for the imaginary time evolution suf-
fers some problems that make it not practical; see Ap-
pendix A. The fact that we end up with a spectral pro-
jection that obeys the Born rule seems to indicate that
we may need to go beyond the primitive used in this
paper to achieve an imaginary-time evolution quantum
algorithm, as done in Ref. [14]. But whether imaginary-
time evolution can be achieved without using an effective
Hamiltonian is an interesting question to consider.

In order to classically simulate our spectral projection
algorithm, it will generally takes exponential time in the
number of qubits of the system, as one needs to compute
e~ A y). Thus, it will be interesting if such a procedure
can be carried out in a quantum computer for system
sizes beyond the capability of classical simulations. This
might be a useful playground for demonstrating quantum
advantage.
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Appendix A: A failed attempt to construct an
adaptive procedure for imaginary-time evolution

We have considered a primitive similar to the
Hadamard test, except using an ancillary state of «|0) +
B|1). The controlled unitary gate is of the form c—e*"4¢,
We consider the post-measurement state of the system up
to the first order in At,

—1)™iAE -
_ _CDMAL Gl

a/B+ (1)

(A1)

Our motivation here is to achieve the nonunitary action
e~"AT on |¢), which, to first order, is [I — hAT][¢)). Let

us choose to make it work for the m = 0 outcome by
requiring that

e Ly
U & (et (C)™B) |1

— =—1+14r, wherer eR, (A2)

then the nonunitary action is achieved, i.e., the effective
action on the system is (ignoring normalization)

wh) ~ [1— hAt/7]|¥), (A3)

obtaining an effective time step A7 = At/r in the
imaginary-time evolution. To satisfy Eq. (A2), « and
[ can be taken as

(r) -1+ 1
or) = ——= = ——,
V2412 V2412
and the probability for each outcome (without approxi-
mation) is
_ 1, =7

pm =75 2+ 12

» B(r) (A4)

(= Re(@|U[¢) + rIm(y|U}4)). (A5)

The Pauli X measurement on the ancilla can be realized
by first applying the Hadamard gate H before measuring
in the standard Z basis; see Fig. 1.

However, for the outcome ‘1’, the system will be col-
lapsed to an undesired state, to the first order in At,

2 . rooa
[Y]) ~ [1 _Zr2 +4hAt+ 2 +4hAt] [1). (A6)

The second term is not harmful, as by applying to the
post-measurement state the ‘correcting’ unitary

.2 .
UCO’I"T = exp (ZMhAt) ; (A?)
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FIG. 14: The diagram that illustrates the attempted
algorithm for implementing one Trotter imaginary-time
step.

-

the system becomes

AN r 7
i (14 g e, as)
to the first order in At. We note that this additional step
is not necessary as it only modifies the relative phases of
different eigen-components, but not the amplitudes.
The second term inside the bracket of Eq. (A8) and
Eq. (A3) represents the step size of a random walk in the

exponent of an action e AT on a quantum state [¢),
where Aty = At/r and Ary = —At/(r+4/r) for the two
respective measurement outcomes ‘0’ and ‘1’; see Fig. 1b
for illustration. The corresponding probabilities (A5) are
approximately,

T2 1 hd,At
~ - — A
) ~ 5 (- ), (A%)
7"2 1 hd,At 2
p1(1/})~r2+2<2+ r > 2y (A%)

where hy = (1p|h|1) is the average energy for the state
|t) of the system prior to this iteration. The dependence
of p’s on the system state |1)) prevents us from getting
a closed-form expression for the outcomes of a long se-
quence of iterations.

By post-selecting the ‘0’ outcome in the primitive, and
by repeating this one n times we can achieve exponential
decay to the ground state, via

6anth/rW}>' (Al())
Imaginary time evolution is employed in many classi-
cal numerical methods, such as the iTEBD method for
ground states [23]. However, for our quantum procedure
the desired branch of having all ‘0’ outcomes occurs with
an exponentially small probability, so it is not very useful
in practice.

Instead of postselection, one may perform an addi-
tional operation if the undesired outcome ‘1’ occurs. We
have attempted such idea but we did not succeed. What
is described below is such a failed attempt.

Let us define one iteration to be the process from en-
tangling the system with an ancilla to measuring the an-
cilla and possibly correcting with the unitary if needed.
If the first step yields the ‘0’ outcome, then one arrives
at the desired imaginary-time evolution Eq. (A3). We
ask what can one do if one obtains the ‘1’ outcome and
arrives at a state in Eq. (A8)7 We can proceed with
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a second iteration by choosing a different parameter r’.
The desired outcome ‘0’ after this iteration would put
the system in the state

r

1
T

hAt — f}% ). (A11)

If we choose 7’ such that 1/(r +4/r)—1/r' = =1/r, i.e.,

, rri+d
T Ty (A12)
then the outcome ‘0’ leads to the desired imaginary-time
evolution Eq. (A3).

However, if instead the measurement still gives the un-
desired outcome of ‘1’, we need to correct it further by
repeating the iteration until outcome ‘0’ is obtained by
choosing the parameter r,, 11 in the (n 4 1)-th round via

n (T?L +4)

Al
2 +4 7 (A13)

Tn+l =

and we terminate the iteration when ‘0’ outcome is ob-
tained. Then the desired one-step imaginary-time evolu-
tion will give
[1— hAt/m]lw). (A14)
This procedure is summarized in Fig. 14.
However, this procedure suffers from the occurrence of
long sequences of ‘1’ outcomes, as our simulations show.

As a rough estimate by dropping the first-order contri-
bution, the probability of n successive ‘1’ outcomes is

b = [T~ T2, (15)
j=1

1

which does not decay exponentially. Figure 15 shows the
values of r, with r; = 1. One can start with a larger r{
so as to get a smaller ratio of r,/r1, but the scaling is
still not exponentially small.

Appendix B: Some derivations
1. Energy change

Let us list the post-measurement state,

/ _LO[ _1\ym e—ifAt

and the probability that it occurs,

(B1)

L[+ 2(-1)"Re(a* B (le™"4]))] (B2)

1 m
5 [1+2(-1)"Ra],

Pm

(B3)
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FIG. 15: The first one hundred values of r,, starting
with r; = 1.

where it is convenient to define R1 and a related Ry:

Ry = Re(a”Blile 80 |p)), (B4)
R = Re(a”B(yle " hjy)). (B5)

Thus the change in energy is

BBy = = (Wi blii) = (1) (B6)
_(h) +2(=1)"Re(a"B(le A Rly)) .

- 11 2(—1)"R, — (h) (BT)
20" (R~ (Ry) -

1+2(-1)mR,

Then, expanding the above expression in series of At is
straightforward.

2. Change in average energy variance

In the main text, we have the expression for the average
energy variance

W = (wlhfpy? — 3 Wl )

m=0,1 Pm
_ ((h) +2(=1)"Rn)"
= (h)? - mgl iR, (B

s
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By expanding the square and explicitly summing over m,
we obtain

—4

Ve =z AR?

2
(Ri(h) —Rp)” (B11)
Then, expanding the above expression in series of At is
straightforward.

3. Average Q action

By expanding the post-measurement state [i/,) to the
second order in At, we have

at(=D)"B L —ihAt — 1 (hAt)?
V2 1+ (=1)"a/B

The goal is to the above equation to the exponentiated
form |¢]) ~ efm 1), correct to the second order. Nat-
urally, P,, will contain the second term in the square
bracket. But we also need to take into account of other

contribution to the second order. So we can set

[tm) = [¥).

o —ihAt—L(hAB?
R o  RWTE + X(At)

(B12)

Expanding P m we have to the second order,

—ihAt — L(hAt)?
1+ (-1)ma/p +X(Af)" -

which should equals

1 (hAt)?
21+ (=1)ma/pP’

—ihAt — L (hAt)?
L+ (=1)ma/p

Therefore, we obtain
po_ —ihAt — 3(hAD? 1 (hAt)?
L+ (=)ma/B 21+ (-1)™a/f]

S (B13)

From this, it is straightforward to obtain Q,, = (Pm +

Pﬂn)/Z and perform the sum >, lmem. In the end,
we arrive at

Z mem =

m=0,1

Im(a*B)2At2 . 5 so
——————=[(h — ()" — (h)7].
T iR gy h — () =

(B14)
Then, expanding the above expression in series of At is
straightforward.
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