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We present a quantum self-testing protocol to certify measurements of fermion parity involving
Majorana fermion modes. We show that observing a set of ideal measurement statistics implies
anti-commutativity of the implemented Majorana fermion parity operators, a necessary prerequisite
for Majorana detection. Our protocol is robust to experimental errors. We obtain lower bounds
on the fidelities of the state and measurement operators that are linear in the errors. We propose
to analyze experimental outcomes in terms of a contextuality witness W , which satisfies 〈W 〉 ≤ 3
for any classical probabilistic model of the data. A violation of the inequality witnesses quantum
contextuality, and the closeness to the maximum ideal value 〈W 〉 = 5 indicates the degree of
confidence in the detection of Majorana fermions.

I. INTRODUCTION

Topological qubits offer promising basic units for quan-
tum information processing due to their inherent re-
silience against decoherence [1]. Majorana fermions [2]
are candidates for realizing such topological qubits, and
the ability to braid them is the focus of several recent
investigations. Theoretically, Majorana fermions emerge
from the interplay between the existence of a topolog-
ically non-trivial vacuum and a, typically, symmetry-
protected physical boundary (or defect). They are re-
alized as zero-energy modes or quasi-particle excitations
of certain quantum systems. Recent experimental efforts
to detect and control Majorana zero-energy modes in
topological superconducting nanowires provide a step to-
wards realizing non-Abelian braiding and, thus, topolog-
ical computation. Several experimental groups have re-
ported evidence of Majorana zero-energy modes, such as
an observation of a zero bias conductance peak or Shapiro
steps in superconducting nanowires [3, 4]. The evidence,
however, remains indirect and it is unclear what would
constitute proof of the existence of Majorana fermions [5].
Moreover, interpretation of what embodies a Majorana
excitation, and its physical realization, in a closed parti-
cle number-conserving many-body topological superfluid
deepens the mystery [6, 7].

Even if one had strong evidence that a system is in
a topological superfluid phase with emerging Majorana
fermions, in order to reap the advantages of the topolog-
ical approach to quantum computing, one must be con-
fident that the measurements performed actually imple-
ment ideal quantum operations with high fidelity. This is
especially important for proposals where gates are per-
formed by parity measurements and anyonic teleporta-
tion, rather than physical braiding [8]. In this paper, we
present a protocol to certify quantum measurements of

∗ These authors contributed equally to this work.

observables and states using only the statistics of mea-
surements outcomes, while making no assumptions about
the underlying physics in the experimental apparatus.
Our technique represents an extension of what is known
as self-testing in quantum information [9–11]. In partic-
ular, we are interested in currently proposed platforms
utilizing fermionic parity measurements [12]. In this way,
and given experimental data, one hopes to argue for the
consistency of that data with the existence of Majorana
fermions.

In the quantum information literature, self-testing
refers to the action of uniquely determining a quantum
state, up to a certain notion of equivalence. Unlike to-
mography, self-testing is based solely on the statistics
of measurement outcomes, with minimal assumptions
about the measurement operators. These quantum self-
testing protocols are more stringent than the well-known
Bell tests [13]. While violation of a Bell inequality for a
bipartite system establishes that its quantum state is en-
tangled, it cannot certify, for instance, that its quantum
state is maximally entangled [14, 15]. Self-testing pro-
tocols typically assume that the physical system has a
Hilbert space with a natural local tensor product struc-
ture. For self-testing a fermionic system, however, we
have to relax this assumption. In our scenario, involving
6 Majorana fermion modes and 6 parity operators, a min-
imal assumption is compatibility of observables sharing
no common putative Majorana mode. A successful certi-
fication implies that the experimentally measured observ-
ables anti-commute exactly the way ideal fermionic par-
ity operators should. We demonstrate that ideal statis-
tics imply emergence of an invariant four-dimensional
tensor-product subspace (encoding two logical qubits)
out of a putative Majorana fermion non-tensor-product
state space, and the ideal state is a Bell state up to local
unitary equivalence. An observation of the ideal statis-
tics in our protocol would constitute substantive evidence
of the existence of Majorana fermions. This is so, since
ideal statistics implies anti-commutativity of a Majorana
fermion and its parity operator, a definite smoking gun
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for Majorana fermion detection. Experiments, however,
suffer from imperfections, and any practical certification
protocol should include the effect of non-ideal quantum
measurement devices and procedures. We have obtained
lower bounds on state and operator fidelities, linear in
the error, that constitute rigorous statements on robust-
ness of the self-testing protocol for detection of Majorana
fermions.

The paper is organized as follows. Preliminary back-
ground concepts and strategy for self-testing Majorana
fermion parities are discussed in Sec. II. In particular,
in Sec. II A, we map Majorana fermion parity opera-
tors to two-qubit Pauli operators, and construct maximal
sets of compatible measurements, so-called contexts. In
Sec. II B, we introduce the notion of quantum self-testing.
Section III describes our particular measurement scenario
and contains a summary of our main results, which are
two theorems, proved later in Sections IV and V. Specif-
ically, we prove rigidity of the measurement scenario in
Sec. IV, and address the robustness to small experimental
errors in Sec. V. Finally, in Sec. VI we summarize main
findings and analyze our fermion parity certification pro-
tocol from the standpoint of a contextuality witness W .
We suggest a possible experimental setup and propose
to analyze experimental data validating a contextuality
inequality involving such W . We also emphasize the gen-
erality of our approach and its potential application to
other quantum measurements involving phenomena such
as braiding. An accessible discussion, addressed to exper-
imentalists, of what an ideal statistics situation means in
the context of self-testing fermion parities is presented in
Appendix A. Several technical details, important to ap-
preciate the mathematical and physical implications of
our results, are included in Appendices B, C, D, and E.

II. BACKGROUND

A. Majorana Fermions

Logical Qubits Fermion Parities Physical Qubits

|00〉 |+,+,+〉 |↓〉 ⊗ |Φ−〉
|−,+,+〉 |↓〉 ⊗ |Φ′−〉

|01〉 |−,+,−〉 − |↓〉 ⊗ |Φ+〉
|+,+,−〉 − |↓〉 ⊗ |Φ′+〉

|10〉 |−,−,+〉 |↑〉 ⊗ |Φ′−〉
|+,−,+〉 − |↑〉 ⊗ |Φ−〉

|11〉 |+,−,−〉 − |↑〉 ⊗ |Φ′+〉
|−,−,−〉 |↑〉 ⊗ |Φ+〉

TABLE I. Mapping between the (logical) 4-dimensional and
(physical) 8-dimensional spaces (fermion parity assingnments
for P36, P12 and P45 and three qubits representations). For
each logical state the upper row corresponds to even parity,

while the lower to odd parity. Here, |Φ±〉 = |↑↑〉±|↓↓〉√
2

and

|Φ′±〉 = |↑↓〉±|↓↑〉√
2

.

Majorana fermion modes are potential blueprint qubits

for topological computation. Consider 6 Majorana modes
belonging to 6 different quantum wires or vortices. Those
modes are defined by Majorana operators γj for j =
1, . . . , 6, which satisfy the Majorana algebra

γ†j = γj , and {γj , γk} = γjγk + γkγj = 2δjk.

The complex †-closed algebra generated is †-isomorphic
to the complex 8 × 8 matrices, so its irreducible repre-
sentations on a Hilbert space all can be identified with
a Jordan-Wigner representation on 3 two-level (qubit)
systems. Explicitly, one such representation maps

γ2m−1 =

(
m−1∏
`=1

σ`z

)
σmx ,

γ2m =

(
m−1∏
`=1

σ`z

)
σmy , (1)

where σmτ , m = 1, 2, 3 and στ = σx, σy, σz, are Pauli
matrices and we have chosen a particular sign convention
without physical consequences. The way the three-qubit
basis relates to Majorana states is as follows

|µ1µ2µ3〉 = (−1)
1+σ2

2

3∏
m=1

(
γ2m−1 + iγ2m

2

) 1+σm
2 ∣∣0̃〉 , (2)

where σmz |µm〉 = σm |µm〉, and
∣∣0̃〉 ≡ |↓↓↓〉 is the

fermionic vacuum.
In the following, we confine ourselves to the 15 physi-

cally measurable “parity” observables

Pjk = iγjγk , 1 ≤ j < k ≤ 6.

Parities sharing (not sharing) a common index anti-

commute (commute). The total parity operator P̂ =

−iγ1γ2γ3γ4γ5γ6 (P̂ = −σ1
zσ

2
zσ

3
z in the qubit language),

commutes with every other parity observable, partitions
the full Hilbert space into even (P = +1) and odd
(P = −1) parity subspaces. These subspaces are invari-
ant under the action of any parity operator and are iso-
morphic to logical two-qubit subspaces as illustrated by
the mapping of Table I. We use X, Y , Z to denote logical
Pauli operators acting on these two-qubit subspaces.

We say a set of fermion parity measurements are com-
patible if the corresponding parity operators are mutu-
ally commuting. There are exactly 15 maximal sets of
compatible measurements, which are given by

{P36, P25, P14} , {P12, P34, P56} , {P45, P16, P23} ,
{P36, P12, P45} , {P25, P34, P16} , {P14, P56, P23} ,
{P35, P16, P24} , {P46, P25, P13} , {P12, P35, P46} ,
{P56, P24, P13} , {P46, P15, P23} , {P34, P26, P15} ,
{P36, P24, P15} , {P13, P26, P45} , {P35, P26, P14} .

Product of parities in each set equals the total parity up
to a ’±’ sign, i.e., if {Pj1k1 , Pj2k2 , Pj3k3} is a maximal set
of compatible measurements, then

Pj1k1Pj2k2Pj3k3 = ±P̂,
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P36 P25 P14

P12 P34 P56

P45 P16 P23

⇐⇒
σ2
yσ

3
y −σ1

xσ
2
zσ

3
x σ1

yσ
2
y

−σ1
z −σ2

z −σ3
z

−σ2
xσ

3
x σ1

yσ
2
zσ

3
y −σ1

xσ
2
x⇐⇒

⇐⇒

PZZ PXX PY Y
ZI IX PZX
IZ XI PXZ

TABLE II. (Top) Peres-Mermin-like magic squares using Ma-
jorana fermion parity operators and related three physical
qubits. Operators in the same row or column commute. (Bot-
tom) The “emergent” operators realize Peres-Mermin magic
squares in the (four-dimensional) even-parity (P = +1) or
odd-parity (P = −1) subspaces.

where the± sign is derived by expressing parities in terms
of Majorana operators. We can select the first 6 of those
sets and form a 3 × 3 table which works like a Peres-
Mermin magic square [16, 17] up to a unitary equivalence
in both even and odd parity subspaces, as illustrated in
Table II.

B. Quantum Self-testing

A self-testing protocol aims to certify that both an
unknown state |Ψ〉 and a set of unknown measurements

are equivalent to an ideal, usually entangled, state |Ψ̂〉
and a set of ideal measurements. Importantly, the cer-
tification does not rely on any assumptions about the
state and measurements, other than the assumption that
certain pairs of measurement operators commute. The
protocol involves repeatedly performing different sets of
pairwise commuting measurements. If the ideal measure-
ment statistics are obtained, then the state and mea-
surements are uniquely determined, up to some notion
of equivalence. This was first observed by Popescu and
Rohrlich [13], who proved that any state that maximally
violates a particular Bell inequality (the CHSH inequal-
ity) is equivalent to a singlet state of two qubits. The
equivalence is up to a local isometry, because the mea-
surement statistics are unaffected by a local change of
basis and by the existence of an auxiliary subsystem on
which the measurements act trivially. The notion of
self-testing was formalized by Mayers and Yao [9], and
since then, self-testing protocols for many other states
and measurement scenarios [18–23] have been discovered.
Such protocols are often called device-independent be-
cause they rely only on the statistics of measurement
outcomes, and not on any physical assumptions about
the measurement apparatus.

Two important notions in the self-testing literature are
that of rigidity and robustness. A measurement scenario
is rigid if achieving the ideal expectation values uniquely
determines the state and measurements, up to a local
isometry. In any real experiment, however, the ideal

statistics will not be achieved exactly due to errors in the
state preparation and measurements. Thus, any practi-
cal self-testing protocol must include a robustness state-
ment. Robustness implies that the state and measure-
ments are still determined approximately if the statistics
deviate from the ideal case by a small amount. There are
fewer known robustness results for measurements than
for states [24]. Our main results are a rigidity theorem
and a robustness theorem for Majorana fermion parity
operators.

Our results differ from previous self-testing results in a
few respects. First, self-testing scenarios typically involve
two or more parties whose measurement operators com-
mute due to a locality assumption. The locality can be
physically enforced, for example, by requiring the mea-
surements made by different parties to be spacelike sepa-
rated. In the scenario we consider, there is no natural no-
tion of locality. Therefore, we do not assume that the full
Hilbert spaceH factors as a tensor product. Nonetheless,
as we show, if the measurement operators have the ideal
expectation values, then there is a natural tensor prod-
uct decomposition. The unknown state |Ψ〉 is maximally
entangled with respect to this emergent tensor product
structure. Second, robust self-testing statements are of-
ten formulated in terms of an extraction map, which acts
on a joint system comprised of the unknown Hilbert space
and a reference Hilbert space with a known dimension.
In this formulation, a robustness statement asserts that
there exists such an extraction map, such that the out-
put state of the reference system has high fidelity with
the ideal state [25, 26]. Our theorems avoid using an
extraction map and instead directly construct a four-
dimensional subspace of H. In the rigid case, we show
that the subspace contains |Ψ〉 and is invariant under
the action of each of the measurement operators. In the
case of errors we define an ideal state and ideal operators
on the subspace and we lower bound the fidelities of the
actual state and measurement operators.

III. STATEMENT OF RESULTS

We consider an experimental setup which ideally in-
volves 6 Majorana modes and 15 parity operators.
We imagine an experimentalist who claims to measure
fermionic parities of joint Majorana modes. The only
thing we are sure about is that some quantum observables
are measured, and the minimal assumptions regarding
those observables and the state we make in our quantum
self-testing protocol are:

1. Our quantum system is prepared repeatedly in
some unknown pure state |Ψ〉.

2. A set of 15 unknown measurement observables,
each of which is given by a Hermitian operator Ar,
with r denoting a pair of indices (j, k) of putative
Majorana modes, satisfying A2

r = 1. Such opera-
tors are oftentimes called Hermitian involutions.
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3. We assume that [Ar, As] = 0 whenever r and s do
not share a common index.

The first assumption can be relaxed to consider an un-
known mixed state ρ, but since any mixed state has a
pure state extension, we can take ρ = |Ψ〉 〈Ψ| to be
pure without loss of generality. Similarly, we can re-
lax the second and third assumptions and consider each
measurement to be an unknown two-outcome general-
ized measurement (positive operator-valued measure or
POVM) Qr = {Qr,0, Qr,1}, satisfying Qr,a ≥ 0 and
Qr,0 + Qr,1 = 1, along with [Qr,a, Qs,b] = 0, a, b = 0, 1,
whenever r and s do not share a common index. However,
our assumption of Hermitian observables is also with-
out loss of generality, as we prove in Appendix B that
the POVMs Qr can be extended to orthogonal projec-
tive measurements with the same pairwise commutativity
structure as the POVMs. We emphasize that no other as-
sumptions about the state or measurements are made. In
particular, we do not assume the dimension, or particu-
lar tensor or non-tensor product structures, of the Hilbert
space H. In this paper, we aim to infer Majorana behav-
ior, e.g., the anti-commutation relation between claimed
Majorana fermions and their parity observables, solely
from the statistics of measurement outcomes using the
quantum self-testing method defined in Sec. II B.

These 15 Ar operators can be visualized as edges on
K6, the complete graph on 6 vertices, as shown in Fig. 1.
The vertices correspond to putative Majorana modes,
and two operators commute if their associated edges do
not share a commmon index. When convenient, we will
use a double index as in Ajk to denote the operator asso-
ciated with edge (j, k). The maximal sets of commuting
observables are given by perfect matchings on K6.

FIG. 1. Six Majorana fermion modes γl indicated by 6 ver-
tices. Each edge in the K6 graph represents a claimed Majo-
rana fermion parity measurement Ajk between γl and γk.

Our self-testing theorems apply to any set of six par-
ities corresponding to a cycle subgraph G ⊆ K6. For
concreteness, we take G to be the cycle whose edge set
is E = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (1, 6)}. We re-
fer to a maximal set of commuting parity operators in
G as a context. We arrange the six unknown operators
into a 2-by-3 table where the operators in each row and
column form a context (see Table III (Left)). Any two
operators Ar and As not in the same row or column cor-
respond to edges r and s that are adjacent in G, which
we denote r ∼ s. The ideal fermionic parity operators
corresponding to adjacent edges anti-commute. Since 6
Majorana modes acting on a given parity (even or odd)
sector encode 2 logical qubits, the ideal operators can be
any set of 6 logical two-qubit Pauli operators with the
ideal commutation and anti-commutation relations. For
concreteness, we fix a basis in which the ideal operators
are as in Table III (Right).

A12 A34 A56

A45 A16 A23
⇐⇒ ZI IX ZX

IZ XI XZ

TABLE III. (Left) The six unknown operators and five con-
texts. (Right) The six “emergent” logical two-qubit Pauli
operators.

Let Ri and Ci be the sets of edges in the ith row and
column, respectively. The ideal expectations in our self-
testing protocol are the following expectation values of
products of observables in each context:

〈Ψ|
∏
r∈Ri

Ar |Ψ〉 = 1 i ∈ {1, 2},

〈Ψ|
∏
r∈Ci

Ar |Ψ〉 =

{
1, i ∈ {1, 2}
−1, i = 3.

(3)

The ideal expectations are achieved by the ideal state
|Ψ̂〉 = 1√

2
(|00〉+ |11〉. We remark that our particular def-

inition of the ideal expectations is a choice of convention.
A similar rigidity result for a different ideal state follows
from any similar set of ideal expectations where an odd
number of contexts have an expectation value of −1.

Let A be the algebra generated by {Ar : r ∈ G}, and
V ⊆ H be the subspace defined by V = span{A |Ψ〉 : A ∈
A}. Let P be the projector onto V , and Ar = PArP .

Theorem 1 (Rigidity of Majorana Parities). If the ideal
expectations are satisfied, then V is a 4-dimensional sub-
space and {Ar,As} = 0, for all r, s ∈ G with r ∼ s. Fur-
thermore, the state |Ψ〉 satisfies

∏
r∈Ci Ar |Ψ〉 = ± |Ψ〉.

Here, “−” should be understood only for C3.

The proof of the theorem given in the next section. As
a consequence of Theorem 1, a basis for V can be chosen
in which the operators on the (Left) in Table III equal

those on the (Right) of the same Table III, and |Ψ〉 = |Ψ̂〉.
In practice, experimental measurements do not satisfy

the ideal expectations due to imperfections in the state
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preparation and measurements. We say that the ideal
expectations are satisfied to within error ε if

〈Ψ|
∏
r∈Ri

Ar |Ψ〉 ≥ 1− ε i ∈ {1, 2},

±〈Ψ|
∏
r∈Ci

Ar |Ψ〉 ≥ 1− ε i ∈ {1, 2, 3}, (4)

where the minus sign in the second line is used for the
third column only. In the presence of errors, the subspace
V is no longer invariant under the action of the operators
Ar. However, the protocol is still robust in the follow-
ing sense. There exists an ideal subspace V̂ of dimension
4, along with an ideal state |Ψ̂〉 and ideal operators Âr
whose fidelities with respect to the actual state and op-
erators are close to 1, within errors linear in ε. Here the
state fidelity is F (|Ψ̂〉, |Ψ〉) = |〈Ψ̂ |Ψ〉 |2, and the operator

fidelity is defined as F (Âr, Ar) = 1
4Tr(ÂrAr). Formally,

we have the following:

Theorem 2 (Protocol Robustness). If the ideal expecta-

tions are satisfied within error ε, then there exists V̂ ⊆ H,
with dim(V̂ ) = 4, Hermitian involutions Âr : V̂ → V̂

for each r ∈ G such that {Âr, Âs} = 0 if r ∼ s and

[Âr, Âs] = 0 otherwise, and a state ˆ|Ψ〉 ∈ V̂ such that∏
r∈Ci Âr

ˆ|Ψ〉 = ˆ|Ψ〉 for i ∈ {1, 2}, and such that they
satisfy

F (|Ψ̂〉, |Ψ〉) ≥ 1− ε0,
F (Âr, Ar) ≥ 1− εi, for r ∈ Ci,

where ε0 = 14ε, ε1 = 0, ε2 = 25ε/2, and ε3 = (
√

2 +√
14 +

√
44)2ε/2 ' 69.5ε.

The proof of the above theorem is given in Sec. V, with
some details deferred to Appendix D and E. The perfect
fidelity of the first column operators is due to a choice of
basis. For simplicity, we have chosen our error bounds to
be equal. Our results can be generalized to the case of
unequal errors for different contexts, however, we do not
carry out this analysis here.

IV. RIGIDITY OF MAJORANA FERMION
PARITY MEASUREMENTS

This section deals with the situation where ideal statis-
tics is satisfied, and proves Theorem 1. Our Lemma 3
shows that operators with adjacent edges anti-commute
exactly in their action on |Ψ〉, a smoking gun for Majo-
rana detection.

Since each Ar has eigenvalues in {−1,+1}, the ideal
expectations are satisfied only if |Ψ〉 is a ±1 eigenstate
of the products of operators in each context.∏

r∈Ri

Ar |Ψ〉 = |Ψ〉 i ∈ {1, 2},

∏
r∈Ci

Ar |Ψ〉 = ± |Ψ〉 i ∈ {1, 2, 3},

where again the minus sign in the last equation is for
column 3 only. Using the fact that A2

r = 1, and the
commutativity of operators in each context, we can move
operators freely between the left and right sides of the
above equations. For example, the identities

A12A34 |Ψ〉 = A56 |Ψ〉 ,
A34 |Ψ〉 = A16 |Ψ〉 ,

hold for row 1 and column 2, respectively.

Lemma 3. Suppose the ideal expectations are satisfied.
Then {Ar, As} |Ψ〉 = 0, for r ∼ s.

Proof. We show that {A12, A16} |Ψ〉 = 0. Making re-
peated use of identities such as the ones above, we com-
pute

A12A16 |Ψ〉 = A12A34 |Ψ〉 = A56 |Ψ〉
= −A23 |Ψ〉 = −A16A12 |Ψ〉 = −A16A12 |Ψ〉 .

By symmetry of the table, a similar argument shows that
the same relation holds for any Ar and As with r ∼ s.

We now construct a subspace and show that it is in-
variant under the action of A. Define V ′ ⊆ H by

V ′ = span{|Ψ〉 , A12 |Ψ〉 , A16 |Ψ〉 , A12A16 |Ψ〉}.

Lemma 4. ArV
′ ⊆ V ′ for all r ∈ G.

Proof. Since A2
12 = 1, A12V

′ ⊆ V ′. To see that
A16V

′ ⊆ V ′, note that Lemma 3 implies A16A12 |Ψ〉 =
−A12A16 |Ψ〉 and A16A12A16 |Ψ〉 = −A12 |Ψ〉. We next
check that A34V

′ ⊆ V ′. This follows from A34 |Ψ〉 =
A16 |Ψ〉, and from the fact that A34 commutes with A16

and A12. By symmetry of the table, we also have that
A45V

′ ⊆ V ′. It remains to show that A56 and A23 act
invariantly on V ′. Explicity,

A56 |Ψ〉 = A12A34 |Ψ〉 ∈ V ′

A56A12 |Ψ〉 = A12A56 |Ψ〉 ∈ V ′

A56A16 |Ψ〉 = A56A34 |Ψ〉 = A12 |Ψ〉 ∈ V ′

A56A12A16 |Ψ〉 = A56A12A34 |Ψ〉 = |Ψ〉 ∈ V ′.

Similarly, by symmetry, we also have A23V
′ ⊆ V ′.

Having shown that V ′ is an invariant subspace, it fol-
lows that V ′ = V = A |Ψ〉. We can now work with
the operators restricted onto V . Let Ar = PArP , with
P the projector onto V . Note that AP = PAP for all
A ∈ A. The next Lemma states that commutativity and
anti-commutativity of operators on a full Hilbert space
is preserved under restriction onto a subspace.

Lemma 5. Let A and B be Hermitian involutions, and
let P be a projector such that AP = PAP . Then

[A,B] = 0 =⇒ [PAP,PBP ] = 0,

{A,B} = 0 =⇒ {PAP,PBP} = 0.
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Proof. (PAP )(PBP ) = PAPBP = (PAP )†BP =
(AP )†BP = PABP = ±PBAP = ±PBPAP =
±(PBP )(PAP ), with the plus or minus sign depending
on whether A and B commute or anti-commute, respec-
tively.

We are now ready to prove Theorem 1.

Proof of Theorem 1. We first determine the action on V
of the operators in C1 and C2. From Lemma 5, both A12

and A16 commute with both A34 and A45, and therefore

[A12A16,A45A34] = 0.

Since A2
jk = P , A12A16 and A45A34 are unitary on V .

Therefore, there exists an orthogonal basis for V of si-
multaneous eigenstates of A12A16 and A45A34. Let |α, β〉
be one such eigenstate satisfying

A12A16 |α, β〉 = α |α, β〉 ,
A34A45 |α, β〉 = β |α, β〉 ,

and also satisfying 〈α, β|Ψ〉 6= 0. Such a state exists
since |Ψ〉 ∈ V . From Lemma 3, {A12, A16} |Ψ〉 = 0,
and hence {A12,A16} |Ψ〉 = 0 by Lemma 5. Similarly,
{A34,A45} |Ψ〉 = 0. These two equations imply α+ ᾱ = 0
and β + β̄ = 0, and thus α, β ∈ {i,−i}, where ᾱ denotes
the complex conjugation of α.

Now, define |ᾱ, β〉 = A12 |α, β〉. Note that
A12A16(A12 |α, β〉) = A12(A12A16)† |α, β〉 = ᾱA12 |α, β〉,
and therefore

A12A16 |ᾱ, β〉 = ᾱ |ᾱ, β〉 .

Similarly, defining
∣∣α, β̄〉 = A45 |α, β〉, and

∣∣ᾱ, β̄〉 =

A12A45 |α, β〉, we see that |α, β〉,
∣∣α, β̄〉, |ᾱ, β〉, and

∣∣ᾱ, β̄〉
are joint eigenstates of A12A16 and A45A34 with eigenval-
ues (α, β), (ᾱ, β), (α, β̄), and (ᾱ, β̄), respectively. These
eigenstates are pairwise orthogonal, since α, β ∈ {i,−i}.
Therefore, V is a 4-dimensional subspace. Next, note
that

A16A12 |α, β〉 = (A12A16)† |α, β〉 = ᾱ |α, β〉
= −α |α, β〉 = −A12A16 |α, β〉

Similar calculations applied to the remaining eigenstates
of A12A16 and A34A45 show that {A12,A16} = 0 and
{A45,A34} = 0. Therefore, there is a basis for V in which

A12 = ZI, A34 = IX,

A45 = IZ, A16 = XI.

We work in this basis for the remainder of the proof.
The next step is to determine |Ψ〉. From A12A45 |Ψ〉 =
ZZ |Ψ〉 = |Ψ〉, and A34A16 |Ψ〉 = XX |Ψ〉 = |Ψ〉, it fol-
lows that

|Ψ〉 =
1√
2

(|00〉+ |11〉).

The final step is to determine A56 and A23. We begin
with A56. Since [A56, A12] = 0 = [A56, A34], Lemma
5 implies that [A56,A12] = 0 = [A56,A34]. Therefore,
when expanded in a basis of two-qubit Pauli matrices,
A56 can only have non-zero weight on II, ZI, IX, and
ZX. However, A56 |Ψ〉 = A12A34 |Ψ〉 = ZX |Ψ〉, which
implies A56 = ZX, since the states |Ψ〉, XI |Ψ〉, IX |Ψ〉,
and ZX |Ψ〉 are pairwise orthogonal. Similarly, using
[A23,A45] = 0 = [A23,A16] and A23 |Ψ〉 = A45A26 |Ψ〉, it
follows that A23 = XZ.

V. ROBUSTNESS TO ERRORS

We now consider the situation where the ideal statis-
tics are satisfied to within error ε. We first prove an
approximate version of Lemma 3.

Lemma 6. Suppose the ideal expectations are satisfied
to within error ε. Then ‖{Ar, As} |Ψ〉 ‖ ≤ 5

√
2ε for all

r, s ∈ G with r ∼ s.
Proof. We show that ‖{A12, A16} |Ψ〉 ‖ ≤ 5

√
2ε. For r

and s in the same column,

‖Ar |Ψ〉 ±As|Ψ〉‖ =
√

2(1± 〈Ψ|ArAs |Ψ〉)

≤
√

2
(
1− (1− ε)

)
=
√

2ε, (5)

where in the first line, the plus sign is used for column
3, and the minus sign for columns 1 and 2. Similarly, for
both rows of the table, with r, s, and t in the same row,

‖Ar |Ψ〉 −AsAt|Ψ〉‖ ≤
√

2ε. (6)

Therefore, by a chain of triangle inequalities, and using
the fact that ‖U |Ψ〉 ‖ = ‖ |Ψ〉 ‖ for any unitary U ,

‖(A12A16 +A16A12) |Ψ〉 ‖ ≤ ‖(A12A16 −A12A34) |Ψ〉 ‖
+ ‖(A12A34 −A56) |Ψ〉 ‖+ ‖(A56 +A23) |Ψ〉 ‖

+ ‖(−A23 +A16A45) |Ψ〉 ‖+ ‖(−A16A45 +A16A12) |Ψ〉 ‖
≤ 5
√

2ε.

Using a similar argument for any r ∼ s, one can prove
‖{Ar, As} |Ψ〉 ‖ ≤ 5

√
2ε.

By a corollary to Jordan’s Lemma, which we prove in
Appendix C, H decomposes as H =

⊕
lHl, where each

Hl is 4-dimensional and invariant under the action of
A12, A16, A34, and A45. Since both of A12, A16 commute
with both of A34, A45, each invariant subspace Hl in the
Jordan decomposition factors as a tensor product of two
qubits. Therefore, there is a basis for each subspace such
that

A12 =
⊕
l

ZI, A34 =
⊕
l

(cosφlIX + sinφlIZ),

A45 =
⊕
l

IZ, A16 =
⊕
l

(cos θlXI + sin θlZI), (7)
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with θl, φl ∈ [−π2 ,
π
2 ]. Label this chosen basis for each Hl

as {|00l〉 , |01l〉 , |10l〉 , |11l〉}.
Next, with respect to this Jordan decomposition, one

can write |Ψ〉 as

|Ψ〉 =
∑
l

√
pl |Ψl〉 ,

where each |Ψl〉 ∈ Hl and
∑
pl = 1. We define the ideal

subspace V̂ as the linear span

V̂ = span
{
|ab〉 =

∑
l

√
pl |abl〉 : a, b ∈ {0, 1}

}
.

We define the ideal operators to be logical Pauli prod-
uct operators in the above basis. Specifically, Â12 = ZI,
Â34 = IX, Â56 = ZX, Â45 = IZ, Â16 = XI, Â23 = XZ.
Finally, we define the ideal state with respect to the above
basis as

ˆ|Ψ〉 =
|00〉+ |11〉√

2
. (8)

Proof of Theorem 2. By definition, {Âr, Âs} = 0 for
r, s ∈ G with r ∼ s, and the ideal state satisfies∏
r∈Ci Âr

ˆ|Ψ〉 = ˆ|Ψ〉 for i ∈ {1, 2}.
We first calculate the state fidelity. Define |Ψ̂l〉 =

1√
2
(|00l〉+ |11l〉). Using the freedom to choose the overall

phase in each subspace, we set 〈Ψ̂l|Ψl〉 ≥ 0. Therefore,

〈Ψ̂ |Ψ〉 =
∑
l

pl〈Ψ̂l |Ψl〉 ≥
∑
l

pl|〈Ψ̂l |Ψl〉 |2.

It will be convenient to work in the Y basis
{|0Y 0Y 〉 , |0Y 1Y 〉 , |1Y 0Y 〉 , |1Y 1Y 〉} within each Jordan

subspace Hl. Here |0Y 〉 = (|0〉 + i |1〉)/
√

2, and |1Y 〉 =

(|0〉 − i |1〉)/
√

2. We expand |Ψl〉 as

|Ψl〉 =
∑

a,b∈{0,1}

clab |aY bY 〉 ,

where
∑
a,b |clab|2 = 1. In this basis, the ideal state is

|Ψ̂〉 =
∑
l

√
pl
2

(
|0Y 1Y 〉+ |1Y 0Y 〉

)
.

Therefore,

〈Ψ̂ |Ψ〉 ≥
∑
l

pl|〈Ψ̂l |Ψl〉 |2

=
∑
l

pl
1

2
|cl01 + cl10|2

=
∑
l

pl
(
|cl01|2 + |cl10|2 −

1

2
|cl01 − cl10|2

)
= 1−

∑
l

pl
(
|cl00|2 + |cl11|2

)
−
∑
l

pl
1

2
|cl01 − cl10|2

In Appendix D, we prove that∑
l

pl
(
|cl00|2 + |cl11|2

)
≤ 13

2
ε, (9)∑

l

pl|cl01 − cl10|2 ≤ ε. (10)

Thus, the state fidelity is bounded according to

F (|Ψ̂〉, |Ψ〉) ≥ (1− 7ε)2

≥ 1− 14ε. (11)

Next we bound the fidelity of the operators, starting
with the first column. From Eq. (7) and the definition

of the ideal operators, for r ∈ C1, Tr
(
ÂrAr

)
= 4 and so

F (Âr, Ar) = 1. For the second column, Eq. (7) implies

F (Â16, A16) =
∑
l

pl cos θl.

Combining Lemma 6 with Eq. (7),

25

2
ε ≥ 1

4
‖{A12, A16} |Ψ〉 ‖2

=
∑
l

pl sin
2 θl

= 1−
∑
l

pl cos2 θl

≥ 1−
∑
l

pl cos θl. (12)

where the last line follows from θl ∈ [−π2 ,
π
2 ] and therefore

cos θl ≥ 0. Combining the last two equations yields

F (Â16, A16) ≥ 1− 25

2
ε.

A similar calculation shows that F (Â23, A23) ≥ 1 − 25
2 ε

also.
The final step is to bound the fidelities of the third

column operators. We begin with A56. The ε error in
the first row implies

‖A12A34 |Ψ〉 −A56|Ψ〉‖ ≤
√

2ε, (13)

and from the state fidelity, Eq. (11), we get

‖A56(|Ψ〉 − |Ψ̂〉)‖ = ‖ |Ψ〉 − |Ψ̂〉‖ ≤
√

14ε. (14)

We show in Appendix E that

‖Â34|Ψ̂〉 −A34 |Ψ〉 ‖ ≤
√

44ε. (15)

Applying the triangle inequality to Eqs. (13)-(15), and

using Â12 = A12,

‖Â12Â34|Ψ̂〉 −A56|Ψ̂〉‖ ≤ (
√

2 +
√

14 +
√

44)
√
ε,
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which implies

Re〈Ψ̂|Â12Â34A56|Ψ̂〉 ≥ 1− ε3.

Since [A12, A56] = 0 and Â2
12 = P , Lemma 5 implies

[Â12,A56] = 0. Therefore, when expanded in a basis of
two-qubit Pauli matrices, A56 can only have I or Z act-
ing on the first qubit. Since Â12Â34 = ZX, only the ZX
component of A56 contributes to Re〈Ψ̂|Â12Â34A56|Ψ̂〉, as
any other component either gives zero or a purely imag-
inary number. Hence,

Re〈Ψ̂|Â12Â34A56|Ψ̂〉 = Re〈Ψ̂|Â56A56|Ψ̂〉

=
1

4
Tr
(
Â56A56

)
= F (Â56, A56),

and it follows that F (Â56, A56, ) ≥ 1 − ε3. By a similar

argument one can show that F (Â23, A23) ≥ 1− ε3.

VI. DISCUSSION AND OUTLOOK

We have shown that measurements of Majorana
fermion parities can be self-tested. This fact provides
a powerful tool for determining how consistent experi-
mental data is with the existence of Majorana fermion
modes. Experimentally, our protocol requires the ability
to measure 6 observables Ajk, which ideally correspond
to parities Pjk between consecutive Majorana modes.

A hypothetical experimental setup is shown in Fig 2;
an actual implementation may involve a more complex
geometry or even multiple quantum dots for fermion par-
ity measurements. We are interested in platforms simi-
lar to the ones described in Ref. [12] in which nanoscale
topological superconducting (because of the proximity ef-
fect) wires are utilized. Quasiparticle poisoning can be
suppressed by performing measurements at temperatures
T lower than the superconducting gap ∆. To avoid errors
due to the splitting of the ground state degeneracy, lead-
ing to non well-defined Majorana modes, we must choose
the length of the nanowire L long enough compared to the
effective coherence length ξ, i.e., L� ξ. Also, we need to
suppress the charging energy EC between wires to avoid
couplings that also split the degeneracy of the ground
state in each wire. Fermion parities Ajk are measured by
selectively coupling nanowires j and k to the quantum
dot with a tunneling amplitude tj,k such that |tj,k| � ∆,
controlled by gates, which is exponentially suppressed in
the tunnel barrier because of the superconducting gap.

The expectation value of any context (set of observ-
ables in a row or column of Table III (Left)) can be ob-
tained by repeatedly preparing a specific initial state,
measuring the operators in that context, and using
Eqs. (A1) and (A2). Given data from the measurements
in each context, we can express the result by an operator
W , often called a contextuality witness in the quantum

1
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FIG. 2. Possible experimental setup to measure Majorana
fermion parities Ajk with eigenvalues ajk = ±1. Six (topo-
logical) semiconducting (e.g., InAs) wires in proximity to a
superconductor (indicated as a grey annulus) and a quantum
dot in the center where parities are measured.

information literature,

W = A12A34A56 +A45A16A23

+A12A45 +A34A16 −A56A23. (16)

The witness is not unique, as different choices of the ini-
tial state result in different combinations of signs of the
terms in W , according to Table V in Appendix A.

For a fixed total parity (odd or even), 6 Majorana
fermions theoretically encode a two qubit subspace,
where each qubit is encoded non-locally in 3 Majorana
modes in Fig. 2. An experimental outcome 〈W 〉 ≤ 3 im-
plies classical assignments of outcomes to the measured
observables and the impossibility of realizing a Majorana
topological qubit. Our result, Theorem 1, implies that
the maximal value predicted by quantum mechanics, i.e.
〈W 〉 = 5 is obtained only if the observables correspond-
ing to adjacent parities anti-commute. However, exper-
imental outcomes carry some errors in practice, either
due to the fact that the state has a component in an
excited state or because of imperfect tuning of the mea-
surement parameters. Theorem 2, in turn, accounts for
those errors in the experimental outcomes. Essentially,
it establishes rigorous lower bounds on the fidelities of
the state and measurement operators that are linear in
the errors, implying that a small error certifies that each
Ajk may have high fidelity with the corresponding hypo-
thetical fermion parity operator. For example, in a basis
where the parities in the first row are perfect, a 0.1% er-
ror in the expectation value of each context implies upper
bounds on the error of the second and third column op-
erators of 1.25% and 6.95%. Therefore, a small error in
the expectation value of contexts implies that quantum
error correction may still be operative.

We emphasize that although our proposal is to self-test
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parities in Majorana modes, our protocol can be simu-
lated in other physical systems via the Jordan-Wigner
mapping given by Eq. (1) and Table II. Examples in-
clude trapped ions, where product of Pauli operators can
be measured with global entangling gates and the use of
an ancilla [27], or also neutron beams entangled in en-
ergy, path and spin degrees of freedom [28–31]. These
extended simulations may seem strange at first reading.
Note that our assumptions in Sec. III do not restrict
measurements to be local in the physical operator lan-
guage representation. Our protocol tests the topological
property of Majorana modes because fermion parity mea-
surements are local in the physical representation. Equiv-
alent measurements in the spin language representation
would be non-local as Table II indicates. Additionally,
the required measurements in, for example, ion systems
are not compatible for arbitrary contexts, without mak-
ing additional assumptions, since those measurements are
not necessarily performed on separable subsystems. On
the other hand, compatibility in the Majorana fermion
case is justified because of spatial separability. A main
contribution of our work is the development of robust
self-testing protocols assuming only compatibility among
observables in each context rather than a tensor product
factorization of the Hilbert space.

We conclude with some open problems and suggestions
for future work. The robustness bounds in our Theo-
rem 2 are certainly not tight, which raises the question
of how much they can be improved. It might be possible
to obtain a stronger robustness statement using differ-
ent methods such as those based on a semidefinite pro-

gramming hierarchy [32, 33], or linear operator inequal-
ities [20]. How does our formulation of robustness by
constructing an ideal subspace relate to the notion of ro-
bustness as measured by an extraction map? Finally,
while our protocol certifies a single state and a set of
measurements, gates in topological quantum computing
are implemented by braiding. It is therefore desirable
to extend the protocol to include a self-test of braiding
operations.

We strongly believe that certification of quantum mea-
surements in various physical scenarios is a promising
technique for precision measurement and quantum vali-
dation. We anticipate generalizations of our current ap-
proach to many other situations of physical interest ex-
ploring the frontiers of quantum mechanics.
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Appendix A: Ideal Expectations and Statistics

(a)
Context

Pr(ar, as, at|Ar, As, At)
+ + + +−− −+− −−+

R1 0.25 0.25 0.25 0.25
R2 0.25 0.25 0.25 0.25

(b)

Context
Pr(ar, as|Ar, As)
++ +− −+ −−

C1 0.5 0 0 0.5
C2 0.5 0 0 0.5
C3 0 0.5 0.5 0

TABLE IV. Probability Distribution of outcomes for (a)
rows Ri, and (b) columns Ci, when the initial state is∣∣∣a(0)36 = +1, a

(0)
25 = +1, a

(0)
14 = −1

〉
. The probability of mea-

suring (Ar, As, At) (or (Ar, As)) and obtaining (ar, as, at)
(or (ar, as)), with ar, as, at ∈ {−1,+1}, is denoted as
Pr(ar, as, at|Ar, As, At) (or Pr(ar, as|Ar, As)). Since the to-
tal parity of the (initial) state is P = +1, it has no amplitude
in states with odd total parity.

Operators in each context of Table II realize complete
sets of commuting observables (CSCO), allowing prepa-
ration of states with definite parity assignments. In the
following discussion, we consider the experimental prepa-

ration of an initial state with a well-defined parity a
(0)
36 ,

a
(0)
25 and a

(0)
14 , a

(0)
jk ∈ {−1,+1}, corresponding to the

claimed parity observable Ajk. We then measure the
contexts (sets of operators in a row or column) of Table
III. As an illustration, the ideal probability distribution
1 of measurement outcomes of all contexts for the initial
state a

(0)
36 = +1, a

(0)
25 = +1, a

(0)
14 = −1 is given in Ta-

ble IV. From the statistics of measurement outcomes one
can calculate the expectation value of the product of the
operators in each context by using

〈ArAs〉 =

∑
ar,as

arasN(ar, as)∑
ar,as

N(ar, as)
, (A1)

〈ArAsAt〉 =

∑
ar,as,at

arasatN(ar, as, at)∑
ar,as,at

N(ar, as, at)
, (A2)

1 If the state |Ψ〉 is prepared with definite outcomes a
(0)
r0 of the

observables Ar0 belonging to a context of a Peres-Mermin-like
Magic square consisting of nine putative Majorana fermion par-
ity operators, then the ideal probability distribution of out-
comes for some row Ri (column Ci) is Pr(ar, . . . |Ar, . . .) =

〈Ψ|
∏
r

1 + arAr

2
|Ψ〉 =

∏
r

1

2
+ ω

∏
r

ar

2
, where r ∈ Ri (r ∈

Ci), r0 ∈ Ri0 , and ω ∈ {±1} is determined from ω =∏
r0

a
(0)
r0 Pr0

∏
r Pr. Using this formula one can compute the

probability distribution in Table IV. For the context R1, for ex-

ample, ω = a
(0)
12 a

(0)
34 a

(0)
56 P12P34P56P36P25P14 = +1, therefore,

the probability is 1/4, i.e., non-zero, whenever
∏
r

ar = +1

where N(ar, as) (or N(ar, as, at)) refers to the num-
ber of experimental outcomes with value (ar, as) (or
(ar, as, at)). Ideal expectation values of all contexts for

different initial states with all possible a
(0)
36 , a

(0)
25 , a

(0)
14 ∈

{−1,+1} is given in Table V.

Initial state Expectation Values∣∣∣a(0)36 , a
(0)
25 , a

(0)
14

〉
R1 R2 C1 C2 C3

|+,+,+〉 −1 −1 −1 −1 −1
|+,+,−〉 +1 +1 +1 +1 −1
|+,−,+〉 +1 +1 +1 −1 +1
|+,−,−〉 −1 −1 −1 +1 +1
|−,+,+〉 +1 +1 −1 +1 +1
|−,+,−〉 −1 −1 +1 −1 +1
|−,−,+〉 −1 −1 +1 +1 −1
|−,−,−〉 +1 +1 −1 −1 −1

TABLE V. Expectation values of product of operators in rows
(Ri) and columns (Ci) for different initial states.

Appendix B: From POVM to Projective
Measurements

In this section we show, using a dilation argument,
that the measurement observables in our setup can be
expressed as Hermitian involutions without loss of gener-
ality. In particular, we prove Proposition 1 which states
that projectors obtained by dilation have the same pair-
wise commutativity structure as those assumed for the
elements of the corresponding POVMs.

Given any POVM {Qa}, a = 0, 1, . . . , d − 1, acting
on system S, Neumark proved [35] that there exists a

projective measurement {Q̂a} on an extended system S⊗
E , with Tr

(
Q̂a(ρ⊗ |0〉 〈0|E)

)
= Tr(Qaρ) for all density

operators ρ on S, where the dimension of the extension
E equals the number of elements d in the POVM. The
projectors are of the form

Q̂a = U†SE(1S ⊗ |a〉 〈a|E)USE , (B1)

where USE is a unitary on the extended Hilbert space. In
our case, we further require that the projectors obtained
by dilation have the same pairwise commutativity struc-
ture that was assumed of the two-element POVMs which
we prove in the following proposition.

Proposition 1. Let {Qr,a} be a set of two-outcome

POVM elements. Then there exist projectors Q̂r,a sat-

isfying Tr
(
Q̂r,a(ρ⊗ |0〉 〈0|r)

)
= Tr(Qr,aρ) for all density

operators ρ, and [Q̂r,a, Q̂s,b] = 0 whenever [Qr,a, Qs,b] =
0.

Proof. Define the projector Q̂r,a on the extended system
S ⊗ Er corresponding to POVM element Qr,a according
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to Eq. (B1), with

USEr |Ψ〉 ⊗ |a〉r =

1∑
b=0

(−1)ab
√
Qr,a⊕b |Ψ〉 ⊗ |b〉r ,

where |a〉r is the basis-vector of the extension Er with
a ∈ {0, 1} and ⊕ denotes addition mod 2. We first show
that USEr is unitary. Indeed, we have

〈Φ| 〈a|r U
†
SErUSEr |Ψ〉 |b〉r

=

1∑
c=0

(−1)(a+b)c 〈Φ|
√
Qr,a⊕c

√
Qr,b⊕c |Ψ〉 .

If a = b, then the last line above equals

〈Φ|
1∑
c=0

Qr,c |Ψ〉 = 〈Φ|Ψ〉 ,

whereas if a 6= b, it equals

〈Φ|
(√

Qr,a
√
Qr,b −

√
Qr,b

√
Qr,a

)
|Ψ〉 = 0,

where we’ve used Qr,b = 1S −Qr,a and thus
√
Qr,a com-

mutes with
√
Qr,b. Therefore, USEr is unitary. Next,

using the cyclic property of the trace, we compute

Tr
(
Q̂r,a(ρ⊗ |0〉 〈0|r)

)
= Tr

(
USEr (ρ⊗ |0〉 〈0|r)U

†
SEr (1S ⊗ |a〉 〈a|r)

)
= Tr

(√
Qr,aρ

√
Qr,a

)
= Tr(Qr,aρ).

Finally, for s 6= r, in a block matrix representation with
respect to the |a〉r basis,

USEr =

( √
Qr,0

√
Qr,1√

Qr,1 −
√
Qr,0

)
, Q̂s,b =

(
Qs,b 0

0 Qs,b

)
.

Therefore, [Qr,a, Qs,b] = 0 implies that [USEr , Q̂s,b] = 0,

and hence [Q̂r,a, Q̂s,b] = 0.

In the case of multiple POVMs Qr, where r labels the
POVM with elements {Qr,a}, the POVMs can be ex-

tended to projectors {Q̂r,a} by adding several ancillas
(⊗rEr), one for each POVM. The situation is depicted in
Fig. 3.

Having extended the POVMs to projective measure-
ments, we can define the Hermitian operators Ar =
2Q̂r,0 − 1. Note that A2

r = 1, and so each Ar is uni-
tary and has eigenvalues in {−1,+1}.

Appendix C: Jordan’s Lemma

We prove a corollary, which we used in the main text,
of what is known as Jordan’s Lemma in the quantum in-
formation literature. A particularly simple proof of Jor-
dan’s Lemma appears in Ref. [36], which we also include
here for completeness.

FIG. 3. Dilation extension in quantum circuit language.

Lemma 7 (Jordan’s Lemma). Let A1 and A2 be Hermi-
tian involutions on a Hilbert space H. Then H decom-
poses as a direct sum H =

⊕
lHl, with dimHl ∈ {1, 2},

and A1 and A2 act invariantly on each Hl.

Proof. A1A2 is unitary since (A1A2)(A1A2)† =
A1A2A2A1 = 1. Since A1A2 is unitary, there exists an
orthonormal basis for H of eigenstates of A1A2. Let |α〉
be any such eigenstate, where A1A2 |α〉 = α |α〉. Define
|ᾱ〉 = A1 |α〉. Then A1A2 |ᾱ〉 = ᾱ |ᾱ〉, since

A1A2A1 |α〉 = A1(A1A2)† |α〉 = ᾱA1 |α〉 .

The span of |α〉 and |ᾱ〉 is invariant under A1, and also
under A2, since

A2 |α〉 = A2A1 |ᾱ〉 = (A1A2)† |ᾱ〉 = α |ᾱ〉 ,
A2 |ᾱ〉 = A2A1 |α〉 = (A1A2)† |α〉 = ᾱ |α〉 .

Thus any eigenstate of A1A2 defines an invariant sub-
space of dimension at most 2, and these eigenstates span
H, which completes the proof.

Corollary 7.1. For k, k′ ∈ {1, 2}, let Ak and Bk′ be
Hermitian involutions with [Ak, Bk′ ] = 0. Then H de-
composes as H =

⊕
l(Hal ⊗ Hbl), with Hal and Hbl

of dimension at most 2, and Ak =
⊕

l(Akl ⊗ 1l) and
Bk′ =

⊕
l(1l ⊗Bk′l).

Proof. Note that [A1A2, B1B2] = 0. Thus, there exists
an orthonormal basis for H of simultaneous eigenstates
of A1A2 and B1B2. Let |α, β〉 be any such eigenstate,
where A1A2 |α, β〉 = α |α, β〉 and B1B2 |α, β〉 = β |α, β〉.
Define |ᾱ, β〉 = A1 |α, β〉,

∣∣α, β̄〉 = B1 |α, β〉, and
∣∣ᾱ, β̄〉 =

A1B1 |α, β〉. Then span{|α, β〉 , |ᾱ, β〉 ,
∣∣α, β̄〉 , ∣∣ᾱ, β̄〉}

maps isomophically to span{|α〉 , |ᾱ〉} ⊗ span{|β〉 ,
∣∣β̄〉}.

By the argument in the proof of Lemma 7, Ak and Bk′
act invariantly on the first and second tensor factors, and
trivially on the second and first tensor factors, respec-
tively.

We remark that in the main text we assume that each
Jordan subspace Hl has dimension 4. This is done with-
out loss of generality, since we can extend any smaller
dimensional subspace to 4 dimensions, with all operators
acting trivially on the extension.
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Appendix D: Derivation of Eqs. (9) and (10).

It will be convenient to work in the Y basis
{|0Y 0Y 〉 , |0Y 1Y 〉 , |1Y 0Y 〉 , |1Y 1Y 〉} within each Jordan

subspace Hl. Here |0Y 〉 = (|0〉 + i |1〉)/
√

2, and |1Y 〉 =

(|0〉 − i |1〉)/
√

2. We expand |Ψl〉 as

|Ψl〉 =
∑

a,b∈{0,1}

clab |aY bY 〉 ,

where
∑
a,b |clab|2 = 1. In this basis, the ideal state is

|Ψ̂〉 =
∑
l

√
pl
2

(
|0Y 1Y 〉+ |1Y 0Y 〉

)
Our first step is to bound

∑
l pl(|cl00|2 + |cl11|2). Applying

Eq. (5) to C1 and C2, respectively, we obtain∑
l

pl(|cl00 − cl11|2 + |cl01 − cl10|2) ≤ ε,

∑
l

pl(|e−iφlcl00 + eiθlcl11|2 + |eiφlcl01 − eiθlcl10|2) ≤ ε,

Eq. (10) follows from the first of these equations. It also
follows that ∑

l

pl|cl00 − cl11|2 ≤ ε. (D1)∑
l

pl|e−iφlcl00 − eiθlcl11|2 ≤ ε. (D2)

Now, ∣∣cl11∣∣2∣∣eiθl + e−iφl
∣∣2

=
∣∣(eiθlcl11 + e−iφlcl00)− e−iφl(cl00 − cl11)

∣∣2
≤ 2
(∣∣eiθlcl11 + e−iφlcl00

∣∣2 +
∣∣cl00 − cl11∣∣2),

where in the last line we used the fact that |x + y|2 ≤
2(|x|2 + |y|2) for any x, y ∈ C. From Eqs. (D1) and (D2),∑

l

pl
∣∣cl11∣∣2∣∣eiθl + e−iφl

∣∣2
=
∑
l

pl
∣∣cl11∣∣2(2 + 2 cos(θl + φl)) ≤ 4ε (D3)

Similarly,∣∣cl00∣∣2∣∣eiθl + e−iφl
∣∣2

=
∣∣(eiθlcl11 + e−iφlcl00) + eiθl(cl00 − cl11)

∣∣2
≤ 2
(∣∣eiθlcl11 + e−iφlcl00

∣∣2 +
∣∣cl00 − cl11∣∣2),

from which it follows that∑
l

pl
∣∣cl00∣∣2∣∣eiθl + e−iφl

∣∣2
=
∑
l

pl
∣∣cl00∣∣2(2 + 2 cos(θl + φl)) ≤ 4ε. (D4)

Adding Eqs. (D3) and (D4),∑
l

pl(|cl00|2 + |cl11|2)(1 + cos(θl + φl)) ≤ 4ε. (D5)

We now need the following Lemma, which is similar to
Lemma 6.

Lemma 8. Suppose the ideal expectations are satisfied to
within error ε. Then ‖A12A34 |Ψ〉+A16A45 |Ψ〉 ‖ ≤ 3

√
2ε.

Proof.

‖A12A34 |Ψ〉+A16A45 |Ψ〉 ‖
≤ ‖(A12A34 −A56) |Ψ〉 ‖+ ‖(A56 +A23) |Ψ〉 ‖
+ ‖(−A23 +A16A45) |Ψ〉 ‖
≤ 3
√

2ε

where the last inequality follows from Eqs. (5) and (6).

From the result of the Lemma, we obtain∑
l

pl
(
(|cl00|2 + |cl11|2)|eiθl + eiφl |2

+ (|cl01|2 + |cl10|2)|eiθl − e−iφl |2
)
≤ 18ε,

and therefore,∑
l

pl(|cl00|2 + |cl11|2)|eiθl + eiφl |2 ≤ 18ε,

or, ∑
l

pl(|cl00|2 + |cl11|2)(1 + cos(θl − φl)) ≤ 9ε. (D6)

Adding Eqs. (D5) and (D6),

13

2
ε ≥

∑
l

pl(|cl00|2 + |cl11|2)(1 + cos θl cosφl)

≥
∑
l

pl(|cl00|2 + |cl11|2).

where in the last inequality we used θl,φl ∈ [−π2 ,
π
2 ], and

so cos θl ≥ 0 and cosφl ≥ 0. This last inequality is
Eq. (9) in the main text.

Appendix E: Derivation of Eq. (15)

By definition,

〈Ψ̂l|(1−Â34A34)|Ψl〉 =
(cl01 + cl10)− (cl01e

iφl + cl10e
−iφl)√

2
.
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Therefore,

Re〈Ψ̂l|(1− Â34A34)|Ψl〉

=
(1− cosφl) Re(cl01 + cl10) + sinφl Im(cl01 − cl10)√

2

≤ (1− cosφl) +
sinφl Im(cl01 − cl10)√

2
.

Summing over the Jordan subspaces, we get

∑
l

pl Re〈Ψ̂l|(1− Â34A34)|Ψl〉

≤ 1−
∑
l

pl cosφl +
1√
2

∑
l

pl sinφl Im(cl01 − cl10)

≤ 1−
∑
l

pl cos2 φl +
1√
2

∑
l

pl sinφl|cl01 − cl10|

=
∑
l

pl sin
2 φl +

1√
2

∑
l

pl sinφl|cl01 − cl10|. (E1)

The second term in the last line is bounded by∑
l

pl sinφl|cl01 − cl10| ≤
√∑

l

pl sin
2 φl

√∑
l

pl|cl01 − cl10|2

≤
√

25ε

2

√
ε,

where we’ve used Eq. (10) and the same argument leading
to Eq. (12), applied to φl. Therefore,∑

l

pl Re〈Ψ̂l|(1− Â34A34)|Ψl〉 ≤
25

2
ε+

1√
2

5ε√
2

= 15ε.

Using this bound we can say

Re〈Ψ̂|Â34A34|Ψ〉 ≥ Re〈Ψ̂|Ψ〉 − |Re〈Ψ̂|(1− Â34A34)|Ψ〉|
≥ 1− 7ε− 15ε

= 1− 22ε.

Therefore,

‖A34 |Ψ〉 − Â34|Ψ̂〉‖ =

√
2− 2 Re〈Ψ̂|Ψ〉

≤
√

44ε.
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