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We revisit here the Kibble-Zurek mechanism for superfluid bosons slowly driven across the tran-
sition towards the Mott-insulating phase. By means of a combination of the Time-Dependent
Variational Principle and a Tree-Tensor Network, we characterize the current flowing during an-
nealing in a ring-shaped one-dimensional Bose-Hubbard model with artificial classical gauge field
on up to 32 lattice sites. We find that the superfluid current shows, after an initial decrease, persis-
tent oscillations which survive even when the system is well inside the Mott insulating phase. We
demonstrate that the amplitude of such oscillations is connected to the residual energy, characteriz-
ing the creation of defects while crossing the quantum critical point, while their frequency matches
the spectral gap in the Mott insulating phase. Our predictions can be verified in future atomtronics
experiments with neutral atoms in ring shaped traps. We believe that the proposed setup provides
an interesting but simple platform to study the non-equilibrium quantum dynamics of persistent
currents experimentally.

I. INTRODUCTION

The Kibble-Zurek (KZ) mechanism, introduced to un-
derstand the defect formation at a symmetry-breaking
phase transition, has been theoretically studied and ex-
perimentally verified in many different circumstances [1–
17]. The KZ dynamics, initially investigated in classi-
cal (finite temperature) critical phenomena has been fur-
ther extended to quantum critical systems, where it has
also notable connections with many-body state prepara-
tion and adiabatic quantum computation/quantum an-
nealing [18–27]. Progress in the realization of quantum
simulators has led to important experimental results in
KZ physics, most notably with cold atoms [28–32] and
trapped ions [33, 34]. Despite the multitude of works,
the initial proposal put forward more than 30 years
ago [35] — to observe the formation of defects through
the changes of the persistent current in a superfluid ring
— was never theoretically or experimentally addressed in
quantum systems. The reason is twofold: Theoretically,
the simulation of the dynamics of a quantum many-body
system on a ring is a highly demanding task and has not
been carried out so far. Experimentally, to date it has
been difficult to realize a condensate with a ring-shape
geometry.

In this paper we fill this gap theoretically, by inves-
tigating how persistent currents are modified on cross-
ing the superfluid-insulator transition in a Bose-Hubbard
ring. Besides its conceptual interest, we believe that our

work is timely in view of the experimental possibilities of-
fered by the newly born field of atomtronics (see, e.g., the
focus issue [36]). We consider the case where a toroidal
trapping potential and a lattice modulation along the
trapping ring is present, such that the system is described
by the Bose-Hubbard model on a ring pierced by an exter-
nal static gauge field (see Fig. 1). While the ground state
of this system has been investigated extensively [37, 38],
previous studies of the non-equilibrium time-evolution fo-
cused on the mean-field regime (e.g. large particle den-
sities), chain geometries without persistent current, or
short time analysis [39–46]. We present fully quantum,
time-dependent results for the persistent current on a
ring of up to L = 32 sites, hence beyond the reach of ex-
act diagonalization. We carry out our calculations using
an approach which combines the Time-Dependent Vari-
ational Principle (TDVP) [47, 48] with Tree-Tensor Net-
works (TTN) [49–53]. We show that the annealing from
superfluid to a Mott insulator — which does not carry
any current itself at equilibrium — leads to oscillations of
the persistent current flowing in the ring, with the ampli-
tude showing a strong dependence on the annealing rate
and being related to the residual energy, a key quantity
in the KZ mechanism. We also show that the frequency
of the persistent current oscillations matches the spectral
gap of the Mott insulating final state.

Induced by a classical gauge field, the magnitude of the
persistent current of bosonic particles flowing on a ring
strongly depends on the interaction between particles. At
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equilibrium, strong repulsion at integer filling typically
leads to Mott localization, suppressing the persistent cur-
rent, while weak interactions allow current flow in pres-
ence of an external field [37]. Persistent currents are of
particular interest in the growing field of atomtronics [54–
57], where atomic particle currents are used to mimic cur-
rents in electronic devices [58]. For instance, atomtronic
quantum interference devices (AQUIDs), being the ana-
logue of superconductor based SQUIDs, allow to study
persistent currents in highly controllable systems of ul-
tracold atomic gases [59, 60]. In these systems of neutral
atoms, currents are created by confining a Bose-Einstein
condensate to an effectively one-dimensional system and
driving the particles through gauge fields, implemented
either artificially or by stirring, e.g. using a rotating po-
tential barrier [61, 62]. Thanks to the unrivaled tunabil-
ity of interactions and potentials in combination with low
decoherence, these systems provide experimental tools to
study new collective phenomena, with possible applica-
tions in the development of high precision sensors, quan-
tum simulation or quantum information processing [36],
where for instance the superposition of persistent current
states could serve as an implementation of qubits [63, 64].

The paper is organized as follows: In Sec. II, we de-
fine the time-dependent Bose-Hubbard model considered
throughout the paper and discuss some of its equilibrium
features. Sec. III is dedicated to our Tree-Tensor Network
algorithm. We briefly recapitulate the Time-Dependent
Variational Principle and present the algorithm to carry
out the time evolution of a TTN. Results are presented
in Sec. IV, where we discuss the behavior of the persis-
tent current, its connection to the residual energy, and
the system size dependence of our findings. In Sec. V
we provide details of our semi-analytical calculations for
the oscillation frequency of the current using second or-
der perturbation theory. We finally conclude the paper
in Sec. VI with some additional remarks on our results
and possible experimental realizations.

II. TIME-DEPENDENT BOSE-HUBBARD
MODEL ON A RING

For a system consisting of L sites the Bose-Hubbard
model, pierced by a magnetic field, is described by the
Hamiltonian

Ĥ = −J
L∑
j=1

(
eiφ/Lb†j+1bj +H.c.

)
+
U

2

L∑
j=1

nj(nj − 1),

(1)
where J and U are the hopping amplitude and on-site
interaction, respectively, and the Peierls’ phase φ takes
into account the flux Φ through the ring in units of the
flux quantum Φ0 (φ = 2πΦ/Φ0). From now on, we will
simply refer to φ as the “magnetic field”, for simplicity.
We work at fixed density of ρ = 1 particle per site, where
the model exhibits, for φ = 0, an equilibrium quantum
phase transition between a Mott insulator and a super-
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Figure 1. (Left) Schematic picture of the trapping potential.
The particles are confined to lattice sites on a ring, where they
can hop between neighboring sites with hopping amplitude J ,
picking up the phase ±φ/L. (Right) Ground state current I,
Eq. (2), as a function of the on-site interaction U in a system
of L = 32 sites at unit filling for φ = 0.7π.

fluid at (U/J)c ≈ 3.37 [65]. Still at equilibrium, but for
φ 6= 0, based on previous mean-field studies [66] and on a
strong coupling analysis of the two-dimensional case [67],
the critical value (U/J)c is expected to decrease as com-
pared to the zero-field case, therefore extending the Mott
insulating phase.

We consider an out-of-equilibrium dynamics, in which
the initial superfluid in the presence of a magnetic field
φ 6= 0 is driven in time across the transition towards the
Mott insulating phase by ramping-up the Hubbard inter-
action U (or, equivalently, by ramping down the hopping
matrix element J). This procedure is the reverse as com-
pared to the typical Kibble-Zurek scenario discussed in
Ref.[35], where the transition from the disordered to the
ordered phase is considered, corresponding to a Mott to
superfluid transition for the Bose-Hubbard model. How-
ever, it has been shown in Ref.[68] that also the superfluid
to Mott transition obeys Kibble-Zurek power law scaling
within a limited range of annealing velocities. In contrast
to the superfluid-Mott transition, excitations are created
only after crossing the transition, meaning that there
are almost no excitations within the superfluid phase.
The quantity we investigate is the time-dependent cur-
rent flowing on the ring, defined as the expectation value
I(t) = 〈ψ(t)|Î|ψ(t)〉 of the current operator

Î = −1

~
∂Ĥ

∂φ
=
iJ

~L

L∑
j=1

(
eiφ/Lb†j+1bj −H.c.

)
. (2)

More in detail, we prepare the system in the ground state
|ψ0〉 of the Hamiltonian Ĥ within the superfluid phase,
specifically for U(t = 0) = Ui = 2J , with a given value of
the external magnetic flux Φ < Φ0/2, corresponding to
φ = 2πΦ/Φ0 in the interval [0, π) — kept fixed during the
dynamics —, and then anneal the value of the interaction
U(t) up towards a final value U(t = t0) = Uf deep inside
the Mott phase, in a time t0, at a constant rate γ =
(Uf/Ui − 1)/t0. The ramp is followed by a final part of
the evolution where the interaction is kept constant at Uf .
The time-evolution of the interaction is therefore given
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by (see also Fig. 5, top) U(t) = Ui(1 + γt) for t ≤ t0,
while U(t) = Uf for t > t0.

III. THE TTN-TDVP ALGORITHM

In this section we provide details on the time-evolution
algorithm, the Time-Dependent Variational Principle
(TDVP) applied to a Tree-Tensor Network (TTN). The
TTN Ansatz is well-suited for one- and two-dimensional
systems with periodic boundary conditions, since the dis-
tance between the first and last sites scales with only
O(log(L)) in the Tensor Network [51, 69–71]. In particu-
lar we employ a two-tensor evolution scheme, allowing to
adapt the bond dimension during the simulation dynam-
ically. Starting from the TDVP as introduced by Dirac
and Frenkel, it has been formulated for loopless Tensor
Networks by Haegeman et al. [47]. Only recently this
method has been further improved [48, 72], overcoming
problems with small singular values in the original for-
mulation. The algorithm originally has been formulated
for Matrix Product States (MPS) and has been extended
for MPS with an optimized boson basis [73], introducing
additional tensors into the MPS.

In general, the idea of the TDVP algorithm for Tensor
Networks is to project the change of the wave function
onto the tangent space of the Tensor Network manifold
M with given bond dimension D. This guarantees that
each update of a tensor is optimal, meaning that the Eu-
clidean distance between the exact evolution and its MPS
approximation is minimal [48]. Formally the projection
is introduced into Schrödinger’s equation by means of
the projection operator P̂|ψ(t)〉, projecting on the tangent
space ofM at |ψ(t)〉 ∈ M:

i~
d

dt
|ψ(t)〉 = P̂|ψ(t)〉Ĥ|ψ(t)〉, (3)

For the model considered in this paper we exploit the
U(1) symmetry of the Hamiltonian explicitly [53, 74, 75]
and we use a two-tensor integration scheme in order to
allow for a dynamical adjustment of the bond dimension
and the dimensions of the different symmetry sectors. For
MPS this two-tensor algorithm was presented in Ref.[48].
It has been pointed out that TDVP cannot be formulated
in the form of a differential equation as in Eq. (3) for the
two-tensor scheme, because the projector does not keep
the state within the Tensor Network manifold. However,
the algorithm requires a discrete time step anyway and
therefore we can perform a Singular Value Decomposition
(SVD) after each update to bring the Tensor Network
back to the variational manifoldM. We present this two-
tensor integration scheme for a TTN, which can easily be
generalized to arbitrary loopless Tensor Networks.

Let us introduce a decomposition of a Tree-Tensor Net-
work consisting of M + 1 tensors. Since the network is
loopless, there are M pairs of tensors, with the tensors
of a pair being connected through a bond link. Then, for
λ = 1, ..,M labeling such a pair of tensors, as depicted

Q(λ)

C
(λ)
L

C
(λ)
R U (λ)

Figure 2. Visualization of the Tree-Tensor Network decompo-
sition in Eq. (4) for a system with 16 sites. In this example the
matrix Q(λ) is built from the two lower left tensors encircled
in red (left box). The center block is composed of the tensors
C

(λ)
L and C(λ)

R , being the orthogonality center of the network
as indicated by the arrows, while the matrix U (λ) represents
all the rest of the network (blue (right) box). Note that this
notation is used for convenience to represent the three differ-
ent parts of the TTN: The orthogonal parts Q(λ) and U (λ),
and the center block C(λ). In practice we never calculate Q(λ)

or U (λ) explicitly but keep them in the TTN format.

in Fig. 2, the state represented by the network reads

|ψ〉 =
∑
k,m

(
Q(λ)C(λ)(U (λ))†

)
k,m
|Φ(λ)
L,k〉|Φ

(λ)
R,m〉, (4)

with C(λ) = C
(λ)
L C

(λ)
R being the matrix corresponding to

the two-tensor center block: This matrix is obtained by
multiplying the matrices corresponding to the tensors of
pair λ, C(λ)

L and C(λ)
R , where the tensors need be chosen

such that in the network geometry C(λ)
R is closer to the

pair λ = M than C(λ)
L . Note that for simplicity we use

the same notation for tensors and the corresponding ma-
trices formed by fusing tensor indices. The states |Φ(λ)

L,k〉
and |Φ(λ)

R,m〉 in Eq. (4) are product states in the local ba-
sis. They correspond to the two subsystems obtained
by splitting the network between the matrices C(λ)

L and
C

(λ)
R . In Fig. 2 we visualize this decomposition in an

example. Note that even though the labels indicate a
separation into a left and right part, the physical bipar-
tition usually is of different shape.

Since the network is free of loops we can choose
it to be isometrized with respect to the center block
C(λ), such that Q(λ) and U (λ) have orthonormal columns(
(V (λ))†V (λ) = 1, V = Q,U

)
. Using this decomposition

it is possible to follow the derivations in Refs.[72, 73, 76],
to find the projector onto the space of two-tensor varia-
tions:

P̂ = P̂
(2)
M +

M−1∑
λ=1

(
P̂

(2)
λ − P̂ (1)

λ

)
,

with P̂ (2)
λ = P̂L,λ ⊗ P̂R,λ, P̂ (1)

λ = P̂L+C,λ ⊗ P̂R,λ and
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P̂L,λ =
∑
k,k′

(
Q(λ)(Q(λ))†

)
k,k′
|Φ(λ)
L,k〉〈Φ

(λ)
L,k′ |

P̂L+C,λ =
∑
k,k′

(
Q(λ)C

(λ)
L (C

(λ)
L )†(Q(λ))†

)
k,k′
|Φ(λ)
L,k〉〈Φ

(λ)
L,k′ |

P̂R,λ =
∑
m,m′

(
U (λ)(U (λ))†

)
m,m′

|Φ(λ)
R,m〉〈Φ

(λ)
R,m′ |.

Figure 3. (Left) Effective Hamiltonian for the two-tensor
block C(1) in a TTN of 8 physical sites. It is obtained by
contracting the Hamiltonian (red rectangle) with the state
from above and below. The state is isometrized with respect
to the tensor C(1), taken out from the state. (Right) Effective
Hamiltonian for the tensor C(1)

R built from the contraction of
the effective Hamiltonian on the left with the time-evolved
tensor C(1)

L (blue/ dark gray) from above and below.

One of the key ideas of the TDVP in this form is to use
a Lie-Trotter splitting [77] for Eq. (3), yielding one differ-
ential equation for each of the summands in the projector.
These differential equations can be solved efficiently one
after the other [72]. We can therefore update the net-
work according to every summand in the projector step
by step. Since there are two types of projectors, P̂ (2)

λ

and P̂
(1)
λ , we get two structurally different equations to

update the network. In particular the projector P̂ (2)
λ in-

troduces the update of a two-tensor block C(λ), while
the projector P̂ (1)

λ leads to an update of the tensor C(λ)
R .

Effectively these updates are governed by the equations

i~Ċ(λ) = H(2)
eff,λC

(λ) λ = 1, ..,M (5)

i~Ċ(λ)
R = −H(1)

eff,λC
(λ)
R λ = 1, ..,M − 1, (6)

where the application of the effective Hamiltonian on the
right hand side corresponds to a tensor contraction of
multiple indices. The effective Hamiltonians are con-
structed from the summands on the right hand side of
Eq. (3) as depicted in Fig. 3 for the simple case of a
two-layer tree (8 physical sites), where the center block
is built from the left lower and upper tensors. Note that

(a) (b)

(c) (d)

(e)

Figure 4. Pictorial description of the algorithm to evolve the
block built out of the two leftmost tensors (yellow/ light gray)
by one time step, in a system of 8 sites. (a) Initially the TTN
is isometrized with respect to the yellow (light gray) tensors
building the block (isometrization indicated by arrows) (b)
The two tensors are contracted to form a single block, being
evolved according to Eq. (5) with the effective Hamiltonian
in Fig. 3(left). (c) The blue color (dark gray shading) indi-
cates that the block has been evolved in time. Afterwards, the
block is split by means of an SVD. The singular values are
contracted into the "right" tensor, being the new orthogonal-
ity center of the network. (d) The "right" tensor is evolved
backwards in time according to Eq. (6), using the effective
Hamiltonian in Fig. 3(right). (e) The first pair of tensors
has been evolved by one time step. The upper tensor of the
evolved pair is drawn in the color for non-evolved tensors as
it has been evolved backwards in time.

after evolving the two-tensor block an SVD has to be per-
formed in order to bring the network back to the initial
form. The full algorithm is summarized in Alg. 1, while
some of the steps are shown graphically in Fig. 4. In our
implementation we chose the pair built from the upper-
most tensors to be the one with λ = M , for which there
is no backwards evolution. The tensors in the TTN are
then evolved in time from left to right, bottom to top.

Algorithm 1 2-tensor TTN-TDVP
1: for λ = 1, ..,M do
2: Isometrize network w.r.t. C(λ)

3: Build H(2)
eff,λ

4: Evolve C(λ) according to Eq. (5)
5: Perform SVD of C(λ) = C

(λ)
L C

(λ)
R

(
(C

(λ)
L )†C

(λ)
L = 1

)
6: if λ 6= M then
7: Build H(1)

eff,λ

8: Evolve C(λ)
R according to Eq. (6)

9: end if
10: end for
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Figure 5. (Top) Annealing protocol used for the on-site inter-
action U(t) throughout the paper. After linearly increasing
the interaction with annealing rate γ, the system for t ≥ t0
is evolved according to the final constant Hamiltonian. (Bot-
tom) Current I(t) as a function of time during the annealing
from Ui = 2J to Uf = 7J in a system of L = 32 sites at fixed
magnetic field φ = 0.7π for three different annealing rates γ.

IV. RESULTS

Since the system starts in the ground state |ψ0〉 at a
finite value of the external flux φ ∈ [0, π) and inside the
superfluid phase, it displays an initial persistent current
I(0) = 〈ψ0|Î|ψ0〉 (see Fig. 1). Upon annealing the inter-
action upwards to enter in the Mott region of the equi-
librium phase diagram, the current I(t) drops towards
zero (see Fig. 5), the expected value of the equilibrium
current at zero temperature in the Mott phase. There is
however a residual, time-dependent current which is ap-
proximately sinusoidal, IAC(t) ∼ I0 cos(ω0t + ϕ), with a
characteristic main frequency ω0. The amplitude I0 de-
pends on the annealing rate γ and will be the key signal of
the defects created by crossing the quantum phase tran-
sition: The slower is the annealing, the smaller is I0, as
suggested by the three curves in Fig. 5. As expected, this
extrapolates well to the adiabatic limit (γ → 0), where
no oscillations are present, since the equilibrium current
of the Mott insulator vanishes. On the other hand, the
main frequency ω0 is essentially unaffected by the anneal-
ing rate, but increases when the final Mott interaction Uf

is increased. As we will show, this behavior is related to
the dynamical spectral gap of the final Mott insulating
state, as the persistent alternating current is related to
the dynamical oscillation between the Mott insulating
state and higher excited states in which few holes and
multiply occupied sites are created.

In the following, we analyze the current amplitude I0

and its relation to the residual energy εres, defined as the
excitation energy above the final ground state energy,
and the oscillation frequency ω0 in more detail. At the
end of the section we will discuss the size dependence of
the results.

We extract the oscillation amplitude by numerically
calculating I0 = (1/2)[max

t≥t1
I(t)−min

t≥t1
I(t)], where we take

t1 > t0 in order to neglect some possible transient behav-
ior after the final value of Uf is reached. The results are
presented in Fig. 6, quantifying the decay of the ampli-
tude with decreasing annealing rate γ. As shown here-
after, this behavior is understood by the dependence of
the amplitude on the occupation of higher excited states,
and in particular the occupation c2 of the first excited
state of the final Hamiltonian. The probability c2, on
the other hand, behaves like in a two-level system under-
going a Landau-Zener dynamics, with decreasing excita-
tion probability as γ → 0. The amplitude I0 is the main
signature of the quasi-adiabatic driving through the tran-
sition. This is further corroborated by a relation between
the current amplitude and the residual energy as detailed
below. Denoting by {|α〉} the (many-body) eigenstates
of the final Hamiltonian Ĥf , with associated energies Eα,
one can write for any time t > t0:

I(t) =
∑
α,α′

c?α′cαe
−i(Eα−Eα′ )(t−t0)/~〈α′|Î|α〉 . (7)

The constants cα = 〈α|ψ(t0)〉 are the overlaps between
the eigenstates of Ĥf and the state |ψ(t0)〉 at the end of
the annealing ramp. The diagonal matrix elements of the
current operator can lead to a DC-component of the cur-
rent, while off-diagonal elements can cause oscillations
of the current. Let us now assume that the annealing
ramp is slow, such that the system mainly remains in
the ground state |1〉 and only one excited state |2〉, com-
patible with the translational symmetry, is slightly occu-
pied during the ramp (|c2| � |c1| ⇒ c1 = 1 + O(c22)),
while all the other excited states have negligible occu-
pation. Then Eq. (7) simplifies and becomes I(t) ∼
|c2〈1|Î|2〉| cos(∆ · t + ϕ) + Ioffset, where ϕ is an unim-
portant phase, while ~∆ = E2 − E1 is the energy gap
between ground and first excited state. Here Ioffset is a
DC-component, dominated by the ground state contri-
bution, and vanishing deep in the Mott phase, as demon-
strated in Fig. 1. On the other hand we can argue in the
same way that the residual energy will be dominated by
the contribution of the first excited state |2〉:

εres ≈ |c2|2~∆ . (8)

In the slow annealing regime, this implies that both
the current amplitude (I0 ∝ |c2|) and the residual en-
ergy (εres ∝ |c2|2) depend on the annealing rate γ only
through the occupation c2(γ) of the first excited state.
In Fig. 6 this relation (εres(γ) ∝ I20 (γ)) is verified numer-
ically for different γ, by comparing the residual energy
to the square of the current (multiplied by a size depen-
dent prefactor). Clearly, the agreement is quite good, in
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Figure 6. Residual energy εres and square of the oscillation
amplitude I20 of the persistent current as a function of the in-
verse annealing rate γ in systems of sizes L = 16, 32. The
residual energy shows a crossover from power-law Kibble-
Zurek (1/γ . 1.7) to exponential Landau-Zener behavior.
The field is kept constant at φ = 0.7π and the on-site in-
teraction is ramped from Ui = 2J to Uf = 7J .

the slow annealing regime. Theoretically the propotion-
ality prefactor is given by εres/I

2
0 = ~∆/|〈1|Î|2〉|2, and

has been obtained by fitting this ratio for slow annealing
ramps to a constant.

As explained in Ref.[68] the residual energy shows an
effective power-law behavior within a limited range of an-
nealing velocities, which we find for 1/γ . 3 (L=32) and
1/γ . 1.7 (L = 16). However, in this regime the simple
picture of having only one excited state involved in the
dynamics breaks down, as manifested by the disagree-
ment of the current and the residual energy for L = 16
and slightly indicated by the latest points for L = 32.
Very fast annealing leads to a rapid increase of entangle-
ment, preventing us from studying this regime for large
systems. Moreover, higher excited states get occupied
for fast annealing ramps, which leads to the appearance
of additional transition frequencies in the current, cor-
responding to the energy differences between occupied
energy levels (see Eq. (7)). However, a more quantita-
tive analysis of those frequencies is beyond the scope of
this work.

We now concentrate on the oscillation frequency, and
in particular on the most relevant frequency, obtained
by calculating the Fourier transform of I(t) in an ap-
propriate time window [t1, t2] I(ω) =

∫ t2
t1

dt I(t)e−iωt ,
where again t1 > t0 as above in order to allow for a
steady-state behavior to set in, and t2 is the total sim-
ulation time. The Fourier transform of the current I(ω)
displays a sharp carrier frequency ω0, where |I(ω0)| is
maximum (see inset in Fig. 7). The oscillation frequency
ω0 is basically insensitive to the external flux φ and to
the annealing rate γ. However, it does depend on the fi-
nal on-site interaction Uf : it increases with Uf , as shown
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Figure 7. Position of the highest peak of the Fourier transform
(FT, see inset) of the current for annealing rate ~γ/J = 1/6
and field φ = 0.7π in a 32-sites system (blue dots). Dashed
and solid curves show ∆(U) obtained from strong-coupling
perturbation theory up to 1st and 2nd order, see Eq. (9).

in Fig. 7. We will now argue that, in the quasi-adiabatic
limit, ω0 is essentially related to the gap ∆ between the
ground and the first excited state, hence depends only
on the final Hamiltonian. A theoretical analysis using
strong coupling perturbation theory for the ground and
first excited state – presented with more details in Sec. V
– yields:

~∆(Uf) ' Uf − 5.97J + 5.20
J2

Uf
. (9)

The corresponding theory curves including up to first and
second order terms are plotted in Fig. 7, showing excel-
lent agreement with the numerical results obtained from
the Fourier transform of the current, hence confirming
that ~ω0 = ∆. Furthermore we observe that the created
defects are not single holon-doublon pairs only, as in this
case zeroth order perturbation theory – taking into ac-
count only a single holon-doublon exicitation – would fit
the numerical data. The necessity of going to second
order shows that the defects consist of multiple holon-
doublon pairs, sites with more than two particles, and
several empty sites.

Let us now discuss the system size dependence of the
results. First it is important to note that the equilib-
rium current of a perfect superfluid (interaction U = 0)
decreases as 1/L with the system size and therefore van-
ishes in the thermodynamic limit. For the oscillation
amplitude of the current we can expect to find a simi-
lar behavior as long as the annealing is quasi-adiabatic,
being the regime where we can relate the current ampli-
tude to the residual energy. In Fig. 6 this behavior is
indicated by the larger prefactor for L = 32 as compared
to L = 16. On the other hand the energy gap at the crit-
ical point decreases with the system size (see Ref.[68]),
leading to an increased population of excited states and
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correspondingly larger oscillations of the current. This ef-
fect is shown in Fig. 8, where the amplitudes for N = 16
and N = 32 are very similar for fixed annealing veloc-
ity, even though the initial values differ by a factor of
2. However, keeping the annealing velocity fixed and in-
creasing the system size will bring the dynamics out of
the quasi-adiabatic regime. Therefore, if we stay in the
quasi-adiabatic regime, the oscillations will vanish once
we increase the system size.

V. STRONG COUPLING PERTURBATION
THEORY

In the previous section we compared numerical results
for the oscillation frequency of the current with the spec-
tral gap at the end of the evolution as obtained from
perturbation theory. In the following we provide some
details of our perturbative calculations for the gap ∆ in
the strong repulsion limit. To this end we expand the
energies of both, the ground state and the first excited
state — compatible with the symmetry — up to second
order. From here on we focus on the case L = 32, while
the field is fixed to be φ = 0.7π as before.

It is important to note that the Bose-Hubbard model
is translationally invariant, implying that the initial state
of the dynamics – a superfluid ground state – is an eigen-
state of the translation operator T̂ , where we find the cor-
responding eigenvalue to be 1. Due to the translational
invariance of the model this eigenvalue is conserved, i.e.
the time-dependent state will be an eigenstate of T̂ with

unit eigenvalue at any time. Later we will use this to
construct a suitable basis.

A. Zeroth and first order

In the infinite interaction limit J/U = 0 the ground
state of Eq. (1) is a Mott insulator with one particle per
site |GS〉 = |11...11〉, such that to zeroth order the energy
for the ground state is E(0)

0 = 0. The first excited energy
level is degenerate with E(0)

1 = U for all states with one
doublon and one holon.

Since the ground state is non-degenerate, the first or-
der contribution to the ground state energy is given by

E
(1)
0 = J 〈GS|V̂ |GS〉 = 0,

where V̂ = −
∑
j

(
eiφ/Lb†j+1bj +H.c.

)
is the perturba-

tion. In order to calculate the first order contribution to
the excited states we use degenerate perturbation theory.
First, we construct a suitable basis, where in particular
we restrict the Hilbert space to the subspace of eigen-
states of the translation operator T̂ with unit eigenvalue.
Let us define the basis states

|s〉 =
1√
L

L−1∑
q=0

(T̂)q|0 11..11︸ ︷︷ ︸
length s

21..1〉

with s = 0, .., L−2 the separation of the doubly occupied
and the empty site. In this basis the perturbation matrix
elements evaluate to

〈s′|V̂ |s〉 = −3(δs,s′+1e
−iφ/L + δs′,s+1e

iφ/L).

The first order correction is given by the smallest eigen-
value of this (L−1)×(L−1) matrix, and is found numeri-
cally to be E(1)

1 = −5.97J for L = 32 and φ = 0.7π. Note
that the exact eigenvalues of this tridiagonal Toeplitz ma-
trix are known. However, we restrict ourselves to the
numerical values for convenience in the next section.

B. Second order

The second order contribution for the ground state is
given by

E
(2)
0 = (J2/U)

∑
k 6=GS

|〈k|V̂ |GS〉|2

E
(0)
0 − E(0)

k

, (10)

where |k〉 are the energy eigenstates for J/U = 0. In this
sum only states |k〉 with one doubly occupied and one
neighboring empty site can give a nonzero contribution.
Since the operator V̂ contains 2L operators contributing
−2 each, we find for the second order correction of the
ground state energy:

E
(2)
0 = (−4L)(J2/U) (11)
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Similarly we continue for the second order contribution
of the excited state, which is

E
(2)
1 = (J2/U)

∑
k/∈{s}

|〈k|V̂ |1ex〉|2

E
(0)
1 − E(0)

k

, (12)

where |1ex〉 (not to be confused with |s = 1〉) is the first
excited state we found by diagonalizing the perturbation
matrix. Using the numerical result for this state we can
evaluate the sum to obtain the energy correction (L = 32)

E
(2)
1 = −122.8(J2/U). (13)

Adding up all the different contributions we find for the
gap:

~∆ = E1 − E0 ' U − 5.97J + 5.20(J2/U). (14)

VI. DISCUSSION AND CONCLUSION

Our predictions are ready for experimental verification
in future setups of cold atomic systems on ring lattices,
where the Bose-Hubbard model including a gauge field
can be naturally implemented with 87Rb atoms. Quasi-
local currents can be measured following the read-out
scheme presented in Ref.[60]. Due to the quasi-adiabatic
annealing, the evolution times required for the observa-
tion of oscillations need to be longer than in commonly
used sudden quench scenarios. However, the time peri-
ods in the order of 10~/J needed here are still reachable
in state-of-the-art experiments [60]. Moreover the non-
decaying oscillations might eventually be used to demon-
strate long-living coherence in next generation quantum
simulators.

In conclusion, we have investigated the time-dependent
behavior of the persistent current following a linear an-
nealing procedure on a Bose-Hubbard ring of up to L =
32 sites, where in particular we analyzed the crossover
from a superfluid to a Mott insulator in the presence of
a gauge field. We found that after an initial decay the
current starts to oscillate around nearly zero current, be-
ing the ground state value at the end of the ramp. The
current is nonzero due to the excitation of higher states
and, in particular, results from the non-diagonal matrix
elements of the current operator. In the slow annealing
regime, where only one excited zero momentum state is
occupied, the oscillation amplitude is proportional to the
square root of the occupation probability and can there-
fore be related to the residual energy, characterizing the
creation of defects. In a closed system the coherent os-
cillations are not expected to decay even for longer evo-
lution times as long as the annealing is sufficiently slow.
Instead, they persist according to Eq. (7), due to the oc-
cupation of few eigenstates and correspondingly a small
number of frequencies. This can easily be understood
from the special case where only the ground and first ex-
cited state are populated. After the annealing (t > t0)

the populations stay constant, while the relative phase
between the two populated eigenstates changes in time,
producing the oscillations of the current. On the other
hand, fast annealing leads to the presence of many fre-
quencies, which might result in the decay of oscillations
due to averaging effects. Using perturbation theory up to
second order, we have been able to compute the frequency
of the oscillations – defined through the final Hamilto-
nian only – in the limit of strong final interactions and
slow annealing, in very good agreement with the numer-
ical findings. While in this work we focused on the case
where translational invariance is not broken, it might be
interesting for future research to include a localized bar-
rier, breaking the translational symmetry and providing
the possibility to realize current-based qubits [63, 64].

While finalizing this manuscript we became aware of
the work by Bauernfeind and Aichhorn [78], presenting in
detail the Time-dependent variational principle for gen-
eral loopless Tensor Networks with an application to the
Fork Tensor Product States tensor network used for Dy-
namical Mean-Field Theory calculations.
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APPENDIX A:
NUMERICAL PARAMETERS/ CONVERGENCE

In this section we discuss the numerical parameters
we used for our simulation. For the results shown pre-
viously we use the bond dimension D = 60, the local
bosonic dimension d = 5 — translating to the limitation
of at most four particles per site —, and the fixed time
step ∆t = 2 × 10−3~/J . In the following we focus on
the convergence in the bond dimension for the largest
system considered (L = 32), since numerical errors due
to the truncation of the local boson occupation and the
finite time step were found to be small compared to the
error due to the bond dimension. As shown in Fig. 9 the
oscillation amplitudes obtained for D = 60 compare well
withD = 50, while more significant differences are visible
in comparison with D = 40. This indicates that indeed
D = 60 is enough to obtain accurate results. Note that
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in contrast to equilibrium scenarios, where the ground
state energy decreases monotonically with the bond di-
mension, dynamical quantities like the oscillation ampli-
tude can show non-monotonic behavior as a function of
the bond dimension.

In practice it turned out that alternatively we can
check if the bond dimension is sufficiently large by com-
paring the local currents between sites k and k+1, defined
as the time-dependent expectation value of the operator
(compare with Eq. (2))

Îk =
iJ

~

(
eiφ/Lb†k+1bk −H.c.

)
(15)

Considering that the model of interest is translation-
ally invariant, we expect to find the same local current
between any pair of neighboring sites. However, the TTN
breaks the translational invariance, resulting in different
local currents if the bond dimension is too small. As vi-
sualized in Fig. 10, the local currents do not agree very

well for D = 40, while the agreement is much better for
D = 60, confirming that D = 60 yields reliable results.
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