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We study emptiness formation probability (EFP) in interacting 1D Bose liquids. That is the
probability that a snapshot of its ground state reveals exactly zero number of particles within the
interval |x| < R. For a weakly interacting liquid there is parametrically wide regime n−1 < R < ξ
(here n is the average density and ξ is the healing length), where EFP exhibits a non-trivial crossover
from the Poisson to the Gaussian behavior. We employ the instanton technique [A. Abanov, 2004]
to study quantitative details of these regime and compare it with previously reported special cases.

I. INTRODUCTION

Recent precision measurements of particle number fluc-
tuations in ultra cold quantum gases [1–3] have revived
interest [4–7] in large deviations statistics in many-body
systems. Emptiness formation probability (EFP) is prob-
ably the most iconic and widely studied measure of such
large deviations. It plays a special role in the theory of
Bethe ansatz [8] integrable models [9–12] and is a test bed
for development of non-perturbative techniques, such as
the instanton calculus [13]. The EFP, PEFP (R), is the
probability that no particles are found within the space
interval (−R,R) in the ground state of a one-dimensional
(1D) many-body system with the average density n.

PEFP (R) =

N∏
i=1

∫
|xi|≥R

dxi |Ψg(x1, x2, ..., xN )|2, (1)

where Ψg(x1, x2, ..., xN ) is the normalized ground state
wave function of N-particle system. Even in integrable
models, where Ψg is known via Bethe Ansatz, calcula-
tion of the multiple integral over the restricted interval
is still a difficult task. A similar idea was first discuss
in random matrix theory (RMT) [14], where the proba-
bility that no eigenvalues fall within a certain interval of
energy spectrum for different ensembles was studied [15].

For integrable systems, the problem is often formulated
in terms of spin-1/2 chains, where the EFP is defined as a
probability of measuring l consecutive spin to be “up” in
the ground state of the chain. Via Jordan-Wigner trans-
formation, such formulation is equivalent to the absence
of quasiparticles on l consecutive sites [16]. In these cases
EFP is found to be expressed in terms of Fredholm de-
terminants [9, 16–19]. Even though EFP can be related
to known mathematical constructions, how to extract its
asymptotic behavior is unclear in general cases. The ex-
act answers are known so far only in a handful of isolated
points in the parameter space [16, 20].

This makes EFP an attractive playground for devel-
opment of approximate asymptotic techniques. Most
studies have been focusing on the regime nR � 1 (see,
however, Ref. [21]), where EFP is exponentially small,
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FIG. 1. Function f(R/ξ), Eq. (4), for a weakly repulsive
bosons in log-log scale. The numerical results show a crossover
for the exponent of EFP from linear (green dotted line) to
quadratic (blue dashed line) and the red dotdashed line is
fitted with first few points.

PEFP (R)� 1. In this limit the problem may be studied
within the semiclassical instanton approximation, where
lnPEFP (R) is associated with (twice) the classical ac-
tion along a certain dynamical trajectory of the Euler-
Lagrange equations [13]. Such classical problem needs to
be solved with the boundary conditions imposed on both
“past” and “future” boundaries, which makes techniques
for initial value problems fail, neither analytically nor nu-
merically. Similar structures are known in the theory of
rare events in classical stochastic systems [22–25].

In this work we focus on EFP in the repulsive Lieb-
Liniger (LL) model [26], of spinless bosons with the re-
pulsive delta-potential in 1D. The ground (and excited)
states of the model may be written through the Bethe
ansatz [26] and its thermodynamic characteristics are
known exactly in terms of the microscopic parameters
[26]. In particular, one may find the sound velocity vs
and thus define the healing (or correlation) length as

ξ = (mvs)
−1, (2)

where m is a mass of bosonic particles. In the limit
of impenetrable interactions (the Tonks-Girardeau limit
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[27]), ξ = (πn)−1, and the model is equivalent to the free
fermions. Their (squared) ground state wave function
coincides with the joint probability distribution of eigen-
values in the circular unitary random matrix ensemble
[28]. The exact answer for the free fermion EFP is thus
known from RMT [29, 30]

− lnPEFP (R) =
1

2

R2

ξ2
+

1

4
ln(R/ξ) +O(1). (3)

Within the instanton approach the leading term here was
derived by A. Abanov [31] through a beautiful applica-
tion of the complex valued functions theory. The only
treatment away from the Tonks-Girardeau case, we are
familiar with, is Ref. [32], which conjectured EFP in the
limit ξ � R, see our discussion below.

Our particular focus here is on the opposite limit of
the weakly interacting bosons. A defining feature of this
regime is that the mean distance between the particles is
much shorter than the correlation length, n−1 � ξ. As
a result, there is a wide range n−1 < R < ξ, which was
not previously discussed in the literature.

Our main finding is that, through the entire range
n−1 � R, the logarithm of EFP may be expressed as:

− lnPEFP = nξ × f
(
R

ξ

)
, (4)

where f(r) is a universal function, as long as n−1 � ξ,
plotted in Fig. 1. Its asymptotic limits are:

f(r) ≈ 2.01(4)r + 1.50(4)r2 +O(r3); r � 1. (5)

The leading term here is consistent with PEFP ≈ e−2Rn,
which is the Poisson probability of finding the interval 2R
empty of independent (i.e. non-interacting) randomly
placed particles with the mean density n. Indeed, the
limit R � ξ is reached in the non-interacting case (i.e.
ξ → ∞). The latter is characterized by the uniform
ground state |Ψg|2 = L−N , where L = N/n is the system

size. From Eq. (1): PEFP =
(
L−2R
L

)N N→∞→ e−2Rn.
The other limit is:

f(r) ≈ 1.70(1)r2 + 0.1(3)r +O(ln r); r � 1. (6)

Now the leading term corresponds to the Gaussian
EFP, PEFP ≈ exp{−1.7R2n/ξ}. The Gaussian large-
R asymptotic of the zero-temperature EFP may be ar-
gued on the very general ground [31]. The specific co-
efficient, found here for the weakly interacting limit, is
new. It is at odds with the conjecture of Ref. [32],
− lnPEFP = 4(R/ξ)2, which is parametrically inconsis-
tent with our scaling, Eq. (4).

The linear in r term in Eq. (6) is consistent with being
zero. Indeed, in all cases with short-range interactions,
where exact results are available [16, 20], such term is
indeed absent. We believe that this is a generic feature
of short-range interacting system and provide a pertur-
bative argument to that effect in section III. Curiously,

the Calogero-Sutherland model with the inverse square
long-range interactions exhibits a non-zero O(r) term
(i.e. ∼ R term in the large R asymptotic of − lnPEFP)
[14, 33]. Our numerical accuracy is not sufficient to es-
tablish a coefficient of lnR term in Eq. (6).

The paper is organized as follows. In Section II we
formulate an instanton approach for calculation of EFP
for weakly interacting bosons. Numerical solution of cor-
responding Euler-Lagrange equations, discussion of the
limiting cases and comparison with other works may be
found in Section III. Appendix A presents derivation
of hydrodynamic action in Hamiltonian formalism and
appendix B is devoted to the free fermion limit as a test-
drive of our numerical procedure.

II. INSTANTON CALCULUS FOR WEAKLY
INTERACTING BOSONS

Here we adopt the hydrodynamic instanton approach
to emptiness formation, developed by A. Abanov [31, 34–
37]. It is justified in the macroscopic emptiness regime,
n−1 � R, where EFP is exponentially small. It is thus
expected to be given by an optimal evolution trajectory
in the space of the system’s hydrodynamic degrees of
freedom. In our case the latter are the local particle
density, ρ(x, t), and the local current, j(x, t). The two
are rigidly related by the continuity equation,

∂tρ+ ∂xj = 0. (7)

The classical action, that yields proper hydrodynamic
equations as its extremal conditions, is given by [27]

S[ρ, j] =

∫∫
dxdt

[mj2
2ρ
− V (ρ)

]
; (8)

V (ρ) =
c

2
(ρ− n)2 +

(∂xρ)2

8mρ
. (9)

The Lagrangian in Eq. (8) consists of the kinetic energy
of the current along with the potential energy (equation
of state) V (ρ). For weakly interacting Bose liquid the
latter is quadratic in density deviations from its equilib-
rium value, n, with the interaction parameter, c. The
correlation length is given by ξ = 1/mvs = (mnc)−1/2.
It satisfies the weak interaction criterion, n−1 � ξ, as
long as γ ≡ mc/n � 1. The potential energy also con-
tains the so-called quantum pressure [27, 38] term, which
reflects the tendency of the condensate to maintain the
uniform density throughout the system (due to the gra-
dient terms in the underlying quantum description).

Variation of the action (8) over ρ and j, under the con-
tinuity constraint, Eq. (7), yields classical Euler equation
of the hydrodynamic flow (with the quantum pressure
contribution) [39]. Solutions of this equation do not lead
to the formation of emptiness. The reason is that the
emptiness is a large quantum fluctuation (similar to tun-
neling), which is located in a classically forbidden region
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of the phase space. The instanton approach is based on
the realization that the quantum transition amplitude
is given by the path integral

∫
DρDjeiS[ρ,j]δ(∂tρ+ ∂xj),

with proper boundary conditions. The integration con-
tours over the field variables may be then deformed into
the complex plane to pass through a classically forbidden
stationary configuration that reaches the required empti-
ness. The probability of such rare event is P ∝ |eiSinst |2,
where the classical action along the instanton trajectory,
Sinst, acquires a (positive) imaginary part.

Before proceeding with the analytical continuation to
the complex plane, it is convenient to pass from a La-
grangian formalism, Eq. (7), to the Hamiltonian one.
To this end we introduce a new auxiliary field ∂xθ(x, t)
and perform the Hubbard-Stratonovich transformation
for the kinetic energy term ∼ mj2/(2ρ) in eiS[ρ,j]. This
brings terms −ρ(∂xθ)

2/(2m) + j∂xθ to the action. One
may then integrate by parts the last term (assuming peri-
odic boundary conditions in the x direction) and employ
the continuity relation to find:

S[ρ, θ] =

∫∫
dxdt

[
θ∂tρ−

ρ(∂xθ)
2

2m
− V (ρ)

]
, (10)

where we neglected the factor
√

det[ρ] from Hubbard-
Stratonovich transformation, since it goes beyond the
accuracy of the instanton approach. See appendix A for
details. Notice that the fields ρ and θ are not subject to
any constraints and play the role of the canonical pair.

We are now on the position to perform the analytical
continuation. Following the standard treatment of tun-
neling, it is achieved by the Wick rotation to imaginary
time t → −iτ . The resulting equations of motions may
be solved with real ρ and purely imaginary θ (the in-
tegration contour in θ is deformed to pass through an
imaginary saddle point). It is convenient thus to redefine
θ → iθ such that the saddle point solutions for both ρ
and θ are real functions (in imaginary time), while the
new θ integration runs along the imaginary axis. The
corresponding Eucledian action acquires the Hamilton-
ain form

S[ρ, θ] = i

∫∫
dxdτ [θ∂τρ−H(ρ, θ)]; (11)

H(ρ, θ) =
ρ(∂xθ)

2

2m
− c

2
(ρ− n)2 − (∂xρ)2

8mρ
. (12)

Notice that the potential V (ρ) enters the effective Hamil-
tonian, H(ρ, θ), with the “wrong” sign, mirroring the in-
verted potential in the tunneling problem.

The equations of motion, that follow from the action
(11), are not the most convenient for the numerical solu-
tion. To facilitate the latter, we found useful to perform
the canonical transformation (ρ, θ)→ (Q,P ) to the new

pair of the conjugated fields Q(x, τ) =
√
ρ(x, τ) e−θ(x,τ)

and P (x, τ) =
√
ρ(x, τ) eθ(x,τ), or conversely ρ = PQ

and θ = 1
2 ln(P/Q). Substituting these into Eq. (11),

one finds for the action

S[Q,P ] = i

∫∫
dxdτ [P∂τQ−H(Q,P )]

+
i

2

∫
dxPQ ln

P

Q

∣∣∣τ=τf
τ=τi

, (13)

H(Q,P ) = −∂xP∂xQ
2m

− c(PQ− n)2

2
, (14)

where τi(f) are initial(final) times of the optimal trajec-
tory, discussed below.

Variables Q,P may be considered as an analytical con-
tinuation of the real-time degrees of freedom Q↔ Ψ and
P ↔ Ψ̄. The first line of Eq. (13) is nothing but the
analytical continuation of the Gross-Pitaevskii (GP) ac-
tion [40], ∼ |∂xΨ|2/2m+ c(|Ψ|2−n)2/2. However, would
we start directly from the GP action, we would miss the
boundary term, the second line in Eq. (13). This bound-

ary term [41], i
∫
dxρ θ

∣∣τ=τf
τ=τi

, does not alter the equations

of motion, but contributes to the instanton action. Its
contribution appears to be of the paramount importance
in the regime n−1 < R < ξ. To the best of our knowledge,
it was first introduced in the context of classical stochas-
tic systems by Krapivsky, Meerson, and Sasorov [24], but
was not discussed so far in the quantum context.

It is convenient to pass to dimensionless coordinates
and fields: x → ξx, τ → τ/(nc), P →

√
nP , Q →

√
nQ.

In terms of them the Euclidean action takes the form

S = inξ

(∫∫
dxdτ

[
P∂τQ+

∂xP∂xQ

2
+

(PQ− 1)2

2

]
+

1

2

∫
dxPQ ln

P

Q

∣∣∣τ=τi
τ=τf

)
. (15)

The corresponding equations of motion acquire the uni-
versal parameter-free form:

∂τQ =
1

2
∂2xQ− (PQ− 1)Q, (16)

∂τP = −1

2
∂2xP + (PQ− 1)P. (17)

These partial differential equations are known as
Ablowitz-Kaup-Newell-Segur (AKNS) system [42], which
is integrable with the inverse scattering method. Re-
markably, exactly these equations appear in the studies
of rare events in Kardar-Parisi-Zhang classical stochastic
equation [25, 43, 44].

We can now specify the boundary conditions, appro-
priate for the emptiness formation problem. We are look-
ing for a transition amplitude from a uniform state at a
distant past, τi = −∞, to a state with the emptiness,
i.e. zero density for |x| < R, at the observation time,
τf = 0. This leads to the conditions: ρ(x,−∞) = n and
ρ(|x| < R, 0) = 0. Outside of the interval x ∈ (−R,R)
at the observation time τf = 0, the density is not
fixed and is to be integrated out in the boundary term
i
∫
dxρ θ

∣∣τ=τf . This fixes θ(|x| > R, 0) = 0. In terms of
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the dimensionless coordinates and fields Q,P , these read
as:

PQ(x,−∞) = 1; (18)

P (x, 0) =
{

0, |x| < R/ξ,
Q(x, 0), |x| > R/ξ.

(19)

The zero density constraint within the emptiness interval
ρ = QP = 0, may be enforced by either P = 0, or Q = 0.
This choice is arbitrary, since Q and P are interchange-
able by a canonical transformation.

The program now is as follows: one needs to solve the
stationary field equations (16) and (17), subject to the
boundary conditions (18) and (19). The resulting instan-
ton trajectory is to be substituted into the action (15)
(including the boundary term), resulting in the instanton
action Sinst(R). The semiclassical transition amplitude
is then given eiSinst(R), resulting finally in the EFP of the
form

− lnPEFP (R) = 2 ImSinst(R). (20)

One notices then that the Eqs. (16), (17) are free from
any parameters, while the boundary conditions (18), (19)
depend on the single parameter, R/ξ. The form of the
action (15) immediately implies the result, Eq. (4), where
f(R/ξ) is twice the value of the double integral plus the
boundary term, within the large round brackets on the
right hand side of Eq. (15), evaluated along the optimal
trajectory.

III. RESULTS AND DISCUSSION

The equations of motion (16), (17) are of the AKNS
type and thus are, in principle, integrable. However, the
boundary conditions (18), (19) are not the initial value
problem, which could be treated with the inverse scatter-
ing approach. Although a lot is known about solutions of
Eqs. (16), (17) (see, eg., discussion of their multi-soliton
configurations in Ref. [25])), we were not able to find their
analytical treatment, suitable for EFP setup, formulated
above. We thus resorted to a numerical approach.

We use Chernykh-Stepanov algorithm [23, 45] to solve
equations of motion iteratively. The algorithm takes the
advantage of the diffusive character of Eq. (16) in the
forward time and Eq. (17) in the backward time. The two
equations are successively evolved Q-forward, followed
by P -backward in time to converge to desired solutions.
The diffusive character of the equations provides stability
for such iteration scheme, making the (Q,P ) variables
advantageous over the (ρ, θ) pair. The results are still
presented in terms of the more physically intuitive (ρ, θ)
degrees of freedom.

At the initial backward-propagating step, we put
Q(x, τ) = 1 and P (x, 0) = θ(|x| − R), here θ(x) is the
Heaviside step function. Then P (x, τ) is determined from
backward evolution of Eq. (17) up to a large negative
time τ = −T . Next we update the initial condition for

Q from Q(x,−T )P (x,−T ) = 1, cf. Eq. (18), and evolve
Eq. (16) forward in time up to τ = 0, with P (x, τ) found
in the first step. This way we obtain new Q(x, τ), which
we use to update initial conditions for P at τ = 0, ac-
cording to Eq. (19) and evolve P backward in time again,
etc. We then evaluate the action (15), and check that its
value does not depend on the choice of the large negative
initial time, −T .

The evolution of density and (imaginary) phase are
shown in Figs. 2 and 3 for R/ξ = 1 and 20. The cor-
responding f(R/ξ) is presented in Fig. 1. We numer-
ically determine this function in the regimes R/ξ � 1
and R/ξ � 1 by doing curve fitting to the data points
with a second order polynomial. The best fit coefficient
are summarized in Eqs. (5) and (6) correspondingly. In
this work, we are only able to determine the coefficients
for the first two leading order because numerical precision
of data points varies from the order of 10−4 at R/ξ = 0.1
to the order of 1 at R/ξ = 20.

In R/ξ � 1 limit the system is approaching the non-
interacting one. Indeed, ξ → ∞ is equivalent to c → 0
limit. In this case the stationary equations for Q and P
become pure diffusion and anti-diffusion, while the dy-
namical part of the action (15) is

∫∫
dxdτP [∂τQ− 1

2∂
2
xQ],

which is nullified on the equation of motion. The only
contribution to the action is thus the boundary term

1

2

∫
dxPQ ln

P

Q

∣∣
τi=−∞

. (21)

The final time, τf = 0, does not contribute either in view
of Eq. (19). Its numerical evaluation gives 1.005(20) in
the limitR� ξ. After taking care of the factor of 2 in Eq.
(20), this agrees with free bosons result − lnPEFP (R) =
2nR as we expect.

In the opposite R/ξ � 1, it is useful to look at the
action (11) and rescale variables in an alternative way:
x → Rx, τ → Rmξτ , ρ → nρ and θ → (R/ξ)θ. The
Euclidean action takes the form

S =inξ

∫∫
dxdτ

[R2

ξ2

(
θ∂τρ−

ρ(∂xθ)
2

2
+

(ρ− 1)2

2

)
+

(∂xρ)2

8ρ

]
. (22)

The first line here is the leading term, ∝ (R/ξ)2, which
is given by the hydrodynamic action without quantum
pressure. It corresponds to the leading Gaussian term in
EFP, Eq. (6). One notices the absence of the linear, in
R/ξ, term, consistent with our numerical finding.

The message from Eq. (22) is that the Gaussian part
of EFP in the limit R � ξ, can be found without the
quantum pressure. This is in agreement with the success
of such hydrodynamic theory [31] to obtain exact results
vis-a-vis the Gaussian limit. Most notable case is the free
fermion Tonks-Girardeau limit, cf. Eq. (3). We have nu-
merically explored this known limit, see Appendix B, as
a test-drive of our numerical procedure. We have found
coefficient 0.501(2), which should be compared with 1/2



5

τ = -�

τ = -�

τ = -���

τ = -���

τ = �

-� -� -� � � � �
���

���

���

���

���

���

� / ξ

ρ

�

τ = -�

τ = -�

τ = -���

τ = -���

τ = -����

-� -� -� � � � �
-�

-�

-�

-�

�

� / ξ

θ

τ = -�

τ = -�

τ = -���

τ = -���

τ = -����

-� -� -� � � � �
-��

-�

�

�

��

� / ξ

�

FIG. 2. Time evolution of the density ρ(x, τ), imaginary
phase θ(x, τ) and velocity v(x, τ) for weakly interacting
bosons with R/ξ = 1. The density evolves from the uni-
form value, ρ = n, at large negative τ towards the emptiness
of size 2R at τ = 0. At τ → 0 the phase tends to the negative
infinity for |x| < R and thus is not shown. The velocity v is
related to spatial gradient of phase v = ∂xθ/m.

in Eq. (3) - this provides some support to the accuracy
of our results.

We conclude with a brief comparison with some previ-
ously published results on EFP. The only analytic work,
we know of, on EFP in 1D interacting boson model is
a conjecture by Its, Korepin and Waldron [32]. In the
weakly interacting limit, the leading term at large R is
claimed to be − lnPEFP = 4(R/ξ)2. This is in a para-
metric disagreement with our main result (4). There is
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FIG. 3. Same as Fig. 2 for R/ξ = 20.

a factor nξ missing in their conjecture and it plays an
important role as a large parameter in weak interacting
region. The only large parameter in their work is R/ξ
which alone is insufficient to describe the asymptotic be-
havior. They might overlook this factor in the calcu-
lation. On the other hand, calculations based on the
bosonization procedure [31] are in a parametric agree-
ment with Eq. (4). Bosonization only allows for a treat-
ment of a small suppression of density, rather than the
emptiness. If one arbitrarily takes such “small” suppres-
sion all the way to zero density, its probability is consis-
tent with Eq. (4). There is also a number of results on
EFP in antiferromagnetic spin-1/2 XXZ chain with the
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Hamiltonian

H =

∞∑
j=−∞

[
Sxj S

x
j+1 + Syj S

y
j+1 + ∆Szj S

z
j+1

]
, (23)

where ∆ is the anisotropy in the z-direction. It is
proposed in Ref. [46] that EFP in the gapless regime,
−1 < ∆ ≤ 1, is

− lnPEFP ∼ Al2 +B ln l, (24)

where A and B are constants depending on ∆ and l is the
number of consecutive spin-polarized sites. An explicit
expression for the coefficient A was found to be

A = ln
[Γ2(1/4)

π
√

2π

]
−
∫ ∞
0

dt

t

sinh2(tν)e−t

cosh(2tν) sinh(t)
, (25)

where parameter ν is defined through cos(πν) = ∆. The
correspondence with the weakly interacting bosons may
be established for ∆ & −1, where the Luttinger parame-
ter K = 1/[2(1−ν)]� 1. Defining the correlation length
(in lattice units) as ξ = K/(πn), where the correspond-
ing bosonic density is n = 1/2 in the lattice units, one
finds from Eq. (25) for the leading term of EFP in ξ � 1
limit:

− lnPEFP =
n

2ξ
l2, (26)

which is in parametric agreement with our result (4).
To conclude, we have developed the instanton ap-

proach that is capable to describe a complete crossover of
EFP from the Poisson to the Gaussian regime in the wide
range of parameters, n−1 < R < ξ, available in weakly
interacting bosonic 1D systems. Such systems are now
routinely realized in cold atom experiments, where EFP
may be measured.
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Appendix A: Hamiltonian Formalism for
Hydrodynamic System

We present details of transition from Lagrangian for-
malism to Hamiltonian one by Hubbard-Stratonovich
transformation. The functional integral of a hydrody-
namic system in Lagrangian formalism is

Z =

∫
DρDj eiS[ρ,j]δ(∂tρ+ ∂xj); (A1)

S[ρ, j] =

∫∫
dxdt

[mj2
2ρ
− V (ρ)

]
, (A2)

where delta function δ(∂tρ + ∂xj) imposes continuity
equation to the system and V (ρ) is some general po-
tential energy (equation of state) which doesn’t affect
the following derivation. We introduce an auxilliary field
∂xθ(x, t) by Hubbard-Stratonovich transformation

Z =

∫
DρDjD∂xθ

√
det[ρ]eiS[ρ,j,θ]δ(∂tρ+ ∂xj); (A3)

S[ρ, j, θ] =

∫∫
dxdt

[
− ρ(∂xθ)

2/(2m) + j∂xθ − V (ρ)
]
,

(A4)

where the prefactor
√

det[ρ] comes from Gaussian func-
tional integration and we neglect overall constant fac-
tor in the functional integral. In principal, the prefactor√

det[ρ] should be reformulated and absorbed into the
action in the exponent. However, we can focus only on
Eq. (A4) in semiclassical approximation without worry-

ing about the contribution from the prefactor
√

det[ρ].

In the end, we first do integration by part on j∂xθ and
then integrate out field j. The term with ∂xj is replaced
by −∂tρ because of delta function δ(∂tρ + ∂xj). The
action is now expressed in Hamiltonian formalism

S[ρ, θ] =

∫∫
dxdt

[
θ∂tρ−

ρ(∂xθ)
2

2m
− V (ρ)

]
. (A5)

Appendix B: Free Fermions Limit

In the free fermion limit the hydrodynamic potential
is given by

V (ρ) = 2

∫ πρ

πn

dk

2π

k2

2m
−µ(ρ−n) =

π2(ρ3 − 3n2ρ+ 2n3)

6m
,

(B1)
where µ = (πn)2/2m is the chemical potential. We sub-
stitute it in the hydrodynamic action (11) to find

S = i

∫∫
dxdτ

[
θ∂τρ−

ρ(∂xθ)
2

2
+ V (ρ) +

(∂xρ)2

8ρ

]
,

(B2)

where we kept the quantum pressure term from the
weakly interacting case, since, as explained in Section
III, it does not contribute in the large R limit anyways.
We now proceed to the Q,P variables as above and then
make them dimensionless, using ξ = 1/πn appropriate
for the free fermions. The resulting equations of motion
are

∂τQ =
1

2
∂2xQ−

1

2
(P 2Q2 − 1)Q, (B3)

∂τP = −1

2
∂2xP +

1

2
(P 2Q2 − 1)P, (B4)
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FIG. 4. The upper panel is the time evolution of the density
ρ for free fermions with R/ξ = 20. The middle and lower
one is the time evolution of phase θ and velocity v. The solid
lines are numerical solutions of Eqs. (B3), (B4), using the
algorithm outlined in Section III, and dashed lines are the
analytical solutions of Ref. [31].

with the same boundary condition (18), (19) and the
modified action

S = inξ

(∫∫
dxdτ

[
P∂τQ+

∂xP∂xQ

2
, (B5)

+
(P 3Q3 − 3PQ+ 2)2

6

]
+

1

2

∫
dx PQ ln

P

Q

∣∣∣τ=0

τ=−∞

)
.

The instanton solution is shown in Fig. 4, where we com-
pare it to the analytical solution (without quantum pres-
sure) of Ref. [31]. The corresponding optimal action is

shown in Fig. 5. Its best fit is given

− lnPEFP = 0.501(2)(R/ξ)2 +O(lnR/ξ), (B6)

where we used relation ξ = 1/πn. This is in a very good
agreement with exact result for the free fermions, Eq. (3),
[29, 30].
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FIG. 5. 2 ImSinst/nR vs. R/ξ for free fermions. The blue
dashed line is a fit 0.501πR/ξ.
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