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A common way to manipulate a quantum system, for example spins or artificial atoms, is to use
properly tailored control pulses. In order to accomplish quantum information tasks before coherence
is lost, it is crucial to implement the control in the shortest possible time. Here we report the near
time-optimal preparation of a Bell state with fidelity higher than 99% in an NMR experiment,
which is feasible by combining the synergistic capabilities of modelling and experiments operating
in tandem. The pulses preparing the Bell state are found by experiments that are recursively assisted
with a gradient-based optimization algorithm working with a model. Thus, we exploit the interplay
between model-based numerical optimal design and experimental-based learning control. Utilizing
the balanced synergism between the dual approaches, as dictated by the case specific capabilities
of each approach, should have broad applications for accelerating the search for optimal quantum
controls.

I. INTRODUCTION

The precise dynamical manipulation of a quantum
system in a time-optimal manner is crucial for
constructing high-fidelity quantum devices [1]. In
particular, in order to operate on a timescale faster than
the shortest coherence time, the creation of entangled
states in the most concise time is of high relevance for
quantum information science [2]. Here we demonstrate
the preparation of the Bell state |ψg〉 = 1√

2
(|10〉 − |01〉)

resulting in fidelity higher than 99% while also reaching
close to the shortest possible preparation time Tmin

[3]. We achieve this performance by combining an
operationally guided balance of closed-loop learning
experiments with model-based numerical design, which
allows for the correction of systematic errors caused by
possible uncertainties in the model and reduce the costly
experimental tomography at each step. This balanced
approach enhances the efficiency of finding optimal
controls while also assuring quality dual objective
performance in the present illustration.

As indicated above, time-optimal state preparation can
be viewed as a dual objective optimization problem in
which the norm of the overlap with the target state is
maximized utilizing the control fields while their pulse
length is minimized. Experimentally realizable solutions
to this problem are particularly challenging to find, since
high fidelity is aimed for, and the control fields preparing
the desired state are asked to be as short as possible while
being implementable in the laboratory. In particular,
at one extreme (i) solely model- based optimization
schemes can suffer from uncertainties in the underlying

model diminishing the fidelity (i.e., including possibly
all measures of objective performance) and the designed
fields may not be precisely created by the apparatus upon
laboratory implementation. At the other extreme (ii)
solely experiment-based schemes (i.e., often called either
learning control or adaptive feedback control) can require
an extensive laboratory overhead in some applications.
Before we address these challenges, as schematically
represented in Fig. 1, we first outline in Sec. II the
two distinct approaches (i) and (ii) for generally solving
quantum control problems. We discuss advantages and
disadvantages of each approach, followed by introducing
so called hybrid approaches that aim to best overcome
the detrimental disadvantages by combining certain
aspects of the model-based and the experiment-based
optimization schemes. As a challenging illustration, the
following material will explain how we combine model-
based and experiment-based optimal control (green
dashed line in Fig. 1) to prepare the target Bell state
with high fidelity in a time close to Tmin, with details
given in Sec. IV and Sec. V.

II. APPROACHES TO ACHIEVING OPTIMAL
CONTROL OBJECTIVES

A typical quantum control problem is to find the
classical fields that minimizes/maximizes a given cost
functional (i.e., the overlap (distance) between the
desired state (unitary transformation) and the achieved
state (evolution) of the system). The cost functional is
often subject to additional demands such as minimizing
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FIG. 1. (Color online) Illustration of two general
optimization approaches to find the controls achieving desired
objective(s). In (i) the optimization loop is entirely based
on numerical simulation-based design (red) followed by
implementation of the design, whereas (ii) makes exclusive use
of experiments and data analysis (blue). The green dashed
curve indicates a balanced synergistic combination of both
approaches, which is used in our NMR experiment to (a)
prepare a Bell state while (b) also in minimum time. In
this illustration the controls are updated using a gradient-
based closed-loop learning algorithm, in which we utilize a
model-based simulation to calculate the gradient and then
experimental state tomography to determine the step size
in each iteration cycle. In general, the best balanced way
to combine the two approaches (i) and (ii) depends on the
experimental platform considered, the quality of the model
describing the system, the objectives, and the algorithm(s)
used to achieve the desired task. Thus, the balance between
(i) and (ii) is not static, as it rests on the future progress
made in technology as well as theory and computational
capabilities.

the energy or the length of the pulses, which is considered
in this work. As mentioned in the Introduction, there
are generally two approaches (i) and (ii) to solve such
quantum control problems.

A. Quantum Control based on Modelling (i)

In the first approach (i) in Fig. 1 the optimization
is performed on a classical computer using standard
iterative procedures, such as gradient or stochastic
algorithms, that find the fields maximizing/minimizing
the desired objectives [4–9]; the resultant fields are
implemented in the laboratory in a final single
step. However, this approach requires highly reliable
knowledge of the model describing the system. Any
erroneous system parameters as well as other significant
missing (possibly unwittingly so) model components will
diminish the utility of the designed pulses resulting in

the quality of the achieved tasks likely dropping in
the final experimental performance test. Furthermore,
implementation of the control design in the laboratory
apparatus can also introduce undesirable distortions in
the actually created control.

B. Quantum Control based on Experiments (ii)

In contrast, in the second approach (ii) the classical
fields achieving the objectives are directly ”learned”
in experiments [10–18]. This procedure has the
advantages that (a) no detailed prior knowledge of the
system is required, (b) the physically exact scenario
is employed with all parameters at their true values,
(c) the possibly numerically expensive and/or error
prone calculations with the time-dependent Schrödinger
equation are avoided and instead directly performed in
an analog fashion by the real system in the experiment
where due care is needed to deal with noise from various
sources. Here optimization is fully dependent on repeated
measurements of system observables and the control
fields are updated accordingly. For instance, control of
a multi-qubit system was successfully demonstrated [17,
18] by iteratively measuring the gradient of the objective
with respect to the controls and appropriately updating
the controls. The pulses were found to give more
accurate results than those generated by model-based
numerical optimization, showing that a measurement-
based optimization procedure can correct for unknown
systematic imperfections. However, depending on the
platform, the objectives and the optimization algorithm
used, such measurement-based strategies alone (i.e.,
pathway (ii) in Fig. 1) can become experimentally
intensive under various circumstance with current
technology. As an example, for high-quality time optimal
control implementations, a large number of tomography
experiments are required since the gradient with respect
to the controls as well as the gradient with respect to the
evolution time needs to be measured (see Sec. V B).

C. Hybrid Quantum Control approaches

In order to overcome the aforementioned issues of each
approach (i) and (ii), combinations of both approaches
have been considered [19–21]. For instance, in [19]
(i) a gradient algorithm based on a model was used
to first achieve near-optimal solutions, followed by (ii)
experimentally optimizing the obtained pulses through
tomography measurements further to obtain even higher
fidelities. Instead of starting with approach (i) and
continuing with approach (ii), we address the conundrum
of operating with either (i) or (ii) above by combining
both approaches in a balanced fashion, dictated by the
particular circumstances. As schematically represented
in Fig. 1 (green dashed curve), in the present NMR
case instead of measuring the gradient in each iteration
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step, we numerically calculate the gradient based on
a model. The controls are updated with a step size
that depends on the fidelity for preparing the target
state, which is measured in each iteration step. This
procedure has the advantage that even if the adopted
model is inaccurate, in each iteration step it is ensured
that the objective is more closely approached as long
as the gradient points in the ”climbing” direction.
This approach allows for uncertainties in the model
causing even a moderate level of systematic error and
avoids an otherwise unacceptable number of gradient
measurements, as would happen when operating on path
(ii) alone in the present experiment. We remark that
the balanced approach in Fig. 1 should be viewed with
application specific freedom, including the prospect of (i)
and (ii) each utilizing different types of algorithms with
the criteria of maximally useful information exchange
between (i) and (ii) leading to increased efficiency and
better final objective(s) performance. The realization of
various forms of the algorithmic freedom offered in Fig.
1 must await future research, but this paper will give a
specific illustration. In this regard path (i) can exploit
access to the evolving state, while path (ii) nominally
only has access to information at time T .

III. DESCRIPTION OF THE ILLUSTRATIVE
SYSTEM

Our aim is demonstrate the balanced approach to find
the control pulses that prepare the target Bell state |ψg〉
to high fidelity in the shortest attainable pulse time Tmin.
Before we define the corresponding quantum control
problem in Sec. IV, we first describe the experimental
setting as well as the model describing the control system.

The experiment is performed on a Bruker Avance
III HD 800 MHz spectrometer at temperature 295 K,
in which the states of the two spins 13C and 1H are
encoded as the two qubits in the labeled chloroform
sample (13CHCl3) dissolved in DMSO − d6. The
relaxation times T1 and T ∗2 are measured to be T1 =
730 ms, T ∗2 = 96.5 ms for 13C and T1 = 96 ms, T ∗2 =
42.5 ms for 1H, respectively. In the rotating frame, the
interaction between the two spins is described by the drift
Hamiltonian

H0 =
π

2
gσ1

zσ
2
z , (1)

where σ1,2
j with j = x, y, z denotes the Pauli operators on

the two spins, and the coupling constant is measured to
be g = 217.4 Hz. The external controls {ukj (t)} applied
on the system are included in the time-dependent control
Hamiltonian

Hc(t) =
∑
k=1,2

π[ukx(t)σk
x + uky(t)σk

y ]. (2)

The total Hamiltonian is then given by H(t) = H0 +
Hc(t). In the experiment, we initially prepare the

system in the state |ψ(0)〉 = |00〉 with fidelity 0.999 [22]
determined by using the line-selective method [23].

IV. THE TIME-OPTIMAL CONTROL
PROBLEM

Time-optimal state preparation can be formulated as
the dual-objective optimization problem

max
{uk

j (t)}

[
J({ukj (t)}, T )

]
,

while minimizing T, (3)

subject to satisfying the Schrödinger equation, where
J({ukj (t)}, T ) = |〈ψg|ψ(T )〉|2 is the fidelity, |ψ(T )〉 =
U(T )|ψ(0)〉 is the state of the system at T > 0 and |ψg〉 =
1√
2

(|10〉 − |01〉) is the desired target Bell state. The

control pulses {ukj } of length T enter in the time evolution
operator U(T ) through the control Hamiltonian (2).
In the experiments we assume that the controls are
piecewise constant over M = 50 uniform intervals and
them-th control amplitude of the control ukj (t) is denoted

by ukj [m].
Assuming the control fields are unconstrained, we

proceed by determining the smallest possible time T =
Tmin at which the target Bell state can be prepared with
fidelity 1, followed by introducing the algorithm that is
employed in this work to solve (3).

A. Theoretical value for the minimum time

In general, finding an analytical expression for the
minimum time Tmin (e.g., to implement a unitary gate
or prepare a state in a generic quantum system) remains
an unsolved problem. Although some progress has
recently been made by developing an upper bound
on Tmin for qubit networks [24], the exact value is
only known for low dimensional systems [25–28]. In
seminal work [26] the minimum time for implementing
a generic unitary transformation on a two-spin system
was determined; this information will be used as a
comparative benchmark in the present work. We begin
by noting that every unitary operation on a two-spin
system can be decomposed as

U = V exp[−i(axσ1
xσ

2
x + ayσ

1
yσ

2
y + azσ

1
zσ

2
z)]W, (4)

where V and W are local unitary operations in SU(2)⊗
SU(2) [26]. In the case where the strength of the control
Hamiltonians can be made arbitrarily large, every local
operation on each spin can be created instantaneously.
The minimum time Tmin to produce U is then determined
by the smallest value of

∑
j |aj |. Starting from the

initial state |00〉, it is easy to find local rotations V
and W that prepare, for ax = ay = 0, the target
Bell state |ψg〉. Assuming that the control fields are
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unconstrained, we find [26] that the minimum time to
prepare |ψg〉 is given by Tmin = 1/(2g) = 2.30 ms, which
is significantly below the relaxation times T1 and T ∗2 .
Clearly, the assumption of infinitely strong control fields
is unphysical in practice. However, as we will show in
Sec V C (Fig. 2 (a) right panel), using the synergistic
balanced optimization approach in Fig. 1 yields smooth
pulses that prepare the target Bell state with high fidelity
very close to Tmin.

B. Algorithm

To solve (3) we resort to the numerical method which
is detailed in [29]. In the following we describe the
algorithm for time optimal state preparation, which
in the present application is independent of whether
approach (i) (Sec. II A), or (ii) (Sec. II B) is used as
well as a combination of both indicated in Fig. 1. In
the next section, we will explain how we combined the
approaches (i) and (ii) in the experiments to prepare the
target Bell state close to the minimum time, while taking
advantage of the distinct efficiencies and circumstances
along paths (i) and (ii).

The first step is to choose a pulse length T sufficiently
large so that a high fidelity can be achieved and then we
employ a standard gradient algorithm to find the controls
that reach a prescribed fidelity JH where H refers to the
”highest” attainable value. For a fixed T , the control
variables are updated in the direction of the gradient
of the fidelity with respect to the piecewise constant
controls. Thus, in each iteration step a change in ukj [m]

reads ∆ukj [m] = guk
j [m] where guk

j [m] is the gradient with

respect to the m-th control value. An update of the
controls is accepted if the inequality,

J({ukj [m] + d1∆ukj [m]}, T ) ≥ J({ukj [m]}, T )

+ αd1
∑
j,k,m

∆ukj [m]guk
j [m],

(5)

is satisfied, with α = 0.01 being a constant which enables
acceptable convergence efficiency [30] and d1 is the step
size in step 1.

In a second step, both the control variables as well as
the pulse length are simultaneously changed according

to ∆ukj [m] = guk
j [m]/gT and ∆T = −

∑
j,k,m

(
∆ukj [m]

)2
,

where gT is the gradient with respect to the pulse length
T , while aiming to keep the achieved control fidelity JH
unchanged. An update is accepted if the inequality

J({ukj [m] + d2∆ukj [m]}, T + d2∆T ) ≥ βJ({ukj [m]}, T ),

(6)

is satisfied, where β = 0.999 manages the rate of
deviation from JH and d2 denotes the step size used
in step 2. If the fidelity decreases to a lower threshold
value JL due to numerical or experimental errors, then we

return to the first step using the current T , which remains
fixed in order to climb to JH again. This procedure
is repeated until the target state is reached with high
fidelity JH while reaching the smallest attainable final
time [31].

V. BELL STATE PREPARATION CLOSE TO
THE MINIMUM TIME

We now turn to applying the algorithm introduced in
Section IV B to solve (3). As outlined in Sec. II, there
are two distinct approaches (i) and (ii) to solve quantum
controls problems. Based on the algorithm introduced in
Sec. IV B, we will now describe in more detail the two
approaches (i) and (ii) for finding the control fields that
prepare the target Bell state close to the minimum time,
followed by combining the best features (i) and (ii) in a
balanced fashion to overcome the issues of each approach.

A. Solely model-based design (i)

Assuming the model introduced in (1) and (2) is
a high quality description of the actual NMR system,
in the present case perhaps the simplest approach is
to run the algorithm entirely on path (i) in Fig. 1
and then implement the resultant optimal pulses in
the laboratory. Following this logic and starting from
randomly chosen initial pulses we reached a simulation
fidelity of JH = 0.999 with highly peaked pulses (not
shown here), yielding a minimum time of Tmin = 2.27 ms.
We note that this time is below the theoretical value
Tmin = 2.30 ms, which is, as described in the previous
section, obtained for delta function like pulses and a
perfectly prepared target Bell state, i.e., with fidelity
1. Implementing the numerically obtained pulses in
the laboratory produces a fidelity of J = 0.976 for
preparing the target Bell state, which was measured
using full state tomography. We note that the statistical
error of the 800 MHz NMR machine is of the order
∼ 10−4, which is confirmed by repeating the same
control and measurement pulses for 5 times. The
partial degradation of the fidelity arises from the fact
that large scale sudden jumps between power levels in
the designed pulses can be somewhat ”distorted” while
utilizing high Q cryoprobes with high sensitivity, as the
changes in the pulses are faster, or correspond to higher
frequencies, than the bandwidth of the resonant circuit
[32]. There are also additional experimental factors,
including low level instrument and spin/sample noise,
small local temperature and homogeneity fluctuations,
finite relaxation times and cross correlation relaxation,
intra- and intermolecular nuclear Overhauser effects and
multiple quantum effects, etc. [33], that cannot be
readily accounted for by the designed pulses.
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FIG. 2. (Color online) Experimental data for preparing a Bell state with high fidelity near the minimum time Tmin = 2.30 ms
(dashed red line) using shaped control pulses obtained by employing a synergistic combination of approaches (i) and (ii) shown
in Figure 1. (a) shows the partial fidelity Jtomo obtained from 3 measurements on spin 1 and the time length T of the control
pulses as a function of the iteration step n of the optimization algorithm. The curved black dashed line is the lower threshold JL

and the straight horizontal black dashed line is the prescribed fidelity JH . The vertical grey dashed lines indicate the two steps
of the algorithm that was introduced in section IV B, including a fidelity climb back to JH when a reduction to the threshold JL

occurs. As explained below Eq. (6), when Jtomo drops beyond JL due to experimental or modelling errors, T is kept fixed to
bring the fidelity back to JH (i.e., indicated by the fidelity reclimbing in the early stages of the procedure), followed by further
shrinking of T . (b) shows the optimized control pulses applied on spin 1 (blue open bars) and spin 2 (red solid bars) for a pulse
length of T = 5.00 ms (left panel) and the pulses of length T = 2.31 ms near the minimum time (right panel).

B. Solely experiment-based design (ii)

Turning to the other side of the balance, i.e., using
just approach (ii) that does not rely on a model,
ensures that the optimization procedure is performed
within the capabilities of the experimental apparatus
(i.e., see remarks at the end of the last paragraph).
However, as mentioned earlier, using just (ii) with
measurement data and closed-loop learning to solve the
present time-optimal state preparation problem directly
in the laboratory requires an impractically large number
of measurements, which can be estimated as follows.
We first note that, due to the symmetry of the target
Bell state, rather than performing full tomography
of the state, the fidelity can be read out through 3
measurements only on the 1st spin [34]. We denote the
fidelity measured with partial tomography as Jtomo to
distinguish it from J . We note that, since the state
obtained experimentally during the optimizationt does
not necessarily possess this symmetry, the actual fidelity
J inferred by full tomography can be different. However,
measuring Jtomo and the gradient of the four control
fields {guk

j [m]} requires 3 and 4× 50× 2× 3 independent

measurements [17], respectively. The number 3 comes
from the partial tomography in 3 directions on the 1st
spin. Furthermore, the number of measurements required
to obtain gT needed in the second step of the algorithm
is 50 × 2 × 3. Thus, assuming the number of iterations
is n ∼ 2000, the total experimental time is about 7500 h
based on the fact that each measurement takes 10 s. This

time duration makes the fully experimental method, i.e.,
path (ii) in Fig. 1, at best difficult to be employed in
solving time-optimal control problems.

C. Balanced approach

Based on the considerations in Section V A and Section
V B, we adopt the combined procedure in Fig. 1, and
swing back and forth between the approaches (i) and (ii)
drawing on the best features of both. This process entails
the steps:

(a) in each iteration we measure the fidelity Jtomo using
partial state tomography,

(b) the gradient with respect to the length of the pulse
gT and the gradients with respect to the control
field amplitudes {guk

j [m]} are calculated numerically

during the experiment based on the model given in
(1) and (2),

(c) the step sizes d1 and d2 are adjusted in each
iteration according to the measured (partial)
fidelity Jtomo,

(d) the controls are updated when (5) and (6) are
satisfied.

At the end of the iteration sequence we determine how
well the target Bell state was prepared by performing full
tomography to obtain J . We set the lower threshold to
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be JL = 0.999−0.099e−n/300 to indicate our tolerance for
observed fidelity loss when changing T , which converges
to JH = 0.999 when the iteration number n gets large
(i.e., assuming that experimental artifacts do not forbid
reaching JH). When operating above the lower threshold
JL, the step size is shrunk according to our measurements
in the laboratory.

Since only the fidelity Jtomo is measured in each
iteration and not the gradient, the total experimental
time with the balanced approach can be decreased
to 16.7 h which allows for reducing the number of
measurements required by more than ∼ two orders of
magnitude.

The iterative process of the algorithm in the NMR
experiment is shown in Fig. 2 a) with details found in
the caption. The partial fidelity Jtomo (upper panel) for
preparing the target Bell state as well as the length of
the control pulses T (lower panel) is plotted as a function
of the iteration step n. Starting from randomly chosen
initial pulses, in step 1 the target Bell state was prepared
with fidelity J = 0.999 (Jtomo = 0.995) by optimizing
the controls at setting T = 5.00 ms. The corresponding
optimized control pulses are shown in the left panel of
Fig. 2 b), wherein red (blue) corresponds to the control
pulse on spin 1 (2); the number of piecewise constant
values M = 50 used for the controls in the laboratory
are the same as in the simulations on path (i), as
stated earlier. According to the optimization algorithm
described in the last paragraph, the total evolution time
is iteratively reduced while the controls are optimized in
each step. After n = 2005 iteration steps the length of
the pulses is reduced to T = 2.31ms, which is close to the
theoretical minimum time Tmin = 2.30 ms, shown as a
red dashed horizontal line in Fig. 1 (a). At T = 2.31 ms
a partial fidelity of Jtomo = 0.999 is obtained. Full
tomography of the final state confirms that a Bell state
with fidelity J = 0.991 was prepared at the time 2.31 ms.
The corresponding optimal control pulses are shown in
the right panel of Fig. 2 b).

VI. CONCLUSIONS AND OUTLOOK

We have demonstrated the near time-optimal
preparation of a Bell state with high fidelity using
shaped (control) pulses in an NMR experiment. To
the best of our knowledge, this experiment is the first
demonstration of the preparation of a high-fidelity two-

qubit entangled state close to the shortest possible time
needed for its preparation. The pulses achieving this goal
were obtained using a gradient based closed-loop learning
algorithm carried out with a synergistic combination
of measurement results of the fidelity and model-based
numerical calculations of the gradients. This operational
balanced combination allows for systematic uncertainties
in the model to be corrected in an iterative fashion
with the experiments, thereby drawing together the
special capabilities of modelling and experiments, as
shown in Fig. 1, in order to accurately control quantum
systems. Especially for quantum information tasks that
rely on high accuracy, a suitable combination of the
two optimization approaches (i) and (ii) can open up a
practical new way towards achieving high fidelity and
robust quantum information processing. The ”best”
balance for combining the two approaches depends on
the capabilities of the particular experimental platform
considered (i.e., including various noise sources and their
impacting factors), the quality of the model describing
the system and its associated computational effort,
the objectives, and the algorithm(s) used to achieve
the desired task. Since experimental technology and
theory/simulation tools naturally continue to develop
over time, the optimal implementation of the balance in
Fig. 1 is not static. A case-by-case decision needs to
be made about the best way to use the capabilities of
models operating with experiments to achieve robust,
accurate and scalable implementations.
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