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Abstract

In general, implementing a multi-logical-qubit gate by manipulating quantum states in a

decoherence-free subspace (DFS) becomes more complex and difficult when increasing the number

of logical qubits. In this work, we propose a novel idea to realize quantum gates by manipulating

quantum states outside their DFS but having the states of the logical qubits remain in their DFS

before and after the gate operation. This proposal has the following features: (i) Because the

states are manipulated outside the DFS, the multi-qubit gate implementation can be simplified

when compared to realizing a multiqubit gate via manipulating quantum states within the DFS,

which usually requires unitary operations over a large DFS; and (ii) Because the states of the

logical qubits return to the DFS after the gate operation, the errors caused by decoherence during

the gate operation are not accumulated for a long-running calculation, and the states of the logical

qubits are immune to decoherence when they are stored. Based on this proposal, we then present

a way for realizing a multi-target-qubit controlled NOT gate using logical qubits encoded in a

decoherence-free subspace (DFS) against collective dephasing. This gate is realized by employing

qutrits (three-level quantum systems) placed in a cavity or coupled to a resonator. This proposal

has the following advantages: (i) The states of the logical qubits return to their DFS after the gate

operation; (ii) The gate can be implemented with only a few basic operations; (iii) The gate oper-

ation time is independent of the number of logical qubits; (iv) This gate can be deterministically

implemented because no measurement is needed; (v) The intermediate higher- energy level for all

qutrits is not occupied during the entire operation, thus decoherence from this level is greatly sup-

pressed; and (vi) This proposal is universal and can be applied to realize the proposed gate using

natural atoms or artificial atoms (e.g., quantum dots, NV centers, and various superconducting

qutrits, etc.) placed in a cavity or coupled to a resonator. As an application, we also show how to

apply this gate to create a Greenberger-Horne-Zeilinger (GHZ) entangled state of multiple logical

qubits encoded in DFS, and further investigate the experimental feasibility for creating the GHZ

state of three logical qubits in the DFS, by using six superconducting transmon qutrits coupled to

a one-dimensional coplanar waveguide resonator.

PACS numbers: 03.67.Bg, 42.50.Dv, 85.25.Cp
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I. INTRODUCTION AND MOTIVATION

Multiple qubit gates play an important role in quantum computing (QC). A multiqubit

gate can in principle be constructed using basic gates such as one-qubit and two-qubit gates.

However, it becomes difficult to build a multiqubit gate using basic gates because the number

of basic gates increases drastically as the number of qubits increases [1-3]. Therefore, seeking

efficient methods for the direct implementation of a multiqubit gate is an interesting and

important topic.

There are two types of significant multiqubit gates, i.e., multi-control-qubit gate and

multi-target-qubit gate. These two types of multiqubit gate are important in QC. For

examples, they have applications in quantum algorithms [4,5], quantum Fourier transform

[6], and error correction [7,8]. Moreover, they have applications in quantum cloning [9] and

entanglement preparation [10]. Over the past years, direct implementation of these two

types of multiqubit gate has drawn much attention. The direct realization of a Toffoli gate

of three physical qubits has been experimentally demonstrated in various physical systems

[11-13]. In addition, based on cavity or circuit QED, many schemes have been presented

for the direct realization of a multi-control-qubit gate [14-22] and a multi-target-qubit gate

[23-29] with physical qubits.

In principle, quantum computers could solve hard computational problems much more

efficiently than classical computers. However, quantum information is fragile and easily

destroyed by decoherence, which is one of the main obstacles in building quantum comput-

ers. Decoherence is caused by the inevitable coupling of the computational system with

its environment, which collapses the desired coherence of the system and thus degrades the

efficiency of quantum computation. Hence, protecting quantum information from decoher-

ence is necessary for any quantum computing task. Among various strategies designed to

protect quantum information against decoherence, decoherence-free subspaces (DFSs) open

a promising way for avoiding quantum decoherence [30-32]. As is well known, the basic

idea of DFSs is to utilize the symmetry structure of the coupling between the system and

its environment. The experimental implementation of DFSs in many quantum systems has

already been reported [33-36].

Above, we have briefly reviewed previous works on the direct implementation of a multi-

qubit gate. However, it is noted that multi-qubit gates based on the previous proposals [7-21]
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were realized with physical qubits instead of logical qubits. Because the two logic states |0〉
and |1〉 of a physical qubit do not form a DFS, the states of the physical qubits do not stay in

a DFS for all three stages: (i) before the gate operation, (ii) during the gate operation, and

(iii) after the gate operation. In this sense, by using the previous proposals [8-26], quantum

states of qubits will undergo decoherence from all of these three stages. Also, because the

states of physical qubits do not stay in a DFS, the errors caused by decoherence from each

of the three stages accumulate for a long-running quantum computation. In addition, since

the states of physical qubits do not stay in a DFS, decoherence from qubits is a problem

during the state storage. These are some shortcomings existing in the previous proposals

for implementing mutli-qubit gates with physical qubits.

In order to overcome decoherence, it is natural to think of implementing a multi-qubit gate

by encoding a physical qubit into a logical qubit with auxiliary physical qubits. However,

we note that all existing DFS-based schemes only focus on, at most, one-logical-qubit gates

[37-45], two-logical-qubit gates [37-47], and three-logical-qubit Toffoli gates [47]. None of

the DFS proposals for directly implementing a multi-logical-qubit gate in a DFS with the

number of logical qubits greater than 3 has been reported. It is commonly recognized that

the procedure for implementing a multi-logical-qubit gate becomes complex when increasing

the number of logical qubits. Especially, this challenge becomes more apparent when a

multi-logical-qubit gate is implemented in a DFS, because unitary operations in a large

DFS are required but usually hard to realize.

A. The idea for implementing quantum gates of logical qubits outside a DFS

Motivated by the above, we here propose a different idea for realizing quantum gates with

logical qubits. Namely, the states of the logical qubits are manipulated outside the DFS

during the gate operation, but remain in the DFS before and after the gate operation. This

idea has the following features: (i) Because the states are manipulated outside the DFS,

the multi-logical-qubit gate implementation can be simplified when compared to realizing a

multi-logical-qubit gate based on manipulating quantum states within DFS, which usually

requires unitary operations over a large DFS; (ii) Since the states of the logical qubits return

to the DFS after the gate operation, the decoherence during the state storage (usually neces-

sary after completing a computational task) is avoided and the errors caused by decoherence

are not accumulated for a long-running quantum calculation.
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B. Proposal for implementing a multi-target-qubit CNOT gate with logical

qubits outside DFS

Based on the idea introduced above, in the following we will present a way to implement

a multi-target-qubit controlled NOT gate with logical qubits encoded in a DFS against

collective dephasing. This gate is implemented by employing qutrits (three-level quantum

systems) placed in a cavity or coupled to a resonator. In the past, much attention has been

paid on quantum operations with qutrits or qudits [48-51]

As shown below, this proposal has these advantages: (i) The states of the logical qubits

return to the DFS after the gate operation, (ii) The gate can be implemented with only a

few basic operations; (iii) The gate operation time is independent of the number of logical

qubits and thus does not increase with the number of logical qubits; (iv) this gate can be

implemented in a deterministic way because no measurement on the state of the qutrits

or the cavity is needed; and (v) The intermediate higher energy level |2〉 for all qutrits

is not occupied during the entire operation, thus decoherence from this level is greatly

suppressed. Moreover, this proposal is universal and can be applied to realize the proposed

gate using natural atoms or artificial atoms (e.g., quantum dots, NV centers, and various

superconducting qutrits, etc.) placed in a cavity or coupled to a resonator.

This paper is arranged as follows. In Sec. II, we briefly introduce a multi-target-qubit

controlled NOT gate with logical qubits encoded in a DFS against collective dephasing. In

Sec. III, we introduce the types of interaction and the state evolutions used in the gate

implementation. In Sec. IV, we show how to implement the proposed gate, by employ-

ing qutrits placed in a cavity or coupled to a resonator. In Sec. V, as an application, we

show how to apply this gate to create Greenberger-Horne-Zeilinger (GHZ) entangled states

of multiple logical qubits in a DFS. In Sec. VI, we further investigate the experimental

feasibility for creating the GHZ state of three logical qubits in a DFS, by using six super-

conducting transmon qutrits coupled to a one-dimensional coplanar waveguide resonator. A

brief summary is given in Sec. VII.

II. MULTI-TARGET-QUBIT CONTROLLED NOT GATE WITH LOGICAL

QUBITS ENCODED IN A DFS

We here consider n logical qubits (1, 2, ..., n), each of which is constructed with two

physical qubits. The two logical states of the logical qubit i are encoded as |0Li
〉 = |01〉 and
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FIG. 1: Schematic circuit of a controlled NOT gate with the control logical qubit 1 simultaneously

controlling n target logical qubits 2, 3, ..., and n. The symbol ⊕ represents a NOT gate on each

target logical qubit. If the control logical qubit 1 is in the state |1L〉 , then the state of the target

logical qubit at ⊕ is bit flipped as |0L〉 → |1L〉 and |1L〉 → |0L〉. However, when the control logical

qubit 1 is in the state |0L〉, the state of the target logical qubit at ⊕ remains unchanged. Note

that the two logical states of the logical qubit i are encoded as |0Li
〉 = |01〉 and |1Li

〉 = |10〉 with

two physical qubits (i = 1, 2, ..., n).

|1Li
〉 = |10〉 (i = 1, 2, ..., n), where the first 0 and 1 are the two logical states of the first

physical qubit while the second 0 and 1 are the two logical states of the second physical

qubit. If the two physical qubits are symmetrically coupled to an environment, the two

logical states |0Li
〉 and|1Li

〉 span a DFS protected against collective dephasing. A multi-

target-qubit controlled NOT gate (see Fig. 1), with one logical qubit (say logical qubit 1)

simultaneously controlling (n − 1) target logical qubits (logical qubits 2, 3, ..., and n), is

described by

|0L1
〉 |jL2

〉 |jL3
〉 ... |jLn

〉 → |0L1
〉 |jL2

〉 |jL3
〉 ... |jLn

〉 ,

|1L1
〉 |jL2

〉 |jL3
〉 ... |jLn

〉 → |1L1
〉
∣∣jL2

〉 ∣∣jL3

〉
...
∣∣jLn

〉
, (1)

where subscript 1 represents the control logical qubit 1 while subscripts 2, 3, . . . , n, represent

target logical qubits 2, 3, ..., n, with jLi
= 1− jLi

, and jLi
∈ {0, 1} (i = 2, 3, ..., n). Equation

(1) implies that, when the control logical qubit is in the state |0〉, nothing happens to the

states of each target logical qubit; however, when the control logical qubit is in |1〉, a bit flip

happens to the state |0〉 or |1〉 of each target logic qubit.

III. TYPE OF INTERACTION AND STATE EVOLUTION

6



1 2 3 n

1 2 3 n

0

1

2 2

1

0

(a) 

(b) (c) 

FIG. 2: (a) Diagram of qutrit pairs {1, 1′} , {2, 2′} , ..., {n, n′} placed in a cavity or a resonator. The

two periodic sine-like curves represent the standing-wave cavity mode. Each dark dot represents

a qutrit. The two qutrits in each pair are arranged to be close, such that they couple to the

environment in the same way appropriately. (b) Diagram of the three levels |0〉 , |1〉 and |2〉 of a

qutrit. Each horizontal line represents an energy level of the qutrit. The level spacing between the

upper two levels is smaller than that between the two lowest levels. (c) Diagram of three levels |0〉 ,

|1〉 and |2〉 of a qutrit. The level spacing between the upper two levels is greater than that between

the two lowest levels. As shown in next section, the |0〉 ↔ |1〉 and |1〉 ↔ |2〉 transitions are needed

while the |0〉 ↔ |2〉 transition is not required for the gate realization. The level structure depicted

in (b) is available in natural atoms, quantum dots, superconducting phase, transmon, and Xmon

qutrits; while the level structure in (c) is achievable in nitrogen-vacancy centers, superconducting

charge qutrits, flux qutrits, etc.

Consider now n qutrit pairs {1, 1′} , {2, 2′} , ..., {n, n′} placed in a cavity or coupled to a

resonator [Fig. 2(a)]. Each qutrit has three levels |0〉 , |1〉 and |2〉 [Fig. 2(b), Fig. 2(c)].

In the following, our presentation is based on qutrits with the level structure depicted in

Fig. 2(b). However, it should be mentioned that the method introduced below for the gate

realization applies to the qutrits having the level structure illustrated in Fig. 2(c). This is

because the required Hamiltonians presented below can also be obtained for the type of level

structure in Fig. 2(c).
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FIG. 3: (a) Illustration of a classical pulse resonant with the |0〉 ↔ |1〉 transition of qutrit pairs

{2, 2′} , {3, 3′} , ..., {n, n′}. Here, Ω is the pulse Rabi frequency. (b) Illustration of the cavity

resonant with the |0〉 ↔ |1〉 transition of qutrit 1, with coupling constant gr. (c) Illustration of

the cavity dispersively coupled to the |1〉 ↔ |2〉 transition of qutrit pairs {2, 2′} , {3, 3′} , ..., {n, n′}

with coupling strength g and detuning ∆ = ω21 − ωc > 0, while highly detuned (decoupled) from

other energy level transitions. The level spacings in (a), (b), and (c) are set to be different. Qutrits

with the level spacings in (a) are decoupled from the cavity during the pulse. The level spacings of

qutrits in (b) are adjusted such that the |0〉 ↔ |1〉 transition is resonant with the cavity. The level

spacings of qutrits in (c) are adjusted such that the |1〉 ↔ |2〉 transition is dispersively coupled to

the cavity. A double-arrow vertical line in (a) represents the pulse frequency while a double-arrow

vertical line in (b) and (c) represents the cavity frequency.

As shown in the next sections, the gate implementation requires: (i) A classi-

cal pulse resonantly interacting with the |0〉 ↔ |1〉 transition for each of qutrit pairs

{2, 2′} , {3, 3′} , ..., {n, n′}; (ii) The cavity resonantly interacts with the |0〉 ↔ |1〉 transi-

tion of qutrit 1; and (iii) The cavity is dispersively coupled to the |1〉 ↔ |2〉 transition of

qutrit pairs {2, 2′} , {3, 3′} , ..., {n, n′} . In the following, we will give a brief introduction to

the state evolution under these types of interaction.

A. Qutrit-pulse resonant interaction

Consider now a classical pulse applied to the qutrit pairs {2, 2′} , {3, 3′} , ..., {n, n′}. The
pulse is resonant with the |0〉 ↔ |1〉 transition of the qutrits [Fig. 3(a)]. The Hamiltonian

in the interaction picture, and after making a rotating-wave approximation (RWA), is given
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by

H1 = Ωe−iφ

n∑

j=2

(
|1〉j 〈0|+ |1〉j′ 〈0|

)
+H.c., (2)

where the subscript j represents qutrit j (j = 2, 3, ..., n), subscript j′ represents qutrit j′

(j′ = 2′, 3′, ..., n′), φ is the initial phase of the pulse, and Ω is the pulse Rabi frequency.

Under this Hamiltonian, we can easily obtain the following state rotation

|0〉 → cos Ωt |0〉 − ie−iφ sinΩt |1〉 ,

|1〉 → −ieiφ sinΩt |0〉+ cosΩt |1〉 , (3)

for each qutrit. Note that for simplicity we here consider an identical Rabi frequency for

the pulse applied to each qutrit, which can be achieved by adjusting the pulse intensity.

B. Qutrit-cavity resonant interaction

Consider now the cavity to be resonant with the |0〉 ↔ |1〉 transition of qutrit 1 [Fig.

3(b)]. The Hamiltonian in the interaction picture and after the RWA is given by

H2 = grâ |1〉1 〈0|+H.c., (4)

where the subscript 1 represents qutrit 1, gr is the coupling constant of the cavity with the

|g〉 ↔ |e〉 transition, and â is the photon annihilation operator of the cavity. Under this

Hamiltonian, we can obtain the state evolution

|1〉1 |0〉c → cos grt |1〉1 |0〉c − i sin grt |0〉1 |1〉c , (5)

while the state |0〉1 |0〉c remains unchanged.

C. Qutrit-cavity dispersive interaction

Consider now the cavity to be dispersively coupled to the |1〉 ↔ |2〉 transition of the qutrit

pairs {2, 2′} , {3, 3′} , ..., {n, n′}, with coupling strength g and detuning ∆ = ω21 − ωc > 0,

while being highly detuned (decoupled) from other energy level transitions [Fig. 3(c)]. Here,

ω21 and ωc are the |1〉 ↔ |2〉 transition frequency of the qutrit pairs {2, 2′} , {3, 3′} , ..., {n, n′},
and the cavity frequency, respectively. The coupling or decoupling of qutrits with the cavity

can be achieved by adjusting the qutrit’s level spacings or the cavity frequency. For examples,

the level spacings of atoms/quantum dots can be adjusted by changing the voltage on the
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electrodes around each atom/quantum dot [52], the level spacings of NV centers can be

readily changed by varying the external magnetic field applied along the crystalline axis

of each NV center [53], the level spacings of superconducting qutrits can be rapidly tuned

within 1 ∼ 3 ns [49,54]. In addition, the frequency of an optical cavity can be adjusted in

experiments [55], and the frequency of a microwave cavity can be rapidly tuned with a few

nanoseconds [56,57].

Under the above assumptions, the Hamiltonian of the system in the interaction picture

and after the RWA is given by (assuming ~ = 1)

H3 = gei∆tâ

n∑

j=2

(
|2〉j 〈1|+ |2〉j′ 〈1|

)
+H.c., (6)

where subscript j represents qutrit j (j = 2, 3, ..., n) while subscript j′ represents qutrit

j′ (j′ = 2′, 3′, ..., n′). For simplicity, in Eq. (6), we assume that the coupling strength

g between the cavity and the |1〉 ↔ |2〉 transition is the same for all of qutrit pairs

{2, 2′} , {3, 3′} , ..., {n, n′} for simplicity.

Under the large detuning condition ∆ ≫ g, we can obtain the following effective Hamil-

tonian [58,59]

Heff = λ

n∑

j=2

(
|2〉j 〈2|+ |2〉j′ 〈2|

)
ââ+ − λ

n∑

j=2

(
|1〉j 〈1|+ |1〉j′ 〈1|

)
â+â

+λ
n∑

j,k=2;j 6=k

|2〉j 〈1| ⊗ |1〉k 〈2|+ λ
n∑

j,k=2;j 6=k

|2〉j′ 〈1| ⊗ |1〉k′ 〈2|+

+λ
n∑

j=2

n′∑

k′=2′

|2〉j 〈1| ⊗ |1〉k′ 〈2|+ λ
n∑

j=2

n′∑

k′=2′

|1〉j 〈2| ⊗ |2〉k′ 〈1| (7)

where λ = g2/∆. Here, the terms in the first (second) bracket are ac-Stark shifts of the

level |2〉 (|1〉) induced by the cavity. The last four terms represent the “dipole” coupling

between qutrits, mediated by the cavity. When the level |2〉 of each qutrit is not occupied,

the Hamiltonian (7) reduces to

Heff =

n∑

j=2

Heff ,j, (8)

with

Heff ,j = −λ
(
|1〉j 〈1|+ |1〉j′ 〈1|

)
â+â (9)

where Heff ,j is the effective Hamiltonian of a subsystem, which consists of qutrit pair {j, j′}
and the cavity. Note that [Heff,j, Heff ,k] = 0 (j 6= k) . Thus, the unitary operator U =
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exp (iHefft) can be expressed as U =
n∏

j=2

exp (iHeff ,jt). Under the unitary operator U, one

can easily find that the following state evolution

|−j+j′〉 |0〉c
|+j−j′〉 |0〉c
|−j+j′〉 |1〉c
|+j−j′〉 |1〉c

−→

|−j+j′〉 |0〉c
|+j−j′〉 |0〉c

(|0〉j−eiλt|1〉j)√
2

(|0〉j′+eiλt|1〉j′)√
2

|1〉c
(|0〉j+eiλt|1〉j)√

2

(|0〉j′−eiλt|1〉j′)√
2

|1〉c

. (10)

simultaneously applies to each of the qutrit pairs {2, 2′} , {3, 3′} , ..., {n, n′}. Here and below,

|±〉 = (|0〉 ± |1〉) /
√
2.

From the description given above, it can be seen that the state transformation (10)

was obtained by assuming that the coupling strength g is the same for all the qutrit pairs

{2, 2′} , {3, 3′} , ..., {n, n′} . However, this requirement is unnecessary. When the coupling

strengths are non identical, it is straightforward to find that the Hamiltonian (9) can still be

achieved with λ now replaced by λ = g2j/∆j = g2j′/∆j′ (j = 2, 3, ..., n; j′ = 2′, 3′, ..., n′). Here,

gj (gj′) is the coupling strength between the cavity and the |1〉 ↔ |2〉 transition of the qutrit

j (j′) and ∆j = ω21,j − ωc (∆j′ = ω21,j′ − ωc) is the detuning between the cavity frequency

and the |1〉 ↔ |2〉 transition frequency ω21,j of the qutrit j (j′). Note that the condition

g2j/∆j = g2j′/∆j′, i.e., g
2
2/∆2 = g23/∆3 = ... = g2n/∆n = g22′/∆2′ = g23′/∆3′ = ... = g2n′/∆n′,

can be met by carefully selecting the detunings via adjusting the level spacings of the qutrits.

In the next section, we will show how to use the above results (3), (5), and (10) to

construct the gate described by Eq. (1).

IV. IMPLEMENTATION OF A MULTI-TARGET-QUBIT CONTROLLED

NOT GATE WITH LOGIC QUBITS OUTSIDE A DFS

For our gate implementation, the two logic states |0〉 and |1〉 of a physical qubit are

represented by the two lowest levels |0〉 and |1〉 of a qutrit. In addition, the two logic states
∣∣0Lj

〉
and

∣∣1Lj

〉
of logic qubit j involved in Eq. (1) (j = 1, 2, ..., n) are encoded as

∣∣0Lj

〉
=

|0j1j′〉 and
∣∣1Lj

〉
= |1j0j′〉 with two physical qubits {j, j′} (j, j′ ∈ {1, 1′} , {2, 2′} , ..., {n, n′}).

Here, the two physical qubits {j, j′} are associated with qutrit pair {j, j′}.
The procedure for implementing the multi-target-qubit controlled NOT gate (1) is listed

below:
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Step (i): Apply a classical pulse (with φ = π/2) to qutrit pairs {2, 2′} , ..., {n, n′}. The
pulse is resonant with the |0〉 ↔ |1〉 transition of the qutrits [Fig. 3(a)]. According to Eq.

(3), after a pulse duration τ1 = π/ (2Ω) , we have the state transformation |0〉 → |−〉 and

|1〉 → |+〉 for each of the qutrits (2, 3, ..., n, 2′, 3′, ..., n′).

Step (ii): Adjust the level spacing of qutrit 1 such that the |0〉 ↔ |1〉 transition of

qutrit 1 is resonant with the cavity [Fig. 3(b)]. According to Eq. (5), after an interaction

time τ2 = π/ (2gr), we have the state transformation |1〉1 |0〉c → −i |0〉1 |1〉c , while the state

|0〉1 |0〉c remains unchanged. After this step of operation, one should adjust the level spacing

of qutrit 1 such that qutrit 1 is decoupled from the cavity.

Step (iii): Keep qutrit pair {1, 1′} decoupled from the cavity but adjust the level spacing

of qutrit pairs {2, 2′} , ..., {n, n′} , to obtain the effective Hamiltonian described by Eq. (8)

[Fig. 3(c)]. According to Eq. (10), after an interaction time τ3 = π/λ, the following state

transformation

|−j+j′〉 |0〉c
|+j−j′〉 |0〉c
|−j+j′〉 |1〉c
|+j−j′〉 |1〉c

→

|−j+j′〉 |0〉c
|+j−j′〉 |0〉c
|+j−j′〉 |1〉c
|−j+j′〉 |1〉c

, (11)

(where j, j′ ∈ {1, 1′} , {2, 2′} , ..., {n, n′}) applies to each of the qutrit pairs

{2, 2′} , {3, 3′} , ..., {n, n′} simultaneously; i.e., the state of each qutrit remains unchanged

when the cavity is in the vacuum state |0〉c while the state |+〉 of each qutrit flips to |−〉 or
versus when the cavity is in the single photon state |1〉c . After this step of the operation,

one should adjust the level spacing of the qutrit pairs {2, 2′} , ..., {n, n′} , such that the qutrit

pairs {2, 2′} , ..., {n, n′} are decoupled from the cavity.

Step (iv): Adjust the level spacing of qutrit 1 such that the |0〉 ↔ |1〉 transition of qutrit

1 is resonant with the cavity [Fig. 3(b)]. Let qutrit 1 interact with the cavity for a duration

time τ4 = 3π/ (2gr). As a result, we have |0〉1 |1〉c → i |1〉1 |0〉c according to Eq. (5). After

this step of the operation, one should adjust the level spacing of qutrit 1 such that qutrit 1

is decoupled from the cavity.

Step (v): Apply a classical π pulse (with φ = −π/2) to qutrit pairs {2, 2′} , ..., {n, n′}.
The pulse is resonant with the |0〉 ↔ |1〉 transition of qutrits for a duration time τ5 = π/ (4Ω)

[Fig. 3(a)], resulting in |+〉 → |1〉 and |−〉 → |0〉 for each qutrit according to Eq. (3).

One can check that the multi-target-qubit controlled NOT gate of one logical qubit 1
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simultaneously controlling (n− 1) target logical qubits 2, 3, ..., n, described by Eq. (1), was

realized with n qutrit pairs (i.e., the control qutrit pair {1, 1′} and the target qutrit pairs

{2, 2′} , ..., {n, n′}) after the above manipulation.

To understand more how the multiqubit phase gate described by Eq. (1) is realized by

the above operations, let us now consider a three-logical-qubit example. One can check that

the states of the whole system after each step of the above operations are summarized below:

|0111′〉 |0212′〉 |0313′〉 |0〉c
|0111′〉 |0212′〉 |1303′〉 |0〉c
|0111′〉 |1202′〉 |0313′〉 |0〉c
|0111′〉 |1202′〉 |1303′〉 |0〉c
|1101′〉 |0212′〉 |0313′〉 |0〉c
|1101′〉 |0212′〉 |1303′〉 |0〉c
|1101′〉 |1202′〉 |0313′〉 |0〉c
|1101′〉 |1202′〉 |1303′〉 |0〉c

Step (i)−→

|0111′〉 |−2+2′〉 |−3+3′〉 |0〉c
|0111′〉 |−2+2′〉 |+3−3′〉 |0〉c
|0111′〉 |+2−2′〉 |−3+3′〉 |0〉c
|0111′〉 |+2−2′〉 |+3−3′〉 |0〉c
|1101′〉 |−2+2′〉 |−3+3′〉 |0〉c
|1101′〉 |−2+2′〉 |+3−3′〉 |0〉c
|1101′〉 |+2−2′〉 |−3+3′〉 |0〉c
|1101′〉 |+2−2′〉 |+3−3′〉 |0〉c

Step (ii)−→

|0111′〉 |−2+2′〉 |−3+3′〉 |0〉c
|0111′〉 |−2+2′〉 |+3−3′〉 |0〉c
|0111′〉 |+2−2′〉 |−3+3′〉 |0〉c
|0111′〉 |+2−2′〉 |+3−3′〉 |0〉c

−i |0101′〉 |−2+2′〉 |−3+3′〉 |1〉c
−i |0101′〉 |−2+2′〉 |+3−3′〉 |1〉c
−i |0101′〉 |+2−2′〉 |−3+3′〉 |1〉c
−i |0101′〉 |+2−2′〉 |+3−3′〉 |1〉c

Step (iii)−→

|0111′〉 |−2+2′〉 |−3+3′〉 |0〉c
|0111′〉 |−2+2′〉 |+3−3′〉 |0〉c
|0111′〉 |+2−2′〉 |−3+3′〉 |0〉c
|0111′〉 |+2−2′〉 |+3−3′〉 |0〉c

−i |0101′〉 |+2−2′〉 |+3−3′〉 |1〉c
−i |0101′〉 |+2−2′〉 |−3+3′〉 |1〉c
−i |0101′〉 |−2+2′〉 |+3−3′〉 |1〉c
−i |0101′〉 |−2+2′〉 |−3+3′〉 |1〉c

Step (iv)−→

|0111′〉 |−2+2′〉 |−3+3′〉 |0〉c
|0111′〉 |−2+2′〉 |+3−3′〉 |0〉c
|0111′〉 |+2−2′〉 |−3+3′〉 |0〉c
|0111′〉 |+2−2′〉 |+3−3′〉 |0〉c
|1101′〉 |+2−2′〉 |+3−3′〉 |0〉c
|1101′〉 |+2−2′〉 |−3+3′〉 |0〉c
|1101′〉 |−2+2′〉 |+3−3′〉 |0〉c
|1101′〉 |−2+2′〉 |−3+3′〉 |0〉c

Step (v)−→

|0111′〉 |0212′〉 |0313′〉 |0〉c
|0111′〉 |0212′〉 |1303′〉 |0〉c
|0111′〉 |1202′〉 |0313′〉 |0〉c
|0111′〉 |1202′〉 |1303′〉 |0〉c
|1101′〉 |1202′〉 |1303′〉 |0〉c
|1101′〉 |1202′〉 |0313′〉 |0〉c
|1101′〉 |0212′〉 |1303′〉 |0〉c
|1101′〉 |0212′〉 |0313′〉 |0〉c

, (12)
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which shows that a three-logical-qubit controlled NOT gate, described by

|0111′〉 |0j1j′〉 |0j1j′〉 → |0111′〉 |0j1j′〉 |0j1j′〉 ,

|0111′〉 |0j1j′〉 |1j0j′〉 → |0111′〉 |0j1j′〉 |1j0j′〉 ,

|0111′〉 |1jgj′〉 |0j1j′〉 → |0111′〉 |1j0j′〉 |0j1j′〉 ,

|0111′〉 |1j0j′〉 |1j0j′〉 → |0111′〉 |1j0j′〉 |1j0j′〉 ,

|1101′〉 |0j1j′〉 |0j1j′〉 → |1101′〉 |1j0j′〉 |1j0j′〉 ,

|1101′〉 |0j1j′〉 |1j0j′〉 → |1101′〉 |1j0j′〉 |0j1j′〉 ,

|1101′〉 |1j0j′〉 |0j1j′〉 → |1101′〉 |0j1j′〉 |1j0j′〉 ,

|1101′〉 |1j0j′〉 |1j0j′〉 → |1101′〉 |0j1j′〉 |0j1j′〉 , (13)

or

|0L1
〉 |0L2

〉 |0L3
〉 → |0L1

〉 |0L2
〉 |0L3

〉 ,

|0L1
〉 |0L2

〉 |1L3
〉 → |0L1

〉 |0L2
〉 |1L3

〉 ,

|0L1
〉 |1L2

〉 |1L3
〉 → |0L1

〉 |1L2
〉 |0L3

〉 ,

|0L1
〉 |1L2

〉 |1L3
〉 → |0L1

〉 |1L2
〉 |1L3

〉 ,

|1L1
〉 |0L2

〉 |0L3
〉 → |1L1

〉 |1L2
〉 |1L3

〉 ,

|1L1
〉 |0L2

〉 |1L3
〉 → |1L1

〉 |1L2
〉 |0L3

〉 ,

|1L1
〉 |1L2

〉 |0L3
〉 → |1L1

〉 |0L2
〉 |1L3

〉 ,

|1L1
〉 |1L2

〉 |1L3
〉 → |1L1

〉 |0L2
〉 |0L3

〉 , (14)

(with the control logical qubit 1 simultaneously controlling two target logical qubits 2 and

3) was achieved with three qutrit pairs {1, 1′} , {2, 2′} , {3, 3′} (i.e., the control qutrit pair

{1, 1′} and the two target qutrit pairs {2, 2′} and {3, 3′}) after the previous process.

From the description given above, it can be seen that:

(i) During the gate operation, the states of the logical qubits are manipulated outside the

DFS. However, the states of the logical qubits return to the DFS after the gate operation.

(ii) The same detuning ∆ is set for qutrit pairs {2, 2′} , {3, 3′} , ..., {n, n′}. Therefore, the
level spacings of qutrit pairs {2, 2′} , {3, 3′} , ..., {n, n′} can be synchronously tuned through

changing the common external parameters.

(iii) The level |2〉 for all qutrits is not occupied during the entire operation. Hence,
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decoherence caused by energy relaxation and dephasing of this intermediate higher energy

level is greatly suppressed.

(iv) This proposal does not require measurement on the state of the qutrits or the cavity.

Thus, the gate is implemented deterministically.

(v) The total operation time is

top = π/λ+ 2π/gr + π/Ω+ 6τd, (15)

which is independent of the number of logic qubits and thus does not increase with the

number of logic qubits. Here, τd is the typical time required for adjusting the level spacings

of the qutrits.

It is necessary to give a brief discussion on experimental matters. Several points are made

as follows:

(i) To make the effect of decoherence from the qutrits negligible, the total operation time

top should be much smaller than the energy relaxation time T1 and the dephasing time T2

of the level |1〉 as well as the energy relaxation time T ′
1 and the dephasing time T ′

2 of the

level |2〉 . Note that top ≪ T ′
1, T

′
2 can be readily met because the level |2〉 is unpopulated

during the entire operation. In addition, top ≪ T1, T2 can be achieved by choosing qutrits

with sufficiently long energy relaxation time T1 and dephasing time T2 of the level |1〉 .
Alternatively, these conditions can be met by shortening top. Note that top can be shortened

by increasing gr, Ω (via increasing the pulse intensity), and λ (through an optimal choice of

the ratio ∆/g).

(ii) To have the cavity dissipation negligibly small, the total operation time top should

be much shorter than the photon lifetime κ−1 of the cavity, which is given by κ−1 = Q/ωc.

Here, Q is the (loaded) quality factor of the cavity. Note that the condition top ≪ κ−1 can

be achieved by employing a high-Q cavity or shortening top.

Before ending this section, we should mention that for steps (ii) and (iv) above, ad-

justing the level spacings of the qutrit 1 could induce a phase shift eiφ on the state |1〉
of the qutrit 1; and for step (ii) above, adjusting the level spacings of the qutrit pairs

{2, 2′} , {3, 3′} , ..., {n, n′} causes a phase shift eiϕ on the state |1〉 of each of the qutrits

{2, 2′, 3, 3′, ..., n, n′}. Note that the effect of the unwanted phase shifts here can be elim-

inated by a proper control of the level adjustment (e.g., the adjusting speed or/and the

amount of the energy to be adjusted) such that φ = 2mπ and ϕ = 2kπ (m and k are
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integers).

V. APPLICATION: CREATING GHZ STATES OF MULTIPLE LOGIC

QUBITS IN A DFS

GHZ entangled states have many applications in quantum information processing. To

date, GHZ states of 10 or more physical qubits have been experimentally demonstrated

in various systems [60-65]. Theoretically, a large number of theoretical methods have been

presented for creating GHZ states of multiple physical qubits with different kinds of quantum

systems [66-80]. However, how to prepare GHZ states with logical qubits encoded in DFS

has rarely been investigated. In the following, we will show how to apply the proposed gate

to create GHZ states of multiple logical qubits encoded in a DFS.

Consider n qutrit pairs {1, 1′} , {2, 2′} , ..., {n, n′} placed in a single cavity or coupled to

a resonator. The n qutrit pairs are initially decoupled from the cavity. The qutrit pair

{1, 1′} is initially in the state |1101′〉 while each of the qutrit pairs {2, 2′} , {3, 3′} , ..., {n, n′}
is initially in the state |0j1j′〉 (j, j′ ∈ {1, 1′} , {2, 2′} , ..., {n, n′}). The cavity is initially in

the vacuum state |0〉c. The procedure for creating GHZ states of n logic qubits is given as

follows:

Step (i): Adjust the level spacing of qutrit 1 such that the |0〉 ↔ |1〉 transition of qutrit 1

is resonant with the cavity [Fig. 3(b)]. Let qutrit 1 interact with the cavity for an interaction

time τ ′1 = π/ (2gr). According to Eq. (5), we have |1101′〉 |0〉c → −i |0101′〉 |1〉c. After this

operation, one should adjust the level spacing of qutrit 1 such that qutrit 1 is decoupled

from the cavity.

Step (ii): Adjust the level spacing of the qutrit pair {1, 1′} such that the |0〉 ↔ |1〉
transition of the qutrit pair {1, 1′} is resonant with the cavity [Fig. 3(b)]. The Hamiltonian

in the interaction picture becomes

H4 = grâ (|1〉1 〈0|+ |1〉1′ 〈0|) + H.c., (16)

where subscript 1 represents qutrit 1 and subscript 1′ represents qutrit 1′. Under this

Hamiltonian, one can obtain the state evolution |0101′〉 |1〉c → cos
(√

2grt
)
|0101′〉 |1〉c −

i sin
(√

2grt
)
(|0111′〉+ |1101′〉) |0〉c /

√
2. Let now qutrit pair {1, 1′} interact with the cavity

for an interaction time τ ′2 = π/
(
2
√
2gr

)
. As a result, we have the state transformation
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|0101′〉 |1〉c → −i (|0111′〉+ |1101′〉) |0〉c /
√
2. After this operation, one should adjust the level

spacing of qutrit pair {1, 1′} such that qutrit pair {1, 1′} is decoupled from the cavity.

Steps (iii)-(vii): The operations of steps (iii)-(vii) here are the operations of steps (i)-

(v) described in the previous section, which implements the multi-target-qubit controlled

NOT gate (1). By applying this gate, one can achieve the following state transformation

|0111′〉 |0212′〉 |0313′〉 ... |0n1n′〉 |0〉c → |0111′〉 |0212′〉 |0313′〉 ... |0n1n′〉 |0〉c ,

|1101′〉 |0212′〉 |0313′〉 ... |0n1n′〉 |0〉c → |1101′〉 |1202′〉 |1303′〉 ... |1n0n′〉 |0〉c . (17)

One can check that the states of the whole system after the above operations are sum-

marized below:

|1101′〉 |0212′〉 |0313′〉 ... |0n1n′〉 |0〉c
Step (i)−→ −i |0101′〉 |0212′〉 |0313′〉 ... |0n1n′〉 |1〉c

Step (ii)−→ − 1√
2
(|0111′〉+ |1101′〉) |0212′〉 |0313′〉 ... |0n1n′〉 |0〉c

Steps (iii)-(vii)−→

− 1√
2
(|0111′〉 |0212′〉 |0313′〉 ... |0n1n′〉+ |1101′〉 |1202′〉 |1303′〉 ... |1n0n′〉) |0〉c . (18)

The last line of Eq. (18) can be rewritten as

1√
2
(|0L1

〉 |0L2
〉 ... |0Ln

〉+ |1L1
〉 |1L2

〉 ... |1Ln
〉) |0〉c , (19)

which shows that the cavity returns to its initial vacuum state while

the n qutrit pairs {1, 1′} , {2, 2′} , ..., {n, n′} are prepared in a GHZ state

1√
2
(|0L1

〉 |0L2
〉 ... |0Ln

〉+ |1L1
〉 |1L2

〉 ... |1Ln
〉) of n logical qubits encoded in the DFS.

The total operation time for the GHZ state preparation is

t′op = π/λ+
(
5
√
2 + 1

)
π/

(
2
√
2gr

)
+ π/Ω+ 10τd, (20)

which should be much smaller than the energy relaxation time T1 and the dephasing time

T2 of the level |1〉 , the energy relaxation time T ′
1 and the dephasing time T ′

2 of the level |2〉 ,
and the photon lifetime κ−1 of the cavity.

VI. EXPERIMENTAL FEASIBILITY FOR CREATING GHZ STATES OF

THREE LOGIC QUBITS IN A DFS

Above we have considered a generic kind of physical qubit, whose two logical states are

represented by the two lowest levels of a qutrit. Circuit QED, consisting of microwave cavities
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FIG. 4: Setup for six superconducting transmon qutrits (dark dots) embedded in a one-dimensional

coplanar waveguide resonator. The two periodic sine-like curved lines represent the standing-wave

magnetic field of the resonator.

and superconducting (SC) qubits, is an analogue of cavity QED and has been considered

as one of the leading candidates for quantum information processing (for reviews, see [81-

87]). In this section, we investigate the experimental feasibility for creating the GHZ state of

three logical qubits in a DFS, by using three pairs of superconducting (SC) transmon qutrits

{1, 1′} , {2, 2′} , and {3, 3′} , which are coupled to a one-dimensional coplanar waveguide

resonator (Fig. 4). Compared to a Cooper pair box, a transmon has a longer decoherence

time, which is constructed by shunting a large capacitance on the two Josephson junctions of

a Cooper pair box [88]. The idea of shunting a large capacitance on the Josephson junctions

to increase decohernce was also earlier proposed for a superconducting flux qubit [89].

Based on the above discussion, it can be seen that four basic qutrit-cavity or qutrit-pulse

interactions are used in the GHZ-state preparation, i.e., the three basic interactions described

by the Hamiltonians H1, H2, H3 for the gate realization, plus the basic interaction described

by the Hamiltonian H4. After considering the unwanted interactions, the Hamiltonians are

modified as follows:

(i) H ′
1 = H1 + δH1, where δH1 describes the unwanted interaction between the pulse and

the |1〉 ↔ |2〉 transition of the qutrit pairs {2, 2′} , {3, 3′} [Fig. 5(a)]. The expression of δH1

is given by

δH1 = Ω̃e−iφei∆pt

3∑

j=2

(
|2〉j 〈1|+ |2〉j′ 〈1|

)
+H.c., (21)

where Ω̃ is the pulse Rabi frequency associated with the |1〉 ↔ |2〉 transition of the qutrit

pairs {2, 2′} , {3, 3′} , and ∆p = ω21 − ωp = ω21 − ω10 < 0 is the detuning between the pulse
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FIG. 5: (a) A classical pulse is resonant with the |0〉 ↔ |1〉 transition of the qutrit pairs

{2, 2′} , {3, 3′} with a Rabi frequency Ω, while being off-resonant with the |1〉 ↔ |2〉 transition

of qutrit pairs {2, 2′} , {3, 3′} with Rabi frequency Ω̃ and detuning ∆p. (b) The cavity is resonant

with the |0〉 ↔ |1〉 transition of qutrit 1 (1′) with coupling constant gr, while off-resonant with the

|1〉 ↔ |2〉 transition of qutrit 1 (1′) with coupling constant g̃r and detuning ∆r. (c) The cavity is

dispersively coupled to the |1〉 ↔ |2〉 transition of qutrit pairs {2, 2′} , {3, 3′} with coupling strength

g and detuning ∆ = ω21 − ωc > 0, while off-resonant with the |0〉 ↔ |1〉 transition of qutrit pairs

{2, 2′} , {3, 3′} with coupling strength g̃ and detuning ∆̃ = ω10 − ωc > 0.

frequency and the |1〉 ↔ |2〉 transition frequency of the qutrit pairs {2, 2′} , {3, 3′} .
(ii) H ′

2 = H2+δH2, where δH2 describes the unwanted interaction between the cavity and

the |1〉 ↔ |2〉 transition of the qutrit 1 [Fig. 5(b)]. The expression of δH2 is given by

δH2 = g̃re
i∆rta |2〉1 〈1|+H.c., (22)

where g̃r is the coupling strength between the cavity and the |1〉 ↔ |2〉 transition of the

qutrit 1, and ∆r = ω21 − ωc < 0 is the detuning between the cavity frequency and the

|1〉 ↔ |2〉 transition frequency of the qutrit 1.

(iii) H ′
3 = H3 + δH3, where δH3 describes the unwanted interaction between the cavity

and the |0〉 ↔ |1〉 transition of the qutrit pairs {2, 2′} , {3, 3′} [Fig. 5(c)]. Here, H3 is the

Hamiltonian given in Eq. (6), with n = 3. The expression of δH3 is given by

δH3 = g̃ei∆̃tâ
3∑

j=2

(
|1〉j 〈0|+ |1〉j′ 〈0|

)
+H.c., (23)
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where g̃ is the coupling strength between the cavity and the |0〉 ↔ |1〉 transition of the qutrit

pairs {2, 2′} , {3, 3′} , and ∆̃ = ω10 − ωc is the detuning between the cavity frequency and

the |0〉 ↔ |1〉 transition frequency of the qutrit pairs {2, 2′} , {3, 3′} .
(iv) H ′

4 = H4 + δH4, where δH4 describes the unwanted interaction between the cavity

and the |1〉 ↔ |2〉 transition of the qutrit pair {1, 1′} [Fig. 5(b)]. The expression of δH4 is

given by

δH4 = g̃re
i∆rtâ (|2〉1 〈1|+ |2〉1′ 〈1|) + H.c. (24)

It is noted that the |0〉 ↔ |2〉 transition of qutrits induced by the pulse or the cavity

is negligible because of ω10, ω21 ≪ ω20 (Fig. 5). In addition, during the adjustment of the

qutrit level spacings, the effect of the qutrit decoherence and the cavity decay is negligible

because the level spacings of transmon qutrits can be rapidly adjusted within 1 ∼ 2 ns.

With the qutrit decoherence and the cavity dissipation taken into account, the dynamics

of the whole system, under the Markovian approximation, is governed by the master equation

dρ

dt
= −i [H ′

k, ρ] + κL [â] +

+γ21

3∑

j=1

L
[
σ−
f21,j

]
+ γ20

3∑

j=1

L
[
σ−
20,j

]
+ γ10

3∑

j=1

L
[
σ−
10,j

]

+γ21

3∑

j=1

L
[
σ−
21,j′

]
+ γ20

3∑

j=1

L
[
σ−
20,j′

]
+ γ10

3∑

j=1

L
[
σ−
10,j′

]

+

3∑

j=1

∑

l=1,2

γϕ,l (σll,jρσll,j − σll,jρ/2− ρσll,j/2)

+

3∑

j=1

∑

l=1,2

γϕ,l (σll,j′ρσll,j′ − σll,j′ρ/2− ρσll,j′/2) , (25)

where H ′
k (with k = 1, 2, 3, 4) are the above-modified Hamiltonians H ′

1, H
′
2, H

′
3, and H ′

4,

L [Λ] = ΛρΛ+ −Λ+Λρ/2− ρΛ+Λ/2 (with Λ = â, , σ−
21,j, σ

−
20,j , σ

−
10,j , σ

−
21,j′, σ

−
20,j′ , σ

−
10,j′), σ

−
21,j =

|1〉j 〈2| , σ−
20,j = |0〉j 〈2| , σ−

10,j = |0〉j 〈1| , σ−
21,j′ = |1〉j′ 〈2| , σ−

20,j′ = |0〉j′ 〈2| , σ−
10,j′ = |0〉j′ 〈1| ,

σ11,j = |1〉j 〈1| , σ22,j = |2〉j 〈2|, σ11,j′ = |1〉j′ 〈1| , and σ22,j′ = |2〉j′ 〈2| . In addition, κ is the

decay rate of the cavity; γ10 is the energy relaxation rate for the level |1〉 of qutrits associated
with the decay path |1〉 → |0〉; γ21 (γ20) is the relaxation rate for the level |2〉 of qutrits

related to the decay path |2〉 → |1〉 (|2〉 → |0〉); γϕ,1 (γϕ,2) is the dephasing rate of the level

|1〉 (|2〉) of qutrits.
The fidelity of the entire operation is given by F =

√
〈ψid| ρ |ψid〉, where |ψid〉 is the
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FIG. 6: Fidelity versus g. The figure is plotted for Ω/2π = 22 MHz.

ideal output state given by 1√
2
(|0L1

〉 |0L2
〉 |0L3

〉+ |1L1
〉 |1L2

〉 |1L3
〉) |0〉c (i.e., the state given

in Eq. (19) for n = 3), while ρ is the final density matrix obtained by numerically solving

the master equation.

We now numerically calculate the fidelity. For a transmon qutrit, the level spacing anhar-

monicity δ/2π = (ω10 − ω21) /2π = 100 ∼ 700 MHz was reported in experiments [90]. As an

example, consider δ/2π = 0.7 GHz and ∆/2π = 0.1 GHz. Thus, we have ∆̃/2π = 0.8 GHz

and ∆r/2π = ∆p/2π = −0.7 GHz. For simplicity, we assume g = gr. For a transmon qutrit

[88], g̃ = g/
√
2, g̃r =

√
2gr, Ω̃ =

√
2Ω. Other parameters used in the numerical simulation

are: (i) γ−1
10 = 60 µs, γ−1

20 = 150 µs [91], γ−1
21 = 30 µs, γ−1

φ,1 = γ−1
φ,2 = 20 µs, (ii) κ−1 = 10 µs.

Here, we consider a rather conservative case for decoherence time of the transmon qutrits

[92,93].

By solving the master equation (25), we numerically calculate the fidelity. Figure 6 shows

the fidelity versus g, while Fig. 7 shows the fidelity versus Ω. Fig. 6 (7) demonstrates that

the fidelity strongly depends on the value of g (Ω). From Fig. 6 or Fig. 7, it can be seen

that for g/2π = 12.5 MHz and Ω/2π = 22 MHz, a high fidelity 92.8% can be achieved. For

g/2π = 12.5 MHz, we have gr/2π = 12.5 MHz, g̃/2π = 8.84 MHz, g̃r/2π = 17.67 MHz,

which are readily available in experiments because a coupling strength g/2π ∼ 360 MHz has

been reported for a transmon qutrit coupled to a TLR [12,94].
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FIG. 7: Fidelity versus Ω. The figure is plotted for g/2π = 12.5 MHz.

Note that the influence of the third-excited state |3〉 of the transmon can be neglected.

This is because: (i) due to the use of the large detuning (see Fig. 5), the population of the

state |3〉 of the transmon is very small; and (ii) there exists a larger detuning between the

cavity frequency (the pulse frequency) and the |2〉 ↔ |3〉 transition frequency, compared to

the detuning between the cavity frequency (the pulse frequency) and the |2〉 ↔ |3〉 transition
frequency of the transmon.

The infidelity mainly comes from the decoherence of the qutrits, the decay of the cavity,

the unwanted interactions caused by the pulse and the cavity, as well as the validity of the

effective Hamiltonian in Eq. (9). To improve the fidelity, one can: (i) employ a DRAG pulse

[95,96] to reduce the leakage into the level |2〉 , (ii) design the qutrits with larger level-spacing

anharmonicity to reduce the effect of the unwanted interactions caused by the cavity, (iii)

choose the qutrits with longer decoherence time and the cavity with a high quality factor,

and (iv) optimize the ratio ∆/g to better meet the large detuning condition necessary for

the effective Hamiltonian.

The operation time is ∼ 0.45 µs, much shorter than the decoherence times of transmon

qutrits used in our numerical simulations. For a transmon qutrit, the typical transition

frequency between two adjacent levels is 1− 20 GHz. As an example, consider ω10/2π = 6.7

GHz and ω21/2π = 6.0 GHz for the case of the transmon qutrits dispersively coupled to the
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cavity. With ∆/2π = 0.1 GHz chosen above, we have ωc = 5.9 GHz. For κ−1 = 10 µs used

in the numerical simulation, the cavity quality factor is Q ∼ 3.7 × 105, which is available

because waveguide resonators with a (loaded) quality factor Q ∼ 106 have been reported in

experiments [96,97]. The analysis given here demonstrates that the high-fidelity creation of

GHZ states of three logical qubits in a DFS is feasible with present circuit QED technology.

V. CONCLUSION

We have presented a novel idea to realize quantum gates by manipulating quantum states

outside the DFS but having the states of logical qubits stay in a DFS before and after the gate

operation. This method has the following features: (i) Because the states are manipulated

outside the DFS, the multi-qubit gate implementation can be simplified when compared to

realizing a multiqubit gate based on manipulating quantum states within the DFS, which

usually requires unitary operations over a large DFS; (ii) Since the qubit states return to

the DFS after the gate operation, decoherence during the state storage is avoided and the

errors caused by decoherence during the gate operation are not accumulated for a long-

running quantum computation. We should remark that although the states of logical qubits

are manipulated out of the DFS, the effect of decoherence from qubits during the gate

operation can be made negligibly small as long as the operation time required for realizing

a specific quantum gate is much shorter than the decoherence time of the qubits. This

condition can be met by shortening the gate operation time or by choosing physical qubits

with sufficient long energy relaxation time and dephasing time.

We have proposed a way for realizing a multi-target-qubit controlled NOT gate using

logical qubits encoded in a DFS against collective dephasing. This gate is realized by

employing three-level qutrits placed in a cavity or coupled to a resonator. As shown above,

our proposal of the gate implementation has the following advantages: (i) The states of

the logical qubits return to the DFS after the gate operation, thus decoherence from qubits

after the gate operation is avoided; (ii) The gate can be implemented with only a few basic

operations, hence this proposal is quite simple; (iii) The gate operation time is independent

of the number of logical qubits; (iv) The gate is implemented in a deterministic way because

no measurement is used; (v) The intermediate level |2〉 for all qutrits is not occupied during

the entire operation, thus decoherence from this level is avoided; and (vi) This proposal is

universal and can be applied to realize the proposed gate using natural atoms or artificial
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atoms (e.g., quantum dots, NV centers, and various superconducting qutrits, etc.) placed

in a cavity or coupled to a resonator.

As an application, we have also shown how to apply this gate to create GHZ entangled

states of multiple logical qubits encoded in a DFS. Our numerical simulations show that

the high-fidelity creation of GHZ states of three logical qubits in a DFS is feasible within

current circuit QED technology.
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[44] V. Paulisch, H. J. Kimble, and A. González-Tudela, Universal quantum computation in waveg-

uide QED using decoherence free subspaces, New J. Phys. 18, 043041 (2016).

[45] Z. Zhu, T. Chen, X. Yang, J. Bian, Z. Y. Xue, and X. Peng, Single-loop and composite-loop

realization of nonadiabatic Holonomic quantum gates in a decoherence-free subspace, Phys.

Rev. Applied 12, 024024 (2019).

[46] B. Antonio and S. Bose, Two-qubit gates for decoherence-free qubits using a ring exchange

interaction, Phys. Rev. A 88, 042306 (2013).

[47] S. Hu, W. X. Cui, Qi. Guo, H. F. Wang, A. D. Zhu, and S. Zhang, Multi-qubit non-adiabatic

holonomic controlled quantum gates in decoherence-free subspaces, Quant. Inf. Processing 15,

3651 (2016).

27



[48] F. Nori, Quantum football, Science 325, 689 (2009).

[49] M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, N. Katz, E. Lucero, A. O’Connell,

H. Wang, A. N. Cleland, and J. M. Martinis, Process tomography of quantum memory in a

Josephson-phase qubit coupled to a two-level state, Nat. Phys. 4, 523 (2008).

[50] A. Miranowicz, M. Paprzycka, A. Pathak, and F. Nori, Phase-space interference of states op-

tically truncated by quantum scissors: Generation of distinct superpositions of qudit coherent

states by displacement of vacuum, Phys. Rev. A 89, 033812 (2014).

[51] Y. Han, X. Q. Luo, T. F. Li, W. Zhang, S. P. Wang, J. S. Tsai, F. Nori, and J. Q. You, Time-

domain grating with a periodically driven qutrit, Phys. Rev. Applied 11, 014053 (2019).

[52] P. Pradhan, M. P. Anantram, and K. L. Wang, Quantum computation by optically cou-

pled steady atoms/quantum-dots inside a quantum electro-dynamic cavity, arXiv:quant-

ph/0002006.

[53] P. Neumann, R. Kolesov, V. Jacques, J. Beck, J. Tisler, A. Batalov, L. Rogers, N. B. Man-

son, G. Balasubramanian, and F. Jelezko, Excited-state spectroscopy of single NV defects in

diamond using optically detected magnetic resonance, New J. Phys. 11, 013017 (2009).

[54] P. J. Leek, S. Filipp, P. Maurer, M. Baur, R. Bianchetti, J. M. Fink, M. Goppl, L. Steffen, and

A. Wallraff, Using sideband transitions for two-qubit operations in superconducting circuits,

Phys. Rev. B 79, 180511 (2009).

[55] M. Brune, E. Hagley, J. Dreyer, X. Maitre, A. Maali, C. Wunderlich, J. M. Raimond, and S.

Haroche, Observing the progressive decoherence of the “Meter” in a quantum measurement,

Phys. Rev. Lett. 77, 4887 (1996).

[56] M. Sandberg, C. M. Wilson, F. Persson, T. Bauch, G. Johansson, V. Shumeiko, T. Duty, and

P. Delsing, Tuning the field in a microwave resonator faster than the photon lifetime, Appl.

Phys. Lett. 92, 203501 (2008).

[57] Z. L. Wang, Y. P. Zhong, L. J. He, H. Wang, J. M. Martinis, A. N. Cleland, and Q. W.

Xie, Quantum state characterization of a fast tunable superconducting resonator, Appl. Phys.

Lett. 102, 163503 (2013).

[58] S. B. Zheng and G. C. Guo, Efficient scheme for two-atom entanglement and quantum infor-

mation processing in cavity QED, Phys. Rev. Lett. 85, 2392 (2000).

[59] D. F. V. James and J. Jerke, Effective Hamiltonian theory and its applications in quantum

information, Can. J. Phys. 85, 625 (2007).

28



[60] T. Monz, P. Schindler, J. T. Barreiro, M. Chwalla, D. Nigg, W. A. Coish, M. Harlander, W.

Hansel, M. Hennrich, and R. Blatt, 14-qubit entanglement: Creation and coherence, Phys.

Rev. Lett. 106, 130506 (2011).

[61] C. Song, K. Xu, W. Liu, C. P. Yang, S. B. Zheng, H. Deng, Q. Xie, K. Huang, Q. Guo,

L. Zhang et al., 10-qubit entanglement and parallel logic operations with a superconducting

circuit, Phys. Rev. Lett. 119, 180511 (2017).

[62] X. L. Wang, Y. H. Luo, H. L. Huang, M. C. Chen, Z. E. Su, C. Liu, C. Chen, W. Li, Y.

Q. Fang, X. Jiang et al., 18-qubit entanglement with six Photons’ three degrees of freedom,

Phys. Rev. Lett. 120, 260502 (2018).

[63] H. S. Zhong, Y. Li, W. Li, L. C. Peng, Z. E. Su, Y. Hu, Y. M. He, X. Ding, W. J. Zhang,

Hao Li et al., 12-photon entanglement and scalable scattershot boson sampling with opti-

mal entangled-photon pairs from parametric down-conversion, Phys. Rev. Lett. 121, 250505

(2018).

[64] A. Omran, H. Levine, A. Keesling, G. Semeghini, T. T. Wang, S. Ebadi, H. Bernien, A. S.

Zibrov, H. Pichler, S. Choi et al., Generation and manipulation of Schrödinger cat states in

Rydberg atom arrays, Science 365, 570 (2019).

[65] C. Song, K. Xu, H. Li, Y. Zhang, X. Zhang, W. Liu, Q. Guo, Z. Wang, W. Ren, J. Hao, H.

Feng, H. Fan, D. Zheng, D. Wang, H. Wang, and S. Zhu, Observation of multi-component

atomic Schrödinger cat states of up to 20 qubits, Science 365, 574 (2019).

[66] C. C. Gerry, Preparation of multiatom entangled states through dispersive atom–cavity-field

interactions, Phys. Rev. A 53, 2857 (1996).

[67] S. B. Zheng, One-Step Synthesis of Multiatom Greenberger-Horne-Zeilinger States, Phys. Rev.

Lett. 87, 230404 (2001).

[68] L. M. Duan and H. Kimble, Efficient Engineering of Multiatom Entanglement through Single-

Photon Detections, Phys. Rev. Lett. 90, 253601 (2003).

[69] X. Wang, M. Feng, and B. C. Sanders, Multipartite entangled states in coupled quantum dots

and cavity QED, Phys. Rev. A 67, 022302 (2003).

[70] S. L. Zhu, Z. D. Wang, and P. Zanardi, Geometric quantum computation and multiqubit

entanglement with superconducting qubits inside a cavity, Phys. Rev. Lett. 94, 100502 (2005).

[71] S. Matsuo, S. Ashhab, T. Fujii, F. Nori, K. Nagai, and N. Hatakenaka, Generation of Bell

States and Greenberger–Horne–Zeilinger States in Superconducting Phase Qubits, Quantum

29



Communication, Measurement and Computing,(no.8) ed O Hirota et al (Tokyo:NICT) (2006).

[72] L. F. Wei, Y. X. Liu, and F. Nori, Generation and control of Greenberger-Horne-Zeilinger

entanglement in superconducting circuits, Phys. Rev. Lett. 96, 246803 (2006).

[73] S. Matsuo, S. Ashhab, T. Fujii, F. Nori, K. Nagai, and N. Hatakenaka, Generation of macro-

scopic entangled states in coupled superconducting phase qubits, J. Phys. Soc. Jpn 76, 054802

(2007).

[74] S. Aldana, Y. D. Wang, and C. Bruder, Greenberger-Horne-Zeilinger generation protocol for

N superconducting transmon qubits capacitively coupled to a quantum bus, Phys. Rev. B 84,

134519 (2011).

[75] P. B. Li and F. L. Li, Deterministic generation of multiparticle entanglement in a coupled

cavity-fiber system, Opt. Express 19, 1207 (2011)

[76] C. P. Yang, Q. P. Su, S. B. Zheng, and F. Nori, Entangling superconducting qubits in a

multi-cavity system, New J. Phys. 18, 013025 (2016).

[77] X. B. Huang, Y. H. Chen, and Z. Wang, Fast generation of three-qubit Greenberger-Horne-

Zeilinger state based on the Lewis-Riesenfeld invariants in coupled cavities, Sci Rep. 6, 25707

(2016).

[78] M. Izadyari, M. Saadati-Niari, R. Khadem-Hosseini, and M. Amniat-Talab, Creation of N-

atom GHZ state in atom-cavity-fiber system by multi-state adiabatic passage, Opt. Quant.

Electron 48, 71 (2016).

[79] Y. Zhou, B. Li, X. X. Li, F. L. Li, and P. B. Li, Preparing multiparticle entangled states of

NV centers via adiabatic ground-state transitions, Phys. Rev. A 98, 052346 (2018).

[80] X. T. Mo and Z. Y. Xue, Single-step multipartite entangled states generation from coupled

circuit cavities, Front. Phys. 14, 31602 (2019).

[81] J. Q. You and F. Nori, Superconducting circuits and quantum information, Physics Today 58

(11), 42 (2005).

[82] J. Clarke and F. K. Wilhelm, Superconducting quantum bits, Nature (London) 453, 1031

(2008).

[83] J. Q. You and F. Nori, Atomic physics and quantum optics using superconducting circuits,

Nature (London) 474, 589 (2011).

[84] I. Buluta, S. Ashhab, and F. Nori, Natural and artificial atoms for quantum computation,

Rep. Prog. Phys. 74, 104401 (2011).

30



[85] Z. L. Xiang, S. Ashhab, J. Q. You, and F. Nori, Hybrid quantum circuits: Superconducting

circuits interacting with other quantum systems, Rev. Mod. Phys. 85(2), 623 (2013).

[86] X. Gu, A. F. Kockum, A. Miranowicz, Y. X. Liu, and F. Nori, Microwave photonics with

superconducting quantum circuits, Phys. Rep. 718–719, 1 (2017).

[87] A. F. Kockum and F. Nori, Quantum Bits with Josephson Junctions, Book Chapter in “Fun-

damentals and Frontiers of the Josephson Effect”, F. Tafuri (ed.), Springer Series in Materials

Science 286, Chapter 17, pp. 703-741 (2019).

[88] J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster, J. Majer, A. Blais, M. H.

Devoret, S. M. Girvin, and R. J. Schoelkopf, Charge-insensitive qubit design derived from the

Cooper pair box, Phys. Rev. A 76, 042319 (2007).

[89] J. Q. You, X. Hu, S. Ashhab, and F. Nori, Low-decoherence flux qubit, Phys. Rev. B 75,

140515(R) (2007).

[90] I. C. Hoi, C. M. Wilson, G. Johansson, T. Palomaki, B. Peropadre, and P. Delsing, Demon-

stration of a single-photon router in the microwave regime, Phys. Rev. Lett. 107, 073601

(2011).

[91] For a transmon qutrit, the |0〉 ↔ |2〉 transition is much weaker than those of the |0〉 ↔ |1〉

and |1〉 ↔ |2〉 transitions. Thus, we have γ−1
20 ≫ γ−1

10 , γ
−1
21 .

[92] M. J. Peterer, S. J. Bader, X. Jin, F. Yan, A. Kamal, T. J. Gudmundsen, P. J. Leek, T. P.

Orlando, W. D. Oliver, and S. Gustavsson, Coherence and decay of higher energy levels of a

superconducting transmon qubit, Phys. Rev. Lett. 114, 010501 (2015).

[93] C. Wang, Y. Y. Gao, P. Reinhold, R. W. Heeres, N. Ofek, K. Chou, C. Axline, M. Reagor, J.

Blumoff, K. M. Sliwa, L. Frunzio, S. M. Girvin, L. Jiang, M. Mirrahimi, M. H. Devoret, and

R. J. Schoelkopf, A Schrödinger cat living in two boxes, Science 352, 1087 (2016).

[94] M. Baur, A. Fedorov, L. Steffen, S. Filipp, M. P. da Silva, and A. Wallraff, Benchmark-

ing a quantum teleportation protocol in superconducting circuits using tomography and an

entanglement witness, Phys. Rev. Lett. 108, 040502 (2012).

[95] F. Motzoi, J. M. Gambetta, P. Rebentrost, and F. K. Wilhelm, Simple Pulses for Elimination

of Leakage in Weakly Nonlinear Qubits, Phys. Rev. Lett. 103, 110501 (2009).

[96] J. M. Gambetta, F. Motzoi, S. T. Merkel, and F. K. Wilhelm, Analytic control methods for

high-fidelity unitary operations in a weakly nonlinear oscillator, Phys. Rev. A 83, 012308

(2011).

31



[97] W. Chen, D. A. Bennett, V. Patel, and J. E. Lukens, Substrate and process dependent losses

in superconducting thin film resonators, Supercond. Sci. Technol. 21, 075013 (2008).

[98] P. J. Leek, M. Baur, J. M. Fink, R. Bianchetti, L. Steffen, S. Filipp, and A. Wallraff, Cavity

quantum electrodynamics with separate photon storage and qubit readout modes, Phys. Rev.

Lett. 104, 100504 (2010).

32


