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Gaussian Boson Samplers (GBS) have initially been proposed as a near-term demonstration of
classically intractable quantum computation. We show here that they have a potential practical
application: Samples from these devices can be used to construct a feature vector that embeds
a graph in Euclidean space, where similarity measures between graphs - so called ‘graph kernels
- can be naturally defined. This is crucial for machine learning with graph-structured data, and
we show that the GBS-induced kernel performs remarkably well in classification benchmark tasks.
We provide a theoretical motivation for this success, linking the extracted features to the number
of r-matchings in subgraphs. Our results contribute to a new way of thinking about kernels as a
quantum hardware-efficient feature mapping, and lead to a promising application for near-term

)

quantum computing.

I. INTRODUCTION

Measuring the similarity of two graphs for practical
applications is notoriously difficult. Firstly, there are
many different notions of similarity, and practical tasks
crucially depend on what property of the graph is ex-
ploited in the comparison. Secondly, even the task of
determining whether two graphs are exactly the same can
be computationally extremely costly. This is due to the
fact that a representation of a graph is not unique: Dif-
ferent ways of enumerating its nodes and edges can give
rise to the same structure. The complexity of deciding
whether two graphs are isomorphic is unknown; neither
a polynomial-time algorithm nor NP-completeness proof
has been discovered yet [I]. Existing algorithms for graph
isomorphism [2] and graph similarity [3] are efficient in
practice, but are still costly for large graphs and may
require exponential time for some problem instances.

In this paper we suggest the use of quantum hardware
to map a graph G to a feature vector which represents
G in Euclidean space. Standard distance measures, such
as taking the inner product of two feature vectors, then
result in a distance measure between graphs mediated by
the feature embedding. The quantum device we inves-
tigate is a Gaussian Boson Sampling (GBS) setup [4H0].
GBS is a generalization of Boson Sampling [7HI0], which
has originally been proposed as a classically intractable
problem to demonstrate the power of near-term quantum
hardware [I1]. An optical GBS device prepares a quan-
tum state of M optical modes and counts the photons in
each mode. Some of the authors have previously shown
how a graph can be encoded into the quantum state of
light [12], so that the photon measurement statistics give
rise to a complete set of graph isomorphism invariants
[13].

Here we extend this result and study the graph simi-
larity measure derived from a GBS device for a practical
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application, namely for classification for machine learning.
Graph-structured data plays an increasingly important
role in this field, for example to predict properties of
a social media network given a dataset of networks for
which the properties are known. In machine learning, a
similarity measure between data is called a kernel, and
lots of methods for pattern recognition — such as sup-
port vector machines and Gaussian processes — are built
around this concept. Mapping graphs to feature vectors
or graph embeddings [T4HI6] is a well known strategy,
and graph kernels from explicit feature vectors [I7] have
been studied in detail.

The connection between kernel methods for machine
learning and quantum computing has recently been made
in Refs. [I8, 19]. Any positive-definite kernel can be
formally understood as the inner product of two feature
vectors that represent the data points in a Hilbert space
[20]. Hence, the Hilbert space of a quantum system can be
interpreted as a feature space, in which a subroutine can
compute inner products “coherently”. By using measure-
ment samples from the quantum hardware to construct
low-dimensional feature vectors that can be stored and
further processed on a classical computer, we follow a
different, even more minimalistic route to define a “quan-
tum feature map”, and ultimately a quantum kernel. The
advantage in using quantum hardware this way is that
device performs a combinatorial computation that is very
resource-intense — possibly even intractable — for classical
computers. In fact, we show that the GBS feature map
is related to a class of classical graph kernels which count
subgraphs [21], but instead of only considering subgraphs
of constant size, the sampling statistics can reveal infor-
mation on all possible subgraphs, as well as subgraphs
constructed from copying nodes and their edges. The re-
sulting features contain information about the number of
r-matchings of the original graph. Numerical experiments
show that graph kernels from a GBS-induced feature map
can outperform classical graph kernels in classification
task for small standard benchmark datasets, results that
can be further improved by using displaced light modes.

This paper is organized as follows: In Section [[] we
present the GBS graph similarity framework, including a
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recap of previous results. Section [[I]investigates the GBS-
extracted features more closely, and Section [[V] presents
numerical experiments to motivate the relevance of the
findings in practice.

II. TURNING GBS SAMPLES INTO FEATURES

An optical Gaussian Boson Sampler is a device where
a special quantum state (a so-called Gaussian state) is
prepared by the optical squeezing of M displaced light
modes, followed by an interferometer of beamsplitters.
A pure Gaussian state is fully described by a covariance
matrix o € R2M*2M a5 well as a displacement vector
d € R*M [22]. Photon number resolving detectors count
the photons in each mode.

In this section we describe the mathematical details of
the quantum hardware-induced feature map (see also Fig-
ure , summarizing what has been described in Bradler
et al. [13], and adding the effect of displacement as well as
a further step of turning samples to feature vectors. The
scheme works for simple graphs, i.e. undirected graphs
without self-loops or multiple edges. While edge weights
can be treated on the same footing as unweighted edges,
we leave the inclusion of categorical edge labels or node
labels for future studies. Mindful of readers from fields
other than quantum optics we will only highlight some
important aspects of Gaussian Boson Sampling and refer
to Refs. [l [6] 12] for more detail.

A. Encoding graphs into the GBS device

As outlined in [12], a quantum state prepared by a GBS
device can encode a graph G = (V, E) with an adjacency
matrix A of entries A;; that are one if the edge (4, j) exists
in G and zero else. The entries of A can also represent
continuous “edge weights” that denote the strength of a
connection. In the latter case we will speak of a “weighted
adjacency matrix”.

In order to associate A with the symmetric, positive
definite 2M-dimensional covariance matrix of a Gaus-
sian state of M modes, we have to construct a “doubled
adjacency matrix”

P A0
Ac(o A)c(A@A), (1)
where the rescaling constant ¢ is chosen so that 0 <
¢ < 1/8max, and Smax is the maximum singular value of
A [12] [13].[23] For simplicity we will always rescale all
adjacency matrices with a factor 1/ (sig,}c +107%) where
siﬁi is the largest singular value among all graphs in the
data set under consideration. As a result we will assume
that c =1 and A = A@® A can be encoded into a GBS
device. We call this the “doubled encoding strategy”.
The matrix A can now be associated with a quantum
state’s covariance matrix o by setting the squeezing as

Min| A, On n In| G, Haf(A,)
Moa, Opog [0,0,00 0 <% 0
[1,0,0] 0% 0
Min, Oppo [0,1,00 1 % 0
[0,0,1] 0
[1,1,0] o 1
Mo, Opag  [1,0,1] 2 & 1
[0,1,1] e 1
[2,0,0] % 0
Man,  Opoo  [0,2,00 2 o 0
[0,0,2] o 0
Msa,  Opiy [LL1 3 & 0
2,1,0] o8 0
2,0,1] o 0
1,2,0] oV 0
Ms A, Op2,1,0] 3
1,0,2] o 0
0,2,1] - 0
[0,1,2] -~ 0
3,0,0] e 0
Msn,  Opoo [0,3,00 3 & 0
[0,0,3] No 0

TABLE I. Events My a,, orbits On, photon events n, total
photon number |n|, extended induced subgraph Gy (indicated
by red/black nodes and edges) and Hafnian haf(Axn) of a fully
connected simple graph of three nodes up to |n|max = 3. The
difference between orbits and events only becomes apparent
for higher photon evens (i.e., [2,2,0,0] and [2,1,1,0] are in
different orbits but the same event). Note that the red nodes
are not mutually connected.

well as the beamsplitter angles of the interferometer so
that

o =Q—1/2, with Q= (1 - XA)™\, X = (g %). 2)

B. Sampling photon counting events

After embedding A via A into the quantum state of the
GBS, each measurement of the photon number resolving
detectors returns a photon event n = [nq,...,ny|, with
n; € N indicating the number of photons measured in
the i-th mode. Assuming for now that the displacement
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FIG. 1. Idea of the quantum hardware-induced feature map. The adjacency matrix of a graph gets encoded into the Gaussian
state of the light modes by tuning the squeezing and interferometer parameters. The features are defined as the probability of
detecting certain classes of photon counting events. To extract the probabilities from the device, a number of samples of photon
counting events is generated and the relative frequencies of the different classes determined.

d is zero, the probability of measuring a given photon
counting event is

haf?(Ay), (3)

1
i) = o

where n! = nilna! - - -nyl.

Let us go through this nontrivial equation bit by bit.
The Hafnian haf() is a matrix operation similar to the
determinant or permanent. For a general symmetric
matrix C € RY x RY with matrix elements Cy,v it reads

haf(C)= > ] Cuw- (4)

ﬂ_ePJgZ} (u,v)em

Here, P{¥ is the set of all N1/((N/2)!12V/2) ways to
partition the index set {1,2,..., N} into N/2 unordered
pairs of size 2, such that each index only appears in
one pair. The Hafnian is zero for odd N. As an ex-
pi

ample, for the index set {1,2,3,4} we have
{(1,2), 3,4)},{(1,3),(2,4)},{(1,4),(2,3)}.

If C is interpreted as an adjacency matrix containing
the edges of a graph, the set PIJ\(,Q} contains edge-sets of
all possible perfect matchings on G. A perfect matching
is a subset of edges such that every node is covered by
exactly one of the edges. The Hafnian therefore sums the
products of the edge weights in all perfect matchings. If
all edge weights are constant, it simply counts the number
of perfect matchings in G (see also Figure . Note that
in Eq. we used the fact that for real and symmetric
A, haf(A) = haf(A @ A) = haf?(A). In other words, the
doubled encoding strategy leads to a square factor which
will play a profound role in the quantum feature map we
are aiming to construct.

Eq. does not depend on the Hafnian of the adjacency
matrix A, but on a matrix A,. Ay contains n; duplicates
of the jth row and column in A. If n; = 0, the jth
row/column in A does not appear in A,. Effectively,
this constructs a new graph Gy, from A according to the
following rules (see also Table [I):

1. If all nj,j = 1,..., M are one (i.e., each detector
counted exactly one photon), 4,, = A.

2. If some n; are zero and others one (i.e., these detec-
tors report no photons), A, describes an induced
subgraph Gy of G, in which nodes that correspond
to detectors with zero count were deleted together
with any edge that connected them to other nodes.

3. If some n; are larger than one (i.e., these detectors
count more than one photon), An describes what
we call an extended induced subgraph in which the
corresponding nodes and all their connections are
duplicated n; times.

In short, the probability of a photon event to be measured
by the GBS device is proportional to the square of the
(weighted) number of perfect matchings in a -possibly
extended - induced subgraph of the graph encoded into
the interferometer.

Computing the Hafnian of a general matrix is in com-
plexity class #P, and formally reduces to the task of
computing permanents [24]. If no entry in the matrix
is negative, efficient approximation heuristics are known,
although their success is only guaranteed under specific

circumstances [25], 26].

C. The effect of displacement

The Gaussian Boson Sampling setup underlying Eq.
consists of squeezing and interferometers. But a Gaussian
quantum state can also be manipulated by a third oper-
ation: displacement. Displacement changes the mean of
the M-mode Gaussian state while leaving the covariance
matrix (and therefore the encoding strategy) as before.
A non-zero mean changes Eq. in an interesting, but
non-trivial manner.

Without going into the details [6], if considering nonzero

displacement, instead of summing over P]‘Efz} in Eq. (4),

we have to sum over P]‘E,m}, or the set of partitions of the
index set {1,..., N} into subsets of size up to 2. For the
index set {1,2, 3,4}, we had

P =1{(1,2),(3,4)}, {(1,3), (2,9}, {(1,4), (2. 3)},
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FIG. 2. All non-isomorphic graphs up to size |V| = 6 and the number of perfect matchings they contain (grey shading scale).

which now becomes

P = {{(1,2),(3), ()}, {(1,3),(2), 9}, {(1,4),(2), 3)},
{(2,3), (1), W} {(2,4), (1), (3)},{(3,4), (1), (2)},
{(1,2), (3,9}, {(1,3), (2,9}, {(1,4), (2,3)},
{(1), (2), (3), (4)}

Instead of the Hafnian in Eq. (3)), we therefore get a
mixture of Hafnians of A,,’s submatrices (stemming from
the pairs) and other factors (stemming from the size-1
sets).

Assume that displacement is applied to both the & and p
quadratures of each mode, described by a 2M-dimensional
displacement vector d = (dy,...,dy, d}, ... 7d}‘M)T. The
effect on Eq. (3) is as follows. Let Q the 2M x 2M
matrix from Eq. 7 and b=d'Q 1. We get the novel
expression (for a derivation, see Appendix

M
n) =« Z Z biy - .-

n=0 {iy i, }CTn

bi, haf(An—_(i, i,})

with
e—3d'Q7'd
det(Q) n!’

where Zyps is the index set {1,...2M}. In this nota-
tion we assume {i1,...,%0} = {} and b;, ...b;, = 1. The
“reduced” Hafnians of the form An,_; jv, An—gi ki - - -
are constructed by “deleting” rows and columns
{4,7},{4,4,k,1},... in A,. The expression in the brackets
of Eq. is also known as a “loop Hafnian” of a matrix
A, that carries by, ..., baps on its diagonal [27].

One can see that displacement explores substructures of
extended subgraphs, adding another layer of “resolution”
to the photon number distribution. An important effect
of displacement is that p(n) for odd total photon numbers
In| is not necessarily zero any more, since the sum in
Eq. contains Hafnians of even-sized subgraphs.

D. Turning samples into features

The basic idea of how to turn samples of photon count-
ing events into feature vectors is to associate the proba-
bility of a certain measurement result with a feature. To
estimate the probability of measurement outcomes, one
divides the number of times a result has been measured by
the total number of measurements. However, if we used
the probabilities of photon events p(n) directly as fea-
tures, we would face a very fast — more precisely, a doubly
factorial — explosion of the number of features with the
total number of photons, while almost all events become
vanishingly unlikely for realistic amounts of squeezing. In
practice we will truncate the total number of photons at
a fixed value k£ and discard all measurement results with
In| > k in the construction of the feature vector, but even
then the sampling task quickly becomes unfeasible.

We therefore define the probability of certain types
of photon events as features, thereby “coarse-graining”
the probability distribution. As a compromise between
experimental feasibility and expressive power, we consider
two different coarse-graining strategies here. The first one
follows Bradler et al.’s [13] suggestion to coarse-grain the
distribution of photon counting events by summarizing
them to sets called orbits (see Table[[). An orbit Oy, =
{perm(n)} contains permutations of the detection event
n. For example, [2,1, 1,0] is in the same orbit as [0, 1, 2, 1],
but not [2,2,0,0]. The photon counting event n in the
index is therefore an arbitrary “representative” of the
photon counting events in an orbit. The probability of
detecting a photon counting event of orbit Oy, is given by
the sum of the individual probabilities,

p(On) = ) p(n).

neOy

(6)

The number of orbits O, containing events of up to k
photons in total is equal to the number of ways that
the integers of 1,..., k can be partitioned into a sum of
at most M terms. In practice we usually have k < M,



in which case there are 2,4,7,12,19, 30,45, 67 orbits for
k=1,...,8, respectively [28]. In a real GBS setup, the
energy is finite and high photon counts therefore become
very unlikely [29].

The second post-processing strategy builds on top of
the first, and summarizes orbits to events My A, where

Ac={n: Y ni = n|,(vi)(n < 5). (Yndn; € m)(n; = 5)}.

In words, a event contains all orbits of |n| photons, which
have at least one detector counting s photons, but no
detector counts more than s photons (see also Table [I).
The probability of detecting an event from a event is given
by

PMina,) = Y p(On).

neAg

(7)

From here on, when using event features, we refer to the
GBS as “GBS™”.

It is interesting to estimate how many samples are
needed to estimate a feature vector. In Ref [21I] we find
that we can approximate a probability distribution of
D possible outcomes, with probability at most § that
the sum of absolute values of the errors in the empirical
probabilities of the outcomes is € or more, using

o [2(10g(2)D2+ log(é))w

samples. For orbits up to k& = 8 photons, there are
D = 67 features. Setting ¢ = 0.05 and § = 0.05 and
assuming a perfect GBS device, we need 39, 550 samples.
Since current-day photon number resolving detectors can
accumulate about 10° samples of photon counting events
per second [30], it takes in principle only a fraction of a
second for the orbit probabilities to be estimated by the
physical hardware. The number of samples does not grow
with the graph size, but of course the GBS device itself
grows linearly in the number of nodes.

Hardware implementations of Gaussian Boson Samplers
are rapidly advancing, but mode numbers larger than 10
with a tuneable interferometer and squeezing are still a
huge experimental challenge. In this paper we therefore
resort to simulations on classical computers. While for
non-negative adjacency matrices, efficient approximation
algorithms to calculate Hafnians are known [25] 26 311, [32],
sampling from distributions that depend on Hafnians is
still a topic of active research [33], and to ensure that the
results are not influenced by approximation errors we will
use exact calculations here. This limits the scope of the
experiments to graphs of the order of 25 nodes.

E. Constructing a similarity measure

Summarizing the above, the feature map implemented
by a GBS device maps a graph to a feature vector, G —

FIG. 3. Example of a perfect matching (left) and a 2-matching
(right). The 2-matching is at the same time a perfect matching
of the subgraph highlighted in grey.

f € RP, where the entries f;,i = 1,...,D of f are the
probabilities of detecting certain types of photon events
that we called orbits and events,

fi= p(O;), or fi = p(Mfm,As)v (8)

and the probability of the ’th (meta-)orbit is fully defined
by Eqgs. (@ and (while ordering in the feature vector
does not matter).

Assuming that the maximum number & of photons we
consider is smaller or equal to the number of detectors, or
k < M for all graphs, the size D of the feature vector is
solely determined by k, which is a hyperparameter of the
feature map. Another hyperparameter is the displacement
that can be applied to the light modes. We will assume
here that the displacement applied to all modes is a
constant value d.

Once constructed, the feature vectors can be used for
various applications. In the context of machine learning,
they can be directly fed into neural network classifiers.
Here we are interested in constructing a similarity measure
or kernel that computes the similarity between two graphs
G and G'. A standard choice is to use the feature vectors
in a ‘linear’ and ‘rbf’ kernel (with a hyperparameter 0)

Hlin(Ga G/) = <f7 f/>a

£ g2
kbt (G, G') = exp <||262||) ’

both of which are well known to be positive semi-definite
so that the results of kernel theory apply to the “GBS
kernel” constructed here.

III. THE GBS GRAPH FEATURES

In this section we will analyze the features of the first
post-processing strategy in more detail; we discuss their
intimate relation to the coefficients of a graph property
called a “matching polynomial”, the relation of photon
event probabilities to higher-order moments of multivari-
ate normal distributions, the connection between the GBS
and graphlet sampling kernel, and we finally discuss the
devastating effect of photon loss on the features.

A. Single-photon features and r-matchings

It turns out that the probabilities of ‘single-photon’
orbits (i.e., each detector counts either zero or one photon)



are related to a graph property called the “matching
polynomial” of G [34H36],

[M/2]

Z (=1)"m(G,r)zM=2", (9)

r=0

w(G) =

The coefficients m (G, ) of the matching polynomial count
the number of r-matchings or “independent edge sets” in
G — sets of r edges that have no vertex in common (see

Figure |3). In the language of Hafnians, the r match-
ing can be written as m(G,r) = Zneo[l e haf(An)
(where [1,...,1,0,...] contains 2r single photon detec-

tions). Hence, if it were not for the square of the Hafnian
in Eq. (3)), the probability p(Oy) of a single-photon orbit
would be proportional to a |n|/2-matching m(G, |n|/2) of
G. The square gives rise to a new object

g(GvT) = Z

n€On, .. 1,0,...]

haf?(Ay).

Replacing m with g in Eq. @D leads to a new type of
polynomial v(G) which we call a GBS polynomial.

This definition opens up a range of interesting questions,
for example whether the GBS polynomial has advantages
over a standard polynomial, or how multi-photon events
and displacement fits into this interpretation. We will
investigate these questions in separate works.

An interesting observation for the context of machine
learning occurs for the feature corresponding to orbit
Op,1,0,...] (see for example Table . Since there are only
two options — the two nodes are connected and have
therefore exactly one perfect matching, or they are not
and have none — the square does not have any effect, and
the probability of the orbit is proportional to the number
of 1-matchings of this graph, which is in turn equal to its
number of edges. Hence, we have that p(Op1,0,...1) o |E|,
and the hardware natively returns an “edge counting”
feature.

B. Higher-order moments

The probability of measuring a given photon counting
event n = [nq,...,np] can also be interpreted from a
slightly different, more physically motivated viewpoint.
The M nodes of a graph can be associated with M random
variables drawn from a multivariate normal distribution
N(£, %), where the covariance matrix ¥ corresponds to
the doubled adjacency matrix A, and € is the mean vector
related to displacement via ¢ = Q~'d'. The higher-order
moments E[Xl(l) . Xl(nl) e X](\/l[) .. .X](VT;M)] of this dis-
tribution are proportional to haf(Ay,), which in turn is
related to the probability of a photon event via Eq. .
This result follows from Isserlis’ theorem [37], which de-
composes the higher order moments into sums of products
of covariances E[X,X;]. In short, the GBS device turns a
graph into a multivariate normal distribution and samples
from its moments.

Using this picture, the first-order moments of the ‘graph-
induced distribution’ correspond to photon events of the
form [1,0,...] and their probability is indeed proportional
to the mode means as apparent from Eq. . The second-
order moments correspond to photon events of the form
[1,1,0,...] and their probability is proportional to the
entries of the adjacency matrix — the edge weights. Con-
sistent with this observation, we stated before that orbits
with 2 non-zero detectors “measure” the edge count of a
graph.

While the doubled encoding strategy as well as the
presence of multi-photon events somewhat obscure inter-
pretations of features in terms of r-matchings and higher-
order moments, we found in numerical experiments not
reported in this paper that they can be a blessing in
disguise, making very similar graphs distinguishable by
smaller maximum photon numbers k.

C. Comparison to Graphlet Sampling kernel

Counting subgraphs in a larger graph is a concept used
in various classical graph kernels. Graphlet Sampling
kernels [2I] bear the most striking similarity to GBS
feature maps, since the features count how often graphlets
of size |V| = 3,4,5,... appear in a graph G. In the
language developed here we can express the feature f,
which counts graphlet g via

ng( Z

neOn, .. 1,0,...]

ly~a,s (10)

using an indicator function 1,~¢, that is one if graphlet g
is isomorphic to the subgraph G, and zero else, as well as
the orbit represented by [1,..,1,0,...] counting |V| single
photons. In comparison, rewriting Eq. in a similar
way, the GBS features are

neO,*

2

Z ]]-g%Gn )

gePInl

(S4)

where PI?l is the set of all perfect matchings of size |n|.
As aresult, instead of counting graphlets, the GBS feature
map sums squares of perfect matching counts in graphlets.
Also, GBS feature map does not restrict the size of the
graphlet probed.

D. Errors due to photon loss

One of the main sources of errors in a realistic GBS
device is a photon loss in the linear interferometer, and
we demonstrate here that loss is a serious problem for
applications of a GBS for graph similarity as proposed in
this paper. Methods of dealing with this kind of errors
will be discussed in upcoming work. Here we show the
effect of the loss on the coarse-grained probabilities with
a numerical example.
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FIG. 4. Coarse-grained probability p(On) where G is an
random unweighted graph on 10 vertices. We compare the
lossless scenario (red) with a lossy case (blue) of 3dB photon
loss (v = 0.5 in ) The squeezing is the same in both cases
and its maximal value is 6.2dB. The orbits O,, on the x axis
are first ordered according to the total photon number |n|, and
then in ascending order of the single-detector photon numbers,
ie. [0,0,0...],[1,0,0...],[1,1,0...],[2,0,0...], .... A major tick on
the x-axis counts 100 orbits. The gaps of the total odd photon
numbers for the red curve indicate zero probability which is
consistent with the single modes squeezed states occupying
the even subspace of the Hilbert space of Fock states.

The effect of loss is described by the action of the lossy
bosonic channel on a pure covariance matrix ¢ resulting
in

o(v)=(1-v)o+ K]IM,

. (1)

where ¥ = 1 — 7 and 7 is the overall transmissivity. One
way of viewing this is that the matrix A from Eq. ((1))
does not have the block-diagonal structure c¢(A @ A) any
more, but is of the form

A —1 Aogps — 1

C’:XQM(]lgM—W_ldiag All/fl’”wAzMI/fl ),

where W Xo AW=1 = A is the eigendecomposition of
XomA. Figureshows the effect of this loss model on the
probability distribution p(Oy,) over orbits for a random
unweigthed graph G on ten vertices. It is apparent that
loss introduces errors in the distribution, populating orbits
which have a zero probability in the zero-displacement
case, and distorting the remaining probabilities signifi-
cantly. In the remainder of the paper we will consider
only a lossless GBS device, but remark herewith that loss
mitigation strategies are crucial for practical applications
of GBS feature maps.

IV. NUMERICAL EXPERIMENTS

Finally, we provide some numerical results to investigate
the GBS graph kernel in practice. Benchmarks suggest
that it is well competitive to standard “classical” graph
kernels, at least in the hypothetical case of a perfect
device. We furthermore show that displacement may

improve classification accuracy by shifting weight into the
higher-order orbits, and that orbits with photon numbers
smaller or equal to 2 contribute most to the result.

A. Benchmarking

To benchmark the GBS feature map, we use a setup
that has become a standard in testing graph kernels: A
C-Support Vector Machine (SVM) with a precomputed
kernel. The test accuracies in Table [[I] are obtained by
running 10 repeats of a double 10-fold cross-validation.
The inner fold extracts the best model by adjusting the
C-parameter of the SVM — which controls the penalty
on misclassifications — via grid search between values
[107%,10%], and the best model is then used to get the
accuracy of the test set in the outer cross-validation loop.
The GBS feature vectors were used in conjunction with a
‘rbf’ kernel K,ps.

For the GBS graph kernel, we chose a gentle displace-
ment of d = 0.25 on every mode and k = 6, leading to
30-dimensional feature vectors. We used exact simulations
based on the hafnian library [38]. These are computation-
ally very expensive, which is why we only consider small
datasets. Three classical graph kernels are benchmarked
for comparison: The Graphlet Sampling kernel [2I] (GS)
with maximum graphlet size of k = 5 and 5174 samples
drawn, the Random Walk kernel [39] (RW) with fast com-
putation and a geometric kernel type, and the Subgraph
Matching kernel (SM) [40]. The three classical kernels
were simulated using Python’s grakel library [41].[42]

The datasets are taken from the repository of the Tech-
nical University of Dortmund [43] (see Figure [5)). They
are briefly described in Appendix [B] Preprocessing of the
benchmarking datasets includes these three steps:

1. Graph selection: Graphs which have less than 6 or
more than 25 nodes are excluded to keep the feature
vectors constant and to limit the time of simula-
tions. The share of excluded graphs is displayed in
Figure (3) in the main paper, and ranges from 5%
to 55%.

2. Labels and attributes: Potential node labels, node
attributes and edge attributes are ignored, and the
edge weights were binarized as described in Ap-

pendix [B]

3. Rescaling: The final (weighed or unweighed) adja-
cency matrix is divided by a normalization constant
c = 1/()\}{5;3( + 107%) that is slightly larger than
the largest eigenvalue )\iﬁi of any adjacency matrix
in the dataset, as explained in Section 2.1. Note
that for most datasets used here, )\i,g,}( ~ 3, and
the squeezing becomes unphysically large for actual
experiments. However, ¢ only rescales the features
by known factors which are the same for every fea-
ture vector. In practice one can therefore choose
a more convenient ¢ parameter which negotiates
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FIG. 5. Dimensionless histograms of node and edge numbers of graphs in the benchmark datasets, to visualize the relative
shapes of the class distributions (plotted in different colours). The number of graphs as well as its percentage with respect to the
original data are shown below each plot. *Some classes in ‘Fingerprint’ were excluded due to insufficient samples of small graphs.

Dataset GBS (do.o) GBS (do.2s) GBS' (do.o) GBS™ (do.25) GS RW SM

AIDS 99.60 + 0.05 99.62 4 0.03 99.58 + 00.06 99.61 +0.05 98.44 + 0.09 56.95+ 7.99 79.20 + 0.68
BZR_MD 62.73£0.71 62.134+1.44 62.01+£1.43 63.16 £2.11 60.60 £ 1.77 49.88 £3.74 61.90 £ 1.21
COX2_MD 44.9841.80 50.11£0.97 57.8444.04 57.89+2.62 55.04 & 3.33 57.72+ 3.26 66.94 + 1.22
ENZYMES 22,294+ 1.60 28.01 £1.83 25.72+2.60 40.42 +£2.02 35.87 £2.19 21.13+£1.91 36.70 £ 2.83
ER_MD 70.36 £0.78 70.4140.47 71.01£1.26 71.05+0.83 65.65+1.06 68.75 £ 0.53 68.21 £ 0.99
FINGERPRINT 65.42 +0.49 65.85 + 0.36 66.19 +00.84 66.26 +4.29 64.10 £ 1.52 47.69 +0.21 47.14 + 0.62
IMDB-BIN 64.09 4+ 0.34 68.714+0.59 68.1440.71 67.60+0.75 68.37 =0.62 66.38 = 0.21 out of time*
MUTAG 86.41 +0.33 85.58 £0.59 85.64+0.78 84.46+0.44 81.08+0.93 83.02+ 1.08 83.14 £ 0.24
NCT1 63.61 +£0.00 62.79+0.00 63.594+0.17 63.11 £0.93 49.96 4 3.27 52.36 & 2.63 51.36 & 1.88
PROTEINS 66.88 £0.22 66.14 £ 0.48 65.73+0.69 66.16 £0.76 65.91 4 1.29 56.27 & 1.23 63.03 & 0.84
PTC_FM 53.84 £0.96 52454+ 1.78 59.14+£1.72 56.25+2.04 59.48 4+ 1.95 51.97 £ 2.68 54.92 +2.94

TABLE II. Mean test accuracy of the Support Vector Machine with different datasets and different graph kernels, with the
standard deviation between 10 repetitions of the double cross-validation. GS, RW, and SM are three standard classical graph
kernels described in the text. GBS refers to the postprocessing strategy of associating orbit probabilities with features, while
GBS™ summarises some orbits to events (see text).* Runtime > 20 days.

between squeezing levels in reach of hardware and
high enough photon numbers to resolve the features.

All datasets were chosen before the first experiments were
run, to avoid a post-selection bias in favour of the GBS
kernel.

As Table [T shows, the GBS kernel performs well and
outperforms the other methods visibly for MUTAG and
NCI1, while still leading for AIDS, BZR_MD, ER_MD,
FINGERPRINT and PROTEINS. Displacement increases
the performance of the GBS kernel significantly for
COX2_MD, ENZYMES and IMDB-BIN, but not for other
data sets. The GBS kernel does well on datasets where
the distribution of node and edge numbers differs strongly
between classes. However, we confirmed that excluding
the ‘edge counting features’ [1,1,0..],[2,2,0..],... does
not influence classification performance. While the graph
size is considered by the GBS kernel, it seems to be only
one of many properties that enters the notion of similarity.

B. Displacement and feature importance

The hyperparameters of the GBS and GBS™ graph
kernels are the constant displacement d which adimin-

istered to each node, as well as the maximum photon
number k. Since simulations restrict the value of k at this
stage, we focus on the effect of displacement, using the
orbit-features (i.e., the GBS kernel). Displacement can
change the similarity measure significantly. For example,
comparing graphs of size |V| = 3, one finds that the fully
disconnected graph is closer to the fully connected graph
than a graph with two edges for d = 1, but vice versa for
d=0.

Figure [0] uses the example of IMDB-BIN and MU-
TAG to investigate the GBS or “orbit” features for
d =0,d =0.25 and d = 1. The feature averages show
that the general distribution of the feature vector is simi-
lar for both classes, but still visually distinguishable. [44]
Consistent with the theory, increasing displacement shifts
the features towards higher-order orbits, and populates
features that are zero when d = 0. Features associated
with orbits [1,1,0,...],[1,1,1,1,0...] and [1,1,1,1,1,1], as
well as [2,1,0,...] and [2,1,1,1,0,...] seem to be particu-
larly important in the support of principal components,
and get high weights when training a perceptron on the
GBS features. Where displacement renders them nonzero,
uneven orbits such as [1,1,1,0,...],[1,1,1,1,1,0...] follow
suit. During our investigations we confirmed that drop-
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FIG. 6. Three measures for feature importance for IMDB-BINARY (top row) and MUTAG (bottom row) using k = 6 and for
d=0,d=0.25 and d = 1. The 3 + 3 heatmaps consist of three columns each. The leftmost column (gray color map) shows the
average of each feature for the two different classes, here labeled A and B. The center column shows the coefficients with which
each feature contributes to the four first principal components in the PCA analysis. The third column shows the weights which
a perceptron attributes to each feature when trained to classify the target labels.

ping features with high single-detector photon numbers
did not have a huge influence on classification. Consistent
with the results from Table [, MUTAG has ‘richer’ fea-
tures for d = 0 than IMDB-BIN for classification with a
perceptron, an advantage that IMDB-BIN equalizes with
growing displacement.

The feature analysis suggests that features related to
subgraphs of all sizes (here 1 to 6) are important for
the classification results, and that duplication of a single
node in the subgraphs may be beneficial — a feature that
Graphlet Sampling kernels do not explore. The effect
of displacement varies with the dataset, and d should
therefore be kept as a hyperparameter for model selection.

V. CONCLUSION

We proposed a new type of feature extraction strategy
for graph-structured data based on the quantum technique
of Gaussian Boson Sampling. We suggested that the
success of the method is related to the fact that such
a system samples from distributions that are related to
useful graph properties. For classical machine learning,

this method presents a potentially powerful extension to
the gallery of graph kernels, each of which has strengths
on certain data sets. For quantum machine learning, this
proposes the first application of a “quantum kernel”.

A lot of questions are still open for further investigation,
for example regarding the role and interpretation of dis-
placement, how GBS performs with weighted adjacency
matrices, how node and edge labels can be considered, as
well as whether the feature vectors are useful in combi-
nation with other methods such as neural networks. We
expect that the rapid current development of numeric
GBS samplers as well as quantum hardware will help
answering these questions in the near future.
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Appendix A: Adding displacement

Equation in the main text can be derived from the
following expression reported in [6],

+Hb ,

i2n

(

and ki, ..., ks containing the s’ indices from the ‘second
subspace’, and s + s’ = 2n. The fact that Haf(A &
B) = Haf(A)Haf(B), allows us to express the Hafnian of
reduced versions of Ap asa product of reduced versions
of matrix Ay,

Haf(An_ (i, ip,y) = Haf(A

n*{jl,m,]‘s})Haf(Anf{kl,.H,ksl})-

Altogether, we can therefore write:
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Appendix B: Data sets

Here we give further information on the datasets used in
the numerical experiment. Except from IMDB-BINARY
and Fingerprint, all datasets are from the chemical do-
main. In COX_MD, ER.MD, MUTAG and PTC_FM,
nodes represent atoms, and edges represent different kinds
of bonds. The edges were translated into binary connec-
tions via the following key: 0 - no chemical bond, 1 -
single bond/double bond/triple bond /aromatic bond. In
all remaining datasets, the representation is described
below.

e AIDS - Each graph represents a chemical com-
pound which the graph label marks as anti-
HIV active or not. Nodes represent atoms,
and edges represent different kinds of covalent
bonds. The edges were translated into bi-
nary connections via the following key: 0 - no
chemical bond 1 - valence of zero, one or two.
See also |https://wiki.nci.nih.gov/display/
NCIDTPdata/AIDS+Antiviral+Screen+Datal and
[45].

e BZR_MD - Each graph represents a benzodi-
azepine receptor ligand, and the graph labels report
in vitro binding affinities above a fixed threshold
[44].

e COX2_.MD - Each graph represents a
cyclooxygenase-2 inhibitor, while the graph
labels indicate in vitro activities against a human
recombinant enzyme [46].

¢ ENZYMES - Nodes represent higher-level sec-
ondary structure elements and are connected by an
edge if they are neighbours in the enzyme’s amino
acid sequence, or if they are amongst the three
nearest neighbours of each structure in space [47].
Node and edge attributes were ignored. The label
corresponds to the Enzyme Commission number,
indicating which chemical reactions they catalyze.

¢ ER_MD - Each graph represents an estrogen re-
ceptor ligand, and the label reports sur-threshold
binding affinity to over 1000 other compounds [46].

e Fingerprint - The graphs were extracted [45]
from images of fingerprints released by the US
NIST institute (https://www.nist.gov/itl/iad/
image-group/nist-special-database-302).
Nodes are put at ending points and bifurcation
points of the fingerprint patterns, as well as at
regular intervals between those points. Edges
correspond to the physical distance between
points. Graph labels identify the individuals to
which a fingerprint belongs. Only graphs of the
three dominant individuals or classes 0,4,5 were
considered, since the other classes did not contain
a sufficient number of samples after small-graph
sub-selection.

e IMBD-BINARY - A graph corresponds to a net-
work of co-starring in movies. Nodes are actors,
while edges indicate whether (1) or not (0) they
appeared in a movie of a certain genre together.
The graph labels indicate the genre (action movies
and romances) [43].

e MUTAG - Each graph represents a chemical com-
pound, whith nodes indicating atoms and edges
their mutual covalent bonds [45], 48]. The graph
labels distinguish the compounds with respect to
their mutagenic properties.

e NCI1 - Each graph represents a chemical com-
pound, labelled by its activity against non-small
cell lung cancer andovarian cancer cell lines [49].

¢ PROTEINS - The graphs correspond to proteins
from the Protein Data Bank (http://www.rcsb|
org/pdb/) [45, 47] and are labeled according to
their Enzyme Commission number, indicating which
chemical reactions they catalyze.

e PTC_FM - Each graph represents a chemical com-
pound, while the label indicates carcinogenicity on
rodents [50].
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