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We show how a quantum computer may efficiently simulate a disordered Hamiltonian, by incorpo-
rating a pseudo-random number generator directly into the time evolution circuit. This technique is
applied to quantum simulation of few-body disordered systems in the large volume limit; in particular,
Anderson localization. The method requires a number of (error corrected) qubits proportional to
the logarithm of the volume of the system, and each time evolution step requires a number of gates
polylogarithmic in the volume. We simulate the method to observe the metal-insulator transition on
a three-dimensional lattice. Additionally, we demonstrate the algorithm on a one-dimensional lattice,
using physical quantum processors.

Random potentials can cause quantum particles to
localize, that is, to remain in a finite region of space
instead of diffusing [1–3]. In three dimensions and at fixed
energy (and for specific lower-dimensional systems), this
effect only occurs after some critical disorder is reached,
resulting in a second-order phase transition, the Anderson
localization transition [4]. Physically, this is a transition
between a conductor and an insulator. Numerical access
to this transition is hampered by the large Hilbert spaces
needed in the limit of large volumes. Additionally, it is
unclear to what extent the transition is affected by the
presence of interactions [5, 6]. Localization is a purely
quantum mechanical phenomenon caused by interference
among different paths. It is perhaps not surprising then
that a quantum computer is particular well suited to
capture its physics. The purpose of this letter is to flesh
out a method to study localization in quantum computers
which a number of qubits scaling as the logarithm of
the size of the lattice, opening up the prospect of useful
physical simulation with a small number of (corrected)
qubits.

The production of small-scale quantum computers has
created great interest in their possible physical applica-
tions. Quantum computers are able, not just in principle
but in practice [7], to perform computations infeasible
on a classical computer. The simulation of fundamen-
tally quantum systems is a particularly natural target
for quantum computers [8]. Fault-tolerant qubits, once
practical, will allow the use of a wide variety of algorithms
designed without regard for the particular implementa-
tion of qubits and gates used by the hardware. However,
many algorithms proposed for simulating physical sys-
tems require large numbers of qubits before becoming
physically relevant [9–20], which will not be available for
the foreseeable future. In the systems that give rise to
Anderson transitions, the dimension of the Hilbert space
increases only linearly with the volume, suggesting that a
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logarithmic number of qubits could be used, and physi-
cally relevant systems could be attacked with near-term
resources.

In this Letter we detail algorithms for the quantum
simulation of the Anderson transition, and demonstrate
their operation on a simulated digital quantum computer.
These algorithms generically require only a logarithmic
number of qubits in the volume of the physical system,
corresponding to an exponential speedup over equivalent
classical algorithms. The number of qubits needed to
make the output of these algorithms physically interesting
is only ∼ 50, recommending this method as a target for
near-term fault-tolerant quantum computers.

The Hamiltonians we will consider simulating contain
O(V ) terms of random amplitudes (the source of the dis-
order). Selecting these values classically would require
passing O(V ) values to the classical computer, precluding
the possibility of O(log V ) efficiency. The core of our
method is to pass the quantum computer not a list of
values, but instead a small circuit (actually a PRNG, a
pseudo-random number generator) which maps an inte-
ger i to the pseudo-random variable ui, interpreted as
a coefficient in the Hamiltonian. This circuit defining
the Hamiltonian, is incorporated directly into the time-
evolution operation.

We begin by considering the Anderson tight-binding
model of a single particle hopping between V lattice sites:

Hsite = −
∑

<ij>

(
c†i cj + h.c.

)
+W

∑
i

uic
†
i ci. (1)

Here the first sum is taken over all adjacent sites. The
random variables ui are uniformly distributed in [0, 1)
and are time independent. The only tunable parameter
is W , the disorder parameter. In the limit W = 0, this is
a free theory, in which all eigenstates are delocalized.

Macroscopic properties of this model — those apparent
in the limit of large volumes — do not depend on the
particular instantiation of ui. The most interesting such
property is localization: in one and two dimensions, any
non-vanishing disorder W causes all eigenstates of the
Hamiltonian to be localized, and the medium becomes
an insulator. In three dimensions, the medium remains a
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FIG. 1. Time-evolution circuits for the Anderson tight-binding
model with site disorder, on eight sites. On top is shown
approximate evolution under the kinetic Hamiltonian HK ; on
the bottom is the evolution under the disordered potential HV .
The construction of the random permutation P is discussed
in the text.

conductor up to a critical disorder Wc ≈ 16.5 [21], above
which all states are again localized. This phase transi-
tion in three dimensions is an easy target for quantum
simulation.

We first discuss the proposal in the context of one-
dimensional model and then indicate how to extend it
to higher dimensions. To simulate the Anderson tight-
binding model in a single dimension, interpret each ele-
ment of the computation basis as a binary integer specify-
ing the position of the site (0 . . . (L− 1)) occupied by the
electron. Thus, |01101〉 is the state of the system when
the electron is at site 13 — we will abbreviate this state
as |13〉. The time evolution is Trotterized, and the effects
of the kinetic HK = −

∑
<ij>

(
c†i cj + h.c.

)
and potential

HV = W
∑

i uic
†
i ci terms are implemented sequentially:

e−iHt ≈
(
e−iHK∆te−iHV ∆t

)t/∆t
. (2)

In this formulation of the Anderson model, the kinetic
Hamiltonian HK could be diagonalized by a quantum
Fourier transform; however, this is no longer the case
when the disorder lies on the links, as in a model discussed
below. Because of this we instead simulate the evolution
of HK = HK,e + HK,o by splitting it into even (HK,e)
and odd (HK,o) links. Since HK,e and HK,o commute
there is no error arising from this Trotterization. The
Hamiltonian of the even links couples sites that differ only
in the last qubit

HK,e = |0〉 〈1|+ |2〉 〈3|+ · · ·+ h.c. = I⊗(V−1) ⊗ σx, (3)

and e−iHK,e∆t is therefore simulated by a rotation about
the X axis of the least-significant qubit. The evolution of
the odd links appears more complicated, but is simplified
by first translating the entire lattice by 1. By this trans-
lation, odd links are transformed into even links. After
the shift, time-evolution under HK,e is performed again,
followed by a shift back into place. The resulting circuits
for evolving e−iHK∆t are shown in Figure 1.

Having evolved with HK , we come to the crux of our
proposal: evolving under the disordered potential

HV = W
∑

i

ui |i〉 〈i| . (4)

The evolution under HV requires the phase of the state
to be changed by the same random number every time
the particle finds itself at a particular lattice site (which
corresponds to a state in the computational basis). That
means that the same random number has to be gener-
ated multiple times. Determining the random values ui

classically and constructing a circuit using them would
necessitate O(V ) gates in the time-evolution, but with
a different approach we can obtain a cost merely poly-
logarithmic in the volume. We first observe that with
standard methods on a classical computer, the ui are typ-
ically not truly random variables, but instead are defined
to be the output of a pseudo-random number generator
(PRNG) — a circuit sufficiently complicated so that the
ui look random to any practical statistical test. There-
fore, we will define HV to be specified by the output of a
particular seekable PRNG, and use that circuit directly
in the time evolution.

A seekable PRNG is a PRNG from which the ith ele-
ment f(i) can be obtained in constant time, independent
of the value of i. This contrasts with the PRNGs used in
most computer simulations, in which elements must be
calculated sequentially, so that calculating f(i) requires
O(i) steps. Given a short (logarithmic in the number of
bits Q used to represent i) classical circuit computing a
PRNG f , one can readily produce a quantum circuit im-
plementing a unitary Uf defined by Uf |i〉 |0〉 = |i〉 |f(i)〉.
Taking the output of the PRNG to define the site disorder
by ui = 2−Qf(i), so that

HV = W
∑

i

1
2Q
f(i) |i〉 〈i| , (5)

we see that evolution under HV can be obtained by first
applying Uf to compute the PRNG, performing a diagonal
phase rotation by the amount specified by the value in
the anciliary register, and then applying U†f .

The setup above requires the construction of a suitable
f(i). Seekable PRNGs are often defined via cryptographic
hash functions like SHA256 [22]. In this construction, a
sequence of K PRNGs indexed by seeds k are constructed
via fk(i) = SHA256(i ∗ K + k). This construction is
known to perform very well [23], but cryptographic hashes
typically operate on fixed-size registers of large numbers of
bits, and the well-studied ones are therefore unobtainable
on near-term quantum computers. For this reason, we
instead define a seekable PRNG with a random classical
circuit — that is, a random permutation matrix.

A random permutation matrix P may be used to define
a seekable PRNG via P |i〉 = |f(i)〉. This introduces
weak correlations between the different values of f(i),
as f(i) 6= f(j) whenever i 6= j; these correlations are
unmeasureable in the large volume limit, and we will
ignore them.
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FIG. 2. Visualization of the diffusion (top) and localization
(bottom) of a particle on a one-dimensional lattice with 400
sites. In each plot the probability of the wavefunction is shown
for two different times. Without disorder (W = 0), the average
distance given by Eq. 7 diverges, and D/L saturates. With
disorder W = 1, the wavefunction fails to spread out even at
long times, and D/L remains small.

It remains to construct a random permutation oper-
ator on a quantum computer. Our method will be to
add randomly a number of NOT and TOFFOLI gates on an
extended register with Q+ (Q− 3) qubits. It is easy to
see this generates a random permutation with a proba-
bility independent of the permutation. Indeed, with the
aid of Q− 3 extra anciliary qubits, any permutation ma-
trix can be obtained by composing the NOT and TOFFOLI
gates [24]. Beginning with an empty circuit (correspond-
ing to the identity), consider the process of appending one
randomly-selected gate at a time (the probability of pick-
ing any of the NOT or TOFFOLI gates is irrelevant as long
as it does not vanish for any of them). This is a Markov
chain in the space of permutations which, by virtue of
Toffoli’s construction, is ergodic. As long as one of the
gates included is the identity gate, it is also aperiodic,
and therefore the chain converges to the unique stationary
distribution where every permutation is equally probable.
Therefore, a sequence of G randomly selected NOT and
TOFFOLI gates will converge to a random permutation
matrix as G→∞. This is true regardless of the distribu-
tion of gates used, although the distribution does affect
the rate of convergence. As one additional simplification,
for our demonstrations we dispense with the anciliaries
which are required to sample a truly random permutation
matrix. This modification makes no difference in the
large-volume limit. To see this, relabel the highest-order
half of the qubits, representing the least-significant digits,
as ancillary. These qubits contributed very little to the
energy level of a site, so this change disappears in the
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FIG. 3. The average distance, measured by Eq. 7, as a function
of the disorder parameter W , for a 163 lattice. The blue
triangles show results obtained with a conventional PRNG,
and the red squares give results obtained with the circuit-
based PRNG described here. The localization distance D is
measured at asymptotically large times and the stochastic
error bars are generated using 300 samples. The dashed line
represents the delocalized limit for D.

infinite-volume limit.
Although we have shown that with enough random

gates this construction will yield random numbers, it is
important that the number of gates required scales polyno-
mially, rather than exponentially, with Q. To demonstrate
that this is the case, we run the dieharder [25] battery
of statistical tests (based on the diehard tests [26]) on ran-
dom numbers generated by random classical circuits on 30
bits. As dieharder takes in a sequence of 8-bit numbers,
we truncate each random number to the highest-order 8
bits. Trying different lengths of gates, we find that 600
gates is sufficient to consistently pass all statistical tests
in the battery. Similarly, for random classical circuits
on 50 bits, we find 1200 gates to be sufficient, and for
100 bits 2600 gates. This is suggestive of low-exponent
polynomial scaling.

The resulting circuit for evolving a three-qubit (eight-
site) model under HV is shown in Figure 1.

The generalization of our algorithm to higher dimen-
sions is straightforward. The random potential in the
Hamiltonian is local and makes no reference to the spa-
tial structure of the lattice, and so that portion of the
time evolution is unaffected by the number of dimensions.
The kinetic hamiltonian factorizes, and we have in three
dimensions

H
(3)
K = HK ⊗ I ⊗ I + I ⊗HK ⊗ I + I ⊗ I ⊗HK , (6)

so that kinetic evolution may be performed independently
in each dimension separately.

This completes the construction, on a digital quantum
computer, of the time evolution operator e−iHt. Many
experiments can be performed once this time-evolution is
available. The most natural is to begin with an electron
at a particular site (|Ψ(t = 0)〉 = |0〉) and measure its
propagation in time. The two possible qualitative behav-
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FIG. 4. The average distance, as measured by Eq. 7, as a
function of evolution time for a 4-site lattice with disorder
parameter W = 5 and Trotterization size ∆t = 0.2. The
“random” potential is fixed to be V (0, 1, 2, 3) = 0, 1, 3, 2, which
may be computed with a single CX gate. The data points are
obtained on physical quantum processors provided by IBM and
Rigetti and are compared with the exact result. We perform
300 quantum measurements for each point to estimate D(t)
and the stochatic errors shown are computed using bootstrap.

ior can be seen in Figure 2. On a quantum computer, by
beginning in that state, time-evolving, and measuring the
position, we can then measure the observable

D = L

π
√

2

√
1−

〈
cos 2πx̂

L

〉
, (7)

which is equivalent in the infinite-volume limit to the
average distance from the origin measured along the x-
direction. In the insulating phase, in the long time limit,
the electron will remain near site 0 and D will asymptote
to a constant; in the conducting phase, it will diffuse and
eventually cover the lattice, setting the value of D to its
maximum D = L/(π

√
2). Thus, preparing the state |0〉

(or any other basis state), evolving for a long time, and
finally measuring the position of the electron, informs us
which phase we are in. In practice, we plot D/L, which is
0 in the infinite volume limit of the insulating phase and
a finite constant in the conducting phase. Such a plot,
computed classically, is shown in Figure 3; note that the
results with random circuits (as discussed above) agree
with those obtained using a conventional PRNG.

This method cannot yet be implemented at scale on a
quantum computer: achieving quantum advantage would
require about 50 fault-tolerant qubits, which are not yet
available. The state of what is currently achievable is
depicted in Figure 4. With publicly available quantum
computing facilities provided by Rigetti, we are able to
simulate around 10 time-steps with 4 sites before noise
and decoherence entirely take over.

The site disorder of Eq. 1 is not the only way to in-
troduce disorder onto the lattice. Another option is to

introduce the disorder on the hopping terms:

Hlink =
∑
〈ij〉

(Wuij − 1)
[
c†i cj + h.c.

]
(8)

In this model the link between i and j has an associated
random variable uij , and there is no potential on the sites.
To evolve this Hamiltonian we may use a similar strategy
as before. In one dimension, two random permutation
matrices on Q−1 qubits are constructed. They determine
the disorder on even and odd links, respectively. The
circuit for performing evolution under this Hamiltonian
is shown in Figure 5.

We have discussed site-disorder and link-disorder on
cubic lattices of arbitrary dimension. In general, a Hamil-
tonian which is sparse and efficiently row-computable (a
short circuit can be presented to compute the non-zero
entries in any row of the Hamiltonian) can be simulated in
time logarithmic in the dimension of the physical Hilbert
space [27]. The trick used in this Letter is quite general:
when considering a model with many random values in
the Hamiltonian, those values may be defined to be the
output of a PRNG without changing the macroscopic
properties of the model. This removes the need to specify
O(V ) values explicitly in a circuit, and allows efficient
simulation of the Hamiltonian.

The algorithms presented here allow the physics of
metal-insulator transitions to be accessed with a number
of qubits scaling with the logarithm of the volume of the
system. These do require fault-tolerant qubits, which have
not yet been demonstrated in practice. However, about
50 such qubits would already allow quantum computers to
push past the systems that can be treated with a classical
computer.

Besides going to larger volumes than a classical com-
puter could hope to achieve, the gentle scaling of resources
with Hilbert space opens up the possibility of studying
few-body interactions in random potentials as well as
Anderson transitions in higher dimensions, with an eye
toward determining the upper critical dimension [28].
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FIG. 5. Circuit for evolving the link-disorder Hamiltonian of
Eq. 8 on a three-qubit, eight-site system. For brevity, we use
Rθ = RX(θ∆t), and the increment and decrement circuits are
not shown explicitly. Note that P and P ′ are independently
sampled permutation matrices.
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