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We demonstrate a previously unknown two-photon effect in a discrete-time quantum walk. Two
identical bosons with no mutual interactions nonetheless can remain clustered together as they
walk on a lattice of directionally-reversible optical four-ports acting as Grover coins; both photons
move in the same direction at each step due to a two-photon quantum interference phenomenon
reminiscent of the Hong-Ou-Mandel effect. The clustered two-photon amplitude splits into two
localized parts, one oscillating near the initial point, and the other moving ballistically without
spatial spread, in soliton-like fashion. But the two photons are always clustered in the same part of
the superposition, leading to potential applications for transport of entanglement and opportunities
for novel two-photon interferometry experiments.

I. INTRODUCTION

The Hong-Ou-Mandel (HOM) effect [1] is probably the
best known two-photon interference effect. Two identical
photons are simultaneously incident on different inputs
of a 50/50 beam splitter (BS) as in Fig. 1(a). Each pho-
ton could exit either output port, so naively one expects
nonzero amplitudes for three possible outcomes: both
exiting at port 3, both exiting at port 4, or one pho-
ton each at ports 3 and 4. But in fact, no coincidences
are seen between 3 and 4; the two photons always leave
at the same port. Which port the pair exits is entirely
random. Coincidences between the two output ports are
absent because of cancelations between the two indistin-
guishable processes on the upper line of Fig. 1(b). As a
result, the two photons always remain clustered together
in the same output spatial mode. This gives a method
for measuring time intervals to sub-picosecond level ac-
curacy: as a delay between the photons varies, the coin-
cidence rate exhibits a sharp dip (the HOM dip) when
the wavefunctions briefly overlap on the BS.

Quantum walks [5, 6] are currently a subject of exten-
sive investigation, in part because they have been shown
to be formally equivalent to a universal quantum com-
puter [2–4], and so they provide new insights into a va-
riety of quantum algorithms, especially quantum search
algorithms. In a Hadamard walk, the walker’s amplitude
produces two peaks that move ballistically in opposite
directions (Fig. 2(a)), so the distribution’s width grows
linearly in time, σ ∼ t. In contrast, classical random
walks give approximately Gaussian distributions whose
widths spread diffusively (σ ∼

√
t). Consequently, quan-

tum walks can probe large regions faster than classical
walks, leading to quantum speedups of walk-based al-
gorithms. Details differ for specific implementations of
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quantum walks, but discussion of quadratic speedups can
be found in [7] for Hadamard walks and in [8, 9] for
Grover walk-based searches.

A variety of two-particle quantum walks have been
studied [10–19]. Here we look at a novel arrangement in
which two indistinguishable bosons undergo a discrete-
time quantum walk along a dual rail or ladder type sys-
tem (Fig. 3(a)), with a four-dimensional Grover coin at
each vertex. Such a chain could be considered as a pair
of quantum wires (representing a pair of states), with the
Grover coins serving as directional couplers [20, 21] be-
tween them; more pertinently to our purposes here, we
may also think of the system as a single double-stranded
quantum wire in which we care only about the horizontal
location of the particle, not whether it is on the upper or
lower strand.

For specificity, assume that the walking particles are
photons. Then the Grover coins can be implemented us-
ing a linear-optical four-port (Fig. 4), which is a special
case of the directionally-unbiased multiports studied in
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FIG. 1: Two photons entering a beam splitter at different
ports (a) lead to four different outcomes (b), labeled accord-
ing to whether each photon reflects (R) or transmits (T).
Outcomes on the top line (RR and TT) are indistinguish-
able. Being of equal magnitude but opposite sign, their am-
plitudes cancel, so coincidences between output ports vanish.
Although exiting at a random output port, both photons are
always found to cluster together in the same port.
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FIG. 2: (a) Typical 1-dimensional (Hadamard) quantum
walk. Spatial probability distributions have low probability
of remaining near the origin and widths that grow linearly
with time. (b) In contrast, classical walks yield approximately
Gaussian distributions, whose widths grow more slowly, ∼

√
t.

[22–27]. The three-port version of this device has been
demonstrated in a tabletop set-up [26], and initial work
on integrated chip versions of such structures is under-
way. The system is based entirely on linear optics, with
no interactions between the photons. In particular, if
the photons are distinguishable, then each exhibits an
independent quantum walk and can later be detected
in widely separated spatial regions. However, once the
photons become indistinguishable, the two-photon inter-
ference alters the picture: it is shown below that for a
particular input state the two photons remain spatially
clustered and are always found at the same horizontal
location at each moment. Moreover, the two-photon am-
plitude shows no sign of the randomness normally as-
sociated with random walks: it splits into a quantum
superposition of two localized packets that each move
deterministically over time with the two photons always
remaining clustered in one packet or the other.

These effects depend only on indistinguishable pho-
tons being inserted into the same Grover coin vertex si-
multaneously; entanglement is not required. However,
if the photons are entangled then they remain together
with entanglement undiminished as they move, opening
up new possibilities for quantum information processing,
as briefly commented upon in the conclusion.

Experimentally, the most practical realization of the
structures described here are on integrated optical chips.
Losses, decoherence, and chip imperfections will of course
limit the possible walk lengths of experimental imple-
mentations. Up to this point, quantum walks of both
single photons and of entangled photon pairs have typi-
cally been implemented using integrated optics for walks
of lengths on the order of five to ten time steps (for ex-
ample, [15, 28–30]), although proposals have been made

Two edges form double-stranded transmission line

Four-port vertex

m= -1 m=0 m=1

(a)

1

2

3

4

Two-photon
input state

m=0

(b)

FIG. 3: (a) A chain of four-ports connected by pairs of edges.
Each edge pair is thought of as a single double-stranded con-
nection line, and vertex positions are labeled by integers.
(b) The initial state consists of two indistinguishable, right-
moving photons injected into ports 1 and 2 of the m = 0
multiport, in the middle of the chain.

for arrangements that may allow longer walks [31]. In
what follows, we assume an idealized system, neglecting
losses and other imperfections.

II. SETUP AND MAIN RESULT.

Consider a directionally-unbiased four-port acting as a
Grover coin [32, 33], with ports labeled as in Fig. 3(b).
The action of the four-port is given by the unitary matrix

U =
1

2

 −1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

 , (1)

where rows and columns represent the four ports. Re-
gardless of which port a photon enters, exit amplitudes
at all outputs are real and equal in magnitude. Impor-
tantly, the amplitude to reflect back to the input port
has an extra minus sign relative to all other transitions.

Consider two photons entering the linear chain of Fig.
3(a) simultaneously. Assume one enters port 1 and the
other enters port 2 of the same multiport, as in Fig. 3(b),
somewhere in the middle of the chain, far enough from
the ends that we don’t need to worry about the photons
leaving the system during the time duration of the ex-
periment. Experimentally, two photons can be produced
simultaneously using spontaneous parametric down con-
version [34] and then coupled into the chain by means of
an electro-optical or magneto-optical switch. Horizontal
positions are specified by an integer m corresponding to
the multiport label, and discrete time t = nT by integer
n, where T is the photon travel time between multiports.
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FIG. 4: One possible optical implementation of the four-
dimensional Grover coin, the directionally-reversible four-port
device. Photons can both enter and exit each of the four ex-
ternal ports. At each corner of the loop there is a beam
splitter, a mirror (green) and a phase shifter (blue). Similar
n-port devices can be constructed for any n; their workings
are analyzed in details in [22] and the three-port version is
experimentally demonstrated in [26].

At time n = 0, the photons are moving rightward, enter-
ing the m = 0 multiport.

Then if the locations of the two photons at any later
time n > 0 are measured, two striking things are found.
First, the photons cluster spatially: if the two paral-
lel input/output edges between adjacent multiports are
treated as a single double-stranded connecting line, then
the photons are always found on the same double line.
Assuming no loss and ideal measuring devices, measure-
ment at any horizontal location always finds either two
photons or none. This can be seen as a quantum walk
analog of the HOM effect: amplitudes for indistinguish-
able outcomes in which the photons move apart always
cancel among themselves, as will be shown in the next
section. However, the HOM quantum interference effect
occurs just once, whereas clustering of the walk persists
indefinitely, over an arbitrarily long sequence of steps.

Second, this clustered two-photon amplitude behaves
in an unusual manner. It breaks after the first step into
a sustainable superposition of two distinct localized states
(Fig. 5). One two-photon cluster in the superposition
moves away from the starting point ballistically, exhibit-
ing no randomness. The other cluster stays near m = 0,
bouncing back and forth between two adjacent locations
(a phenomenon dubbed oscillatory localization [35] ). So
another way to look at the state is as an odd sort of
two-photon clustered Schrodinger cat state, in which the
parts of the cat rapidly separate from each other: the
two-photon cat speeds away after a rat and simultane-
ously remains rocking contentedly in its warm cat bed.

For comparison, imagine a single photon entering the
present system, initially localized on one input port. This
can be seen as the sum of two states: one symmetric over

Position

Time

FIG. 5: After the first step, the amplitude splits: it becomes
an equal superposition of two photons moving away ballisti-
cally, and two photons oscillating near the initial point.

the upper and lower lines and one antisymmetric,

|1〉 =
1

2
(|1〉+ |2〉) +

1

2
(|1〉 − |2〉) (2)

= |ψs〉+ |ψa〉. (3)

The symmetric part will always continue rightward at
each step, while the antisymmetric portion reflects at
each step, leading to oscillations. These single-particle
behaviors have been previously discussed in [35] for
Grover coin systems. What is remarkable in the two-
particle case is that measurement of the two particles
will always find them in the same part of the superpo-
sition; one will never be found in the oscillating portion
and the other in the ballistic portion. Which part of the
superposition the two photons are found to be clustered
in is completely random, just as the output port in which
the two photons are clustered in the HOM effect is purely
random.

The two halves of the clustered amplitude do not
spread as they propagate, exhibiting soliton-like behav-
ior. Note that the wavepacket spread in quantum walks
is of statistical origin, not a result of dispersive mate-
rial properties. So cancelation of spreading occurs in the
current system from linear interference processes, with
no need for nonlinear interactions.

III. TIME EVOLUTION

A. First time step

Here we sketch the time evolution of the system. Ad-
ditional details of the calculations can be found in Ap-
pendix A.

Momentarily treating the photons as distinguishable,
there are 16 possible exit outcomes from the four-port
for the input state of Fig. 3(b). Applying tensor prod-
uct U ⊗ U to the two-photon input, each of these real

exit amplitudes has absolute value
(
1
2

)2
= 1

4 if the pho-

tons exit at different ports, or
√
2
4 = 1

2
√
2

if they exit at
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the same port. (The extra
√

2 appears when the indis-
tinguishability is restored, due to the normalization of

two-boson Fock states, |2〉 = 1√
2

(
a†
)2 |0〉.) Amplitudes

gain one minus sign for each photon that exits back out
the port through which it entered. So signs and magni-
tudes of all transition amplitudes are readily obtained;
these are tabulated in the Appendix.

The initial state is |ψ0〉in = |12; 0, RR〉; the notation
|ij;m,RR〉 (or |ij;m,LL〉) means one right-moving (left-
moving) photon in port i and one in port j at lattice site
m. The resulting output state is

|ψ1〉 =
1

2
√

2
[|33; 0, RR〉+ |44; 0, RR〉 − |11; 0, LL〉 (4)

−|22; 0, LL〉] +
1

2
[|34; 0, RR〉+ |12; 0, LL〉] .

Assume we only want to know the exit direction of the
photons (left or right), and don’t care if the photon is in
the upper or lower channel. Then, clustering can already
be seen in the transition probabilities for the first step of
the walk:
• One possible outcome is for both photons entering

the left side of the multiport to exit back on the left
side (LL → LL). The probability of this is the sum of
three terms corresponding respectively to the amplitudes
of both photons exiting at port 1, one photon at each
port, and both at port 2:

P (LL→ LL) = P (|12〉 → |11〉) + P (|12〉 → |12〉)
+P (|12〉 → |22〉) (5)

=

(
− 1

2
√

2

)2

+

(
1

2

)2

+

(
− 1

2
√

2

)2

=
1

2
. (6)

• Similarly, both photons can exit right (ports 3 and
4):

P (LL→ RR) = P (|12〉 → |33〉) + P (|12〉 → |34〉)
+P (|12〉 → |44〉) (7)

=

(
+

1

2
√

2

)2

+

(
1

2

)2

+

(
1

2
√

2

)2

=
1

2
. (8)

• Finally, one photon can exit left and one right. The
appearance of extra minus signs in half the amplitudes
(see Appendix A) leads to complete cancelation:

P (LL→ LR) = P (12→ 13) + P (12→ 14) (9)

+P (12→ 23) + P (12→ 24)

= 0. (10)

The result is that even though the photons do not in-
teract and should walk independently, they in fact always
step in the same direction: both go right or both go left.
Destructive interference between indistinguishable ampli-
tudes conspires to eliminate outcomes in which they step
in opposite directions.

B. Subsequent steps

The paragraphs above describe the first step. Transi-
tion amplitudes can again be tabulated to find the out-
comes of subsequent steps. Summing over unmeasured
intermediate states in previous steps, one finds the am-
plitude splitting into an equal superposition of two two-
photon states.

The output of the first step (Eq. 4) can be written as

|ψ1〉out =
1√
2

(|ψt; 0, RR〉+ |ψr; 0, LL〉) , (11)

where

|ψt;m,R〉 =
|33;m,RR〉+ |44;m,RR〉

2
(12)

+
|34;m,RR〉√

2

=
|11;m+ 1, RR〉+ |22;m+ 1, RR〉

2
(13)

+
|12;m+ 1, RR〉√

2

|ψr;m,LL〉 = −|11;m,LL〉+ |22;m,LL〉
2

(14)

+
|12;m,LL〉√

2

= −|33;m− 1, LL〉+ |44;m− 1, LL〉
2

(15)

+
|34;m− 1, LL〉√

2
.

Here, we used the fact that states leaving ports 3 and 4
enter the adjacent vertex at ports 1 and 2, respectively.

Suppressing some labels for brevity, one finds that ap-
plying U × U again gives

|11〉+|22〉
2 → |33〉+|44〉+|11〉+|22〉

4 + |34〉−|12〉
2
√
2

(16)

|12〉√
2
→ |33〉+|44〉−|11〉−|22〉

4 + |34〉+|12〉
2
√
2

. (17)

Taking the sum of these as in Eq. 13, one finds that the
amplitudes |11〉, |22〉, and |12〉 cancel out at each step,
so that |ψt〉 simply reproduces itself, but shifted one step
to the right:

|ψt;m,RR〉 → |ψt;m+ 1, RR〉 → |ψt;m+ 2, RR〉 → . . . .
(18)

This is the ballistic state: it is totally transmitting at
each step. If the initiating state of the walk had been
moving left (|34;m,LL〉 instead of |12;m,RR〉), similar
ballistic motion occurs to the left.

The multiport action on |ψr〉 of Eq. 14 is found by
taking the difference of Eqs. 16 and 17, leading to can-
cellation of |33〉, |44〉, and |34〉 terms. So |ψr;m,RR〉
simply reflects at each multiport encounter, causing it to
bounce back and forth indefinitely:

|ψr;m,RR〉 → |ψr;m− 1, LL〉 → |ψr;m,RR〉 → . . .
(19)
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The state is totally reflecting at each step, and the ampli-
tude acts as if it is confined in a virtual cavity, oscillating
between lattice sites m = 0 and m = 1.

Up to a spatial shift of one step per unit time, the
states |ψt〉 and |ψr〉 are both eigenstates of (U × U)

2
,

with eigenvalue +1, so evolution on subsequent steps is
simply a repetition of what happened in the first two
steps: one two-photon amplitude repeatedly reflects, the
other repeatedly transmits.

So the photons remain spatially clustered as they walk
along the line. This quantum walk-based analog of the
HOM effect might be referred to as a quantum-clustered
two-photon walk. But in addition, the two-photon state
at each moment localizes onto a quantum superposition
of just two nondispersive spatial amplitudes: one moves
ballistically at constant speed, while the other flips di-
rection at each step and never moves more than one unit
from its starting point. This is analogous to the single-
particle Grover walk behavior, but with the unexpected
feature that the two photons are always found clustered
in the same localized part of the distribution and never
separate from each other.

The behavior of the system is shown in Fig. 6, where
the amplitude for the position of each photon is shown. It
is clearly seen that the amplitude splits into two localized
portions, with one portion staying near the origin and the
other moving away at constant speed. Moreover, it can
be seen that the two indistinguishable photons remain
together: there is no amplitude away from the diagonal.
In contrast, if the two photons are distinguishable (Fig.
7), the lack of destructive interference leads to the ap-
pearance of nonzero off-diagonal amplitudes, indicating
that the photons may become spatially separated.

In all of the considerations above, the two photons were
assumed to be in a product states. In the next section,
we examine the behavior of polarization entangled states
in this system.

IV. POLARIZATION-ENTANGLED INPUT

Up to now, no entanglement has been assumed between
the two input photon states. Now suppose that the two
photons inserted at the origin are polarization-entangled.
In particular, define the states:

|Aij±〉 =
1√
2
{|iH〉|jV 〉 ± |iV 〉|jH〉} (20)

|Bij± 〉 =
1√
2
{|iH〉|iV 〉 ± |jV 〉|jH〉} (21)

Here, i, j label the input/outport ports, while H and
V label polarization states at each port. When neces-
sary, we can add position and direction labels, for ex-
ample |Aij±,m,LL〉 or |Bij± ,m,LR〉. These states are
polarization-entangled for i 6= j. For i = j, the +
states are product states, while the − states vanish. It is
straightforward to work out the action of the multiport
on these states by the same means as in section III.
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Coincidence probability distribution for two indistinguishable photons
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FIG. 6: The spatial distribution of the photon amplitudes
for two photons at four different times, given an initial state
with two indistinguishable photons entering ports one and
two of the four-port at position m = 0. The two axes give the
locations of the two photons, labelled by the integer-valued
four-port index. It is seen that the amplitude splits into two
localized components, but that the two photons are always
found clustered together within the same component, as in-
dicated by the absence of amplitude away from the descending
diagonal.
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Coincidence probability distribution for two distinguishable photons
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FIG. 7: The spatial distribution of the photon amplitudes for
two distinguishable photons. In contrast to the indistinguish-
able case, off-diagonal terms appear, indicating that the two
photons no longer remain clustered together.

Analogous to previous sections, focus on the initial
state |ψ0〉in = |A12

+ ,m〉. (Additional analysis of the A and
B states, along with a third set of polarization-entangled
states is given in Appendix B.) The output of the first
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step is

|ψ0〉out =
1

2
( |A12

+ ,m,L〉+ |A34
+ ,m,R〉 (22)

+|B34
+ ,m,R〉 − |B12

+ ,m,L〉 )out .

It is readily seen that once again the photons cluster:
both exit left (ports 1 and 2) or both exit right (3 and 4).
Crucially for entanglement, the two photons are always
at different ports: one exits onto the upper line and one
onto the lower line.

This state enters adjacent multiports at the next step
as

|ψ1〉in =
1

2

(
|A34

+ ,m− 1, LL〉+ |A12
+ ,m+ 1, RR〉 (23)

+ |B12
+ ,m+ 1, RR〉 − |B34

+ ,m− 1, LL〉
)
in
,

=
1√
2

(|ψr,m− 1, LL〉+ |ψt,m+ 1, RR〉) , (24)

where

|ψr〉 ≡
1√
2

(
|A34

+ 〉 − |B34
+ 〉
)

(25)

and

|ψt〉 ≡
1√
2

(
|A12

+ 〉+ |B12
+ 〉
)
. (26)

[Similarly, if the input state had been
|B12

+ ,m〉, the resulting output would have been
1√
2

(|ψr,m− 1, LL〉 − |ψt,m+ 1, RR〉).] Calculations

similar to the previous section show these again to be
totally transmitting and totally reflecting: |ψr〉 subse-
quently oscillates back and forth near the origin, while
|ψt〉 remains unchanged aside from repeatedly shifting
rightward by one step per unit time. So the picture
remains the same as in the previous section, but with
the additional feature that the polarization-entanglement
remains undiminished as the walk proceeds. Which
polarization is on which edge is indeterminate until
measured, and clustered two-photon states remain
polarization-entangled between upper and lower edges
as they propagate. Perfect state transport (PST) occurs
probabilistically (50% probability) for |ψt〉, delivering
two entangled photons to the same horizontal location
at the same time.

V. COHERENT STATE INPUT

It is natural to ask how other types of states propagate
through this system. Consider, for example, coherent
state input. In particular, consider the state

|ψin〉 = |α〉1|α〉2|0〉3|0〉4 (27)

with equal amplitude coherent states entering ports 1 and
2 at some lattice site (here we omit directional and site

labels again to streamline notation). This state can be
written in terms of displaced vacuum states as

|ψin〉 = e−
1
2 |α|

2

eαâ
†
1−α

∗â1e−
1
2 |α|

2

(28)

×eαâ
†
2−α

∗â2 |0〉1|0〉2|0〉3|0〉4.

After passage through the four-port, the output state is

|ψout〉 = e−
1
2 |α|

2

e
1
2α(−â

†
1+â

†
2+â

†
3â
†
4)e−α

∗(−â1+â2+â3+â4)

×e− 1
2 |α|

2

e
1
2α(â

†
1−â

†
2+â

†
3+â

†
4) (29)

×e−α
∗(â1−â2+â3+â4)|0〉1|0〉2|0〉3|0〉4

= e−|α|
2

eα(â
†
3+â

†
4)−α

∗(â3+â4)|0〉1|0〉2|0〉3|0〉4 (30)

= |0〉1|0〉2|α〉3|α〉4. (31)

Iterating the process, it is clear that this balanced double
coherent state propagates indefinitely without reflection.

The unidirectional propagation follows from the fact
that the amount of amplitude reflected backward along
line 1 (for example) contains equal contributions from
the light that had entered at ports 1 and 2, but these
two amplitudes will reflect out port 1 with opposite sign.
Equivalently, the Grover four-port selects out only the
portion of the reflected state that is antisymmetric un-
der interchange of upper and lower lines, but the input
contained only a symmetric part.

Coherent state amplitudes are inherently fluctuating
objects, so arranging equal amplitudes in the two lines
over multiple steps may seem unlikely. It is therefore
sensible to look at what happens when the input coherent
states are unbalanced, with amplitude α in the upper line
and amplitude β in the lower line:

|ψin〉 = |α〉1|β〉2|0〉3|0〉4. (32)

Manipulations along the same lines as above lead after
one step through the Grover four-port to the output

|ψout〉 = |β − α
2
〉1|
α− β

2
〉2|
α+ β

2
〉3|
α+ β

2
〉4. (33)

There is now both rightward transmission and leftward
reflection; however notice that the amplitudes on the two
right-moving lines are of equal amplitude again. Thus,
any fluctuations in the input amplitude on the left are au-
tomatically evened out in the rightward traveling trans-
mitted amplitudes. This is again due to the fact that the
two rightward amplitudes are each equal superpositions
of the two input modes, so any fluctuation in one input
is equally shared between the two outputs. If measure-
ments are made at some point N steps to the right of
the input, the output arriving at a given time is guaran-
teed to have equal amplitudes in both lines, regardless
of reflections or losses, or of initially unequal inputs. A
similar conclusion will hold for output measured at some
distance to the left of the initial point.
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VI. CONCLUSIONS

We have shown that two-particle quantum interfer-
ence allows two non-interacting, indistinguishable walk-
ers to remain clustered as they walk along a chain of
directionally-unbiased Grover four-ports. The resulting
state is a superposition of two spatially-localized two-
photon clusters, one confined near the origin, the other
moving monotonically away. If the particles are entan-
gled, the pair moves as a single unit, with undiminished
entanglement. Whereas perfect state transport has been
demonstrated for single photon states in various systems
[36–38], this system demonstrates the existence of PST
for entangled multi-particle states as well, with 50% ar-
rival probability.

Potential applications are readily envisioned. Entan-
gled pairs can be delivered in a controllable manner to
distant locations for standard applications like entangle-
ment swapping, quantum repeaters, or to control the
flow of entanglement for two-photon interference effects
in quantum networks [39]. Since the ballistic part moves
with constant speed, these locations are addressable sim-
ply by waiting the appropriate amount of time for the
amplitude to arrive. Similarly, new communication or
quantum key distribution protocols can be imagined re-
quiring two spatially-separated participants to simultane-
ously share equal access to the amplitudes of both pho-
tons in an entangled pair; the presence of two photons
in each spatially-separated state (|ψt〉 and |ψr〉) could be
used for error detection, for example.

One reason why utilizing the clustering effect can be
useful in such applications, rather than simply sending a
photon pair along a fiber or through free space, is that
by adding phase shifts in the lines between the multi-
ports the flow of the photon pairs can be controlled; they
can be stopped at a desired location (oscillating between
two adjacent multiports) or their direction of motion can
be reversed. This sort of control is something that can’t
by done with a simple optical fiber, and here it can be
done without damaging any entanglement between the
photons. The means of such control is readily seen: in-
serting phase shifts of π

2 to an upper line and −π2 to
the corresponding lower line converts the reflecting and
transmitting states of Eqs. 13 and 14 into each other, al-
lowing the experimenter to controllably switch back and
forth between ballistic and oscillating behavior.

Furthermore, the fact that there are two spatially-
separated two-photon amplitudes means that those am-
plitudes can be brought back together and interfered with
each other. This provides a means of probing the region
that the ballistic portion has traveled through, allow-
ing new two-photon sensing methods. For example, if
one photon is vertically-polarized and one horizontally-
polarized (the entangled |A12

+ 〉 state, for instance), they
may gain different polarization-dependent phase shifts
due to external magnetic fields; even very small relative
phase shifts will destroy the clustering effect, leading to a
dip in the two-photon interference (similar to the Hong-

Ou-Mandel dip) when the two halves of the superposition
are brought back together, allowing sensitive detection of
external fields in the relevant region.

In addition, the results of the previous section show
that this arrangement can be used to correct for differ-
ential losses between pairs of coherent state beams. This
is a significant benefit in coherent state interference ex-
periments.

Applications and further properties of this system will
be examined in detail elsewhere.
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Appendix A: Calculation of Output Probabilities

Here, for reference, additional details of the calcula-
tions used in the main text are filled in. We work in the
basis {|1〉, |2〉, |3〉, |4〉}, where |n〉 represents a photon in
port n. We suppress directional labels when the direc-
tion (ingoing or outgoing from the multiport) is clear, as
well as dropping site labels when they are not needed. A
single photon state entering or exiting a given multiport
can be written as a column matrix:

 a
b
c
d

 = a|1〉+ b|2〉+ c|3〉+ d|4〉. (A1)

The matrix U of Eq. 1 then acts on such column matri-
ces.

For input state |1〉, transition matrix U then gives out-
put

|1〉 →
(

1

2

)
(−|1〉+ |2〉+ |3〉+ |4〉) ; (A2)

the action on input states |2〉, |3〉, |4〉 are just cyclical
permutations of this.

The action on two-particle input states is obtained by
taking products of two single particle output states. For
example, given a two-photon input state |12〉 = |1〉|2〉,
with one photon entering port 1 and one photon entering
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FIG. 8: Amplitudes for all the two-particle paths through a
single four-port.

port 2, the output is of the form:

|12〉 → 1

4
(−|1〉+ |2〉+ |3〉+ |4〉) (A3)

· (+|1〉 − |2〉+ |3〉+ |4〉)

=
1

4
(−|11〉+ |12〉 − |13〉 − |14〉 (A4)

+|21〉 − |22〉+ |23〉+ |24〉
+|31〉 − |32〉+ |33〉+ |34〉
+|41〉 − |42〉+ |43〉+ |44〉)

=
1

4
(−|11〉+ 2|12〉 − |22〉+ |33〉+ |44〉+ 2|34〉)

=
1

4

(
−
√

2|2, 0, 0, 0〉+ 2|12〉 −
√

2|0, 2, 0, 0〉 (A5)

+
√

2|0020〉+
√

2|0002〉+ 2|34〉
)
,

where, for example, |2, 0, 0, 0〉 represents the Fock state
with two-photons in port 1, and zero photons in ports 2,
3, and 4. The extra factors of

√
2 in the last line come

from writing the states with two photons in the same
port in terms of the two-particle Fock state in port n
with standard normalization; for example,

|11〉 = a†a†|0〉 =
√

2|2, 0, 0, 0〉. (A6)

The transitions amplitudes from initial input state

|ψ0〉 = |12〉 (A7)

to all possible output states are then easy to tabulate and
are shown in the table of Fig. 8.

Exit probabilities can be found by adding the ampli-
tudes for indistinguishable outcomes and squaring. For
example, the probability for the photons to exit at ports
3 and 4 is given by the squared sum of two amplitudes
(Fig. 9):

P (|ψ0〉 → |34〉) =
1

2

(
1

2
√

2
+

1

2
√

2

)2

=
1

4
.

31

2

1

2 4

3

4

+

FIG. 9: Amplitudes of indistinguishable outcomes must be
added; shown here the amplitudes for exit at ports 3 and 4
(the two cells in the top right corner of Fig. 8), which add and
then square to give the probability P (|ψ0〉 → |34〉) in Table I.

Transition Probability Exit Direction

|ψ0〉 → |11〉 P =
(
− 1

2
√
2

)2

= 1
8

LL

|ψ0〉 → |12〉 P =
(
1
4

+ 1
4

)2
= 1

4
LL

|ψ0〉 → |13〉 P =
(
1
4
− 1

4

)2
= 0 LR

|ψ0〉 → |14〉 P =
(
1
4
− 1

4

)2
= 0 LR

|ψ0〉 → |22〉 P =
(
− 1

2
√
2

)2

= 1
8

LL

|ψ0〉 → |23〉 P =
(
1
4
− 1

4

)2
= 0 LR

|ψ0〉 → |24〉 P =
(
1
4
− 1

4

)2
= 0 LR

|ψ0〉 → |33〉 P =
(

+ 1

2
√
2

)2

= 1
8

RR

|ψ0〉 → |34〉 P =
(
1
4

+ 1
4

)2
= 1

4
RR

|ψ0〉 → |44〉 P =
(

+ 1

2
√
2

)2

= 1
8

RR

TABLE I: Two-photon exit probabilities for input |ψ0〉.

Table I lists the amplitudes for all possible output states
of the Grover coin four-port, assuming input state |ψ0〉.

The probabilities of both photons exiting left, both
right, or of one in each direction are then found by simply
adding the probabilities from the table,

P (ψ0 → LL) =
1

8
+

1

4
+

1

8
=

1

2
(A8)

P (ψ0 → RR) =
1

8
+

1

4
+

1

8
=

1

2
(A9)

P (ψ0 → LR) = 0, (A10)

as claimed in the main text (Eqs. 6-10).

Appendix B: Action of Grover Coin on Entangled
States

First, recall the standard maximally-entangled Bell
states:

|Ψ±〉 =
1√
2

(|1H〉|2V 〉 ± |1V 〉|2H〉) (B1)

|Φ±〉 =
1√
2

(|1H〉|2H〉 ± |1V 〉|2V 〉) , (B2)
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where, for example, |jH〉 represents a horizontally polar-
ized photon in port j.

Then define an additional set of states:

|Aij±〉 =
1√
2

(|iH〉|jV 〉 ± |iV 〉|jH〉) (B3)

|Bij± 〉 =
1√
2

(|iH〉|iV 〉 ± |jV 〉|jH〉) (B4)

|Cij± 〉 =
1√
2

(|iH〉|jH〉 ± |iV 〉|jV 〉) . (B5)

These have the following properties:

• If i = j: |Ajj+ 〉 = |Bjj+ 〉, and |Ajj− 〉 = |Bjj− 〉 = 0.

• For i 6= j, |C12
± 〉 = |Φ±〉, |A12

± 〉 = |Ψ±〉 are maximally
entangled Bell states.

• |C11
± 〉 and |C11

± 〉 can be seen as N00N states with
N = 2 polarized photons.

We now examine how these states behave under the
action of the Grover four-port, and see for which initial
states two-photon clustering occurs.

I. The A12
+ state is already studied in Section IV. We

know that at the first step it splits into a sum of reflecting
and transmitting states:

|A12
+ 〉 → |ψt〉+ |ψr〉. (B6)

The two photons in the reflecting and transmitting states
then continue to cluster in all subsequent steps.

II. In a similar manner, B12
+ splits into a difference of

reflecting and transmitting states:

|B12
+ 〉 → |ψt〉 − |ψr〉, (B7)

again leading to photon clustering.
III. The product state A11

+ =
√

2|1H〉|1V 〉 transforms
under the Grover coin at the first step as

|A11
+ 〉 →

1

2
√

2
[|1H〉|1V 〉+ |2H〉|2V 〉 (B8)

+|3H〉|3V 〉+ |4H〉|4V 〉
− (|1H〉|2V 〉+ |2H〉|1V 〉)
− (|1H〉|3V 〉+ |3H〉|1V 〉)
− (|1H〉|4V 〉+ |4H〉|1V 〉)
+ (|2H〉|3V 〉+ |3H〉|2V 〉)
+ (|2H〉|4V 〉+ |4H〉|2V 〉)
+ (|3H〉|4V 〉+ |4H〉|3V 〉)] .

Since cross terms occur that mix left-moving (1 and 2)
exit states with right-moving (3 and 4) states, no clus-
tering occurs. |A22

+ 〉 behaves similarly.
IV. A12

− input leads to output at the first step of the
form:

|A12
− 〉 →

1

2
√

2
[(|1V 〉|4H〉 − |1H〉|4V 〉) (B9)

+ (|1V 〉|3H〉 − |1H〉|3V 〉)
+ (|2H〉|3V 〉 − |3H〉|2V 〉)
+ (|2H〉|4V 〉 − |2V 〉|4H〉)] .

Not only does clustering not occur, but the two pho-
tons always go in opposite directions at this first step.
(This repulsion of course does not continue on subse-
quent steps, since the interference no longer occurs once
the photons are separated.)
V. The C±11 states transform at the first step as follows:

|C11
± 〉 →

1

4
√

2
(|1H〉|1H〉+ |2H〉|2H〉 (B10)

+|3H〉|3H〉+ |4H〉|4H〉)

+
1

2
√

2
[(|2H〉|3H〉+ |2H〉|4H〉+ |3H〉|4H〉)

− (|1H〉|2H〉+ |1H〉|3H〉+ |1H〉|4H〉)]
± same with H → V.

This does not cluster because of the crossed terms mixing
1 and 2 with 3 and 4 in the second line. C±22 behaves in
a similar manner.

VI. C12
± becomes a linear combination of all of the C

states under the action of the four-port:

|C12
± 〉 →

1

4

(
−|C11

∓ 〉 − |C22
∓ 〉+ |C33

± 〉+ |C44
± 〉
)

+
1

4

(
|C12
± 〉+ |C34

± 〉
)
. (B11)

In subsequent steps, this state then declusters because
the Cjj± states in the first parentheses decluster, as shown
in IV above.

So, summarizing, the A12
+ and B12

+ states will always
cluster, while the remainder of the A, B, and C states
will not.
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