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We propose and demonstrate a method to increase the momentum separation between the arms
of an atom interferometer and thus its area and measurement precision, by using Bloch oscillations
(BOs) in an excited band of a pulsed optical standing wave lattice. Using excited bands allows us
to operate at particular “magic” depths, where high momentum transfer efficiency (> 99.4% per
~k, where ~k is the photon momentum) is maintained while minimizing the lattice-induced phase
fluctuations (< 1 milliradian per ~k) that are unavoidable in ground-band BOs. We apply this
method to demonstrate interferometry with up to 40~k momenta supplied by BOs. We discuss
extensions of this technique to larger momentum transfer and adaptations towards metrological
applications of atom interferometry such as a measurement of the fine-structure constant.

I. INTRODUCTION

Bloch oscillations (BOs) describe the periodic motion
of a particle in a lattice responding to a constant force.
While this behavior emerged as a fascinating prediction
of the Landau-Zener theory of electron conduction in an
ionic lattice in the presence of an external electric field
[1, 2], BOs remained only a theoretical construct un-
til first observations in semiconductor superlattices [3].
Clean observations of BOs in neutral systems soon after,
using ultracold atoms in an optical lattice [4–6], provided
an early benchmark for the use of trapped atomic gases as
quantum simulators for condensed matter systems. Fol-
lowing this early work, BOs have been adapted into the
atom optics community as a high-efficiency momentum
transfer tool [7–10] and have been fruitfully utilized in
metrological applications ranging from testing quantum
electrodynamics [11, 12], to measuring local gravity [13]
and to testing the equivalence principle [14].

The benefit of high efficiency in transferring momen-
tum, which has been instrumental in ground-band BO
based atom-optics applications, comes at the cost of un-
controlled phase shifts on the atomic wavefunction due
to fluctuations in the lattice potential strength. This has
limited the use of BOs as beam splitters within phase-
stable atom interferometers (AIs) to relatively low mo-
menta in earlier free-space geometries [15–17].

In this paper, we propose and demonstrate excited-
band Bloch oscillations within an atom interferometer
as a new tool for precision measurement which simulta-
neously exhibits high efficiency and low lattice-induced
phase noise. Our proposal is based on the observation
that unlike in the case of the ground band, BOs in an
excited band when performed at a particular “magic”
depth become relatively immune to lattice strength fluc-
tuations. We experimentally establish our magic depth
hypothesis for multiple excited bands by examining BO-
induced phase shifts on one arm of a Mach-Zehnder inter-
ferometer operated on a Bose-Einstein condensate atom
source. Our implementation is capable of high efficiency
momentum transfer (> 99.4% per ~k where 2k is the
lattice wavenumber) at these regions, allowing for inter-
ference signals with 40~k momenta supplied by BOs to
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FIG. 1. (a) Bloch bands (solid lines) for a sinusoidal optical
lattice with a representative depth of U0 = 10Er, where Er

is the recoil energy. The atomic energies are computed by
diagonalizing the Hamiltonian with 51 states from |−50~k〉 to
|+50~k〉 in steps of 2~k, where ~k is the photon momentum.
Dotted lines represent the quadratic free-space dispersion. (b)
The average energy over one Brillouin-zone (from q = −~k to
q = +~k) of the ground and first two excited bands 〈E〉.
The magic depth for each excited band is at its respective
local extremum. The ground band does not exhibit any magic
depth feature.

one AI arm. Our results point to significant potential
improvements in precision interferometric measurements
of the fine structure constant α and a concurrent test of
quantum electrodynamics, and can also impact other AI
applications such as gravity measurements.

We first explain our magic depth hypothesis by consid-
ering the lattice-induced phase shift in a Brillouin-zone
picture where BOs correspond to the periodic oscillation
of the quasimomentum as it gets Bragg-reflected at the
zone boundary (Fig. 1(a)). Such a Bloch-band picture is
also useful for the analysis of Bragg diffraction processes
from pulsed lattices in atom optics applications [18]. For
the linear rate of change of quasimomentum q relevant
to BOs, it is useful to consider the average 〈E〉 of the
energy E for a particular band taken over one Brillouin-
zone (from q = −~k to q = +~k). These are shown for
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the first three bands in Fig. 1(b). The average energy
〈E〉 of the ground band is always negative and results in
the atomic phase being strongly sensitive to unavoidable
intensity fluctuations of the optical lattice. This behav-
ior can be understood as arising from level repulsion in
second-order perturbation from higher-lying bands. On
the other hand, every excited band is repelled by bands
both above and below. The quadratic free-space disper-
sion leads to a positive shift of 〈E〉 at low lattice depths,
since the adjacent lower band is closer in energy than the
adjacent higher one. At high lattice depths, these energy
separations start to become comparable and the larger
number of higher energy bands results in a negative shift
of 〈E〉. A key observation from the Brillouin zone picture
that is central to this work is that the average energy in
an excited band must feature one local maximum as a
function of lattice depth. When operated at this magic
lattice depth, excited-band BOs feature phase shifts on
the atomic wavefunction that are first-order insensitive
to lattice-induced Stark shifts.

The rest of this paper is organized as follows. After
discussing relevant technical details of the experiment
in Section II, we demonstrate the differences between
ground- and excited-band BOs in Section III. In Section
IV we demonstrate the magic depth property of excited-
band BOs using interferometry in a Mach-Zehnder geom-
etry. We discuss our implementation of large momentum
transfer (up to 40~k) within an AI using magic depth
excited-band BOs in Section V, and also investigate their
scalability towards larger numbers of BOs. Finally, we
provide a summary and outlook for future applications
in Section VI.

II. ATOM SOURCE AND LATTICE BEAMS

Similar to earlier work [18, 19], we perform our ex-
periments with 174Yb Bose-Einstein condensates (BECs)
consisting of 105 atoms, formed by evaporative cooling in
a 532 nm optical dipole trap. After BEC production, the
atoms are released from the trap and allowed to expand
for 3 ms before the first application of a pulsed optical
lattice.

To create the optical lattices for our BOs and
other diffraction pulses, we use two counterpropagating
horizontally-oriented laser beams which are detuned by
∆ from the intercombination transition (1S0 → 3P 1)
at 556 nm which has linewidth Γ = 2π × 182 kHz. For
all experiments reported in this work, ∆/Γ = +3500
or +1300, and its value is noted with each data set
presented. The lattice beams have a waist of 1.8 mm,
which is large compared to the size of the atom cloud
(< 30µm). A small (sub-MHz) relative frequency δ be-
tween the two lattice beams is controlled at the sub-Hz
level using Direct-Digital Synthesizers as the radiofre-
quency sources to drive the corresponding acousto-optic
modulators.

Two kinds of pulsed lattices are used in this work. In

one, a trapezoidal temporal intensity profile is used for
the BO pulses in which the lattice is first turned on with
an increasing intensity ramp to the desired depth U0. The
value of δ during this turn-on process is chosen to place
atoms into desired quasimomenta in the lattice-frame. A
frequency sweep δ̇ at fixed depth U0 then provides the
external force for the BO, following which the lattice is
turned off with a decreasing intensity ramp. Atoms un-
dergo Bloch oscillation with period TBO = 8ωrec/δ̇ during
the frequency sweep where ~ωrec = Er = ~2k2/(2m) is
the recoil energy and m is the mass of the atom. In order
to load stationary atoms into a particular band, the ini-
tial relative detuning is chosen as δ = (b+0.5)4ωrec where
b is the band number (b = 0 is the ground band). This en-
sures lattice loading at quasimomentum q = +(−)0.5~k,
for b =odd(even), away from band gaps to avoid inter-
band transitions. To load moving atoms into a particu-
lar band, the initial δ is adjusted to meet this condition
in the atom-frame. The timescale of the two intensity
ramps are equal and chosen to always satisfy the adi-
abaticity criterion 1

U0
|∂U0

∂t | � |∆E|/~ where ∆E is the
energy separation from the eigenstate nearest to the state
of interest.

The second kind of pulsed lattices in this work are
Bragg diffraction pulses with Gaussian temporal profiles
characterized by rise and fall 1/e times ' 30µs [18]. For
these pulses, δ is kept at a constant value of 4NBωrec to
match the resonance condition for an N th

B order Bragg
process [18]. Example intensity profiles of both kinds of
pulsed lattices can be found in Fig.3(a).

III. BLOCH OSCILLATIONS IN GROUND AND
EXCITED BANDS

To illuminate the differences between ground- and
excited-band BOs, we first present how the atomic mo-
mentum evolves during such BO processes. The fre-
quency sweep δ̇ corresponds to the atom changing its
quasimomentum in the lattice frame. In its quasimomen-
tum trajectory, as an atom approaches and moves past
an avoided crossing while remaining in the same band,
its momentum in the lab frame changes in even units of
~k (see Fig. 2(a)). Thus, an atom can be accelerated to
large values in the lab frame using several cycles of BOs.

In the case of ground-band BOs, lab-frame acceleration
occurs only when an atom traverses the avoided cross-
ing at a Brillouin zone boundary at q = ∓1~k, where
the quasimomentum changes from ∓1~k to ±1~k. In
an excited band, in addition to the q = ∓1~k cross-
ing, there is another avoided crossing at q = 0. Thus,
in excited-band BOs, an atom changes its lab-frame
momentum twice during one Bloch period. However,
the total change in the lab-frame momentum is always
±[2(b+ 1)~k − 2b~k] = ±2~k for one Bloch oscillation.

This behavior can be seen in Fig. 2(b,c) where the
lab-frame momentum during Bloch oscillations in the
ground- and first-excited band are shown for frequency
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FIG. 2. (a) Ground- and first-excited band Bloch state trajec-
tories during a BO at U0 = 13.6Er. For the ground band, the
atom starts at 1, traverses the avoided crossing at q = −1~k,
gains 2~k in lab-frame momentum, and continues to move
at that momentum for the duration of the BO (2 and 3).
For the excited-band BO trajectory shown (4-6), an atom’s
lab-frame momentum increases by 4~k as it moves past the
q = 0 avoided crossing from 4 to 5, then decreases by 2~k at
the q = −1~k avoided crossing, such that it has a net lab-
frame momentum gain of 2~k by the time it reaches 6. The
mean atomic momentum is plotted as a function of sweep
time (corresponding to a particular final detuning for a fixed

δ̇) for an atom undergoing a partial sweep through the Bril-
louin zone in (b) the first-excited band and (c) the ground
band. Insets in (b) and (c) show representative time-of-flight
absorption images. ∆/Γ is +3500 and the frequency sweep

δ̇ is 2π × 83 kHz/msec for all the data. The intensity ramp
times are 300µs for (b) and 600µs for (c).

sweeps with varying final quasimomenta. The final mo-
mentum distribution was measured using time-of-flight
absorption imaging. The average momentum computed
from these images shows the differences between the
ground- and excited-band BOs described above.

For applications in AI, a high efficiency of Bloch oscil-
lation is desirable, which in turn provides high-efficiency
momentum transfer to an atomic wavepacket. As the
quasimomentum is swept using δ̇, atoms can tunnel to
other bands at the locations of avoided crossings, poten-
tially making the BO process inefficient. The Landau-
Zener model gives this tunneling probability as

PLZ = exp

(
−πΩ2

2βδ̇

)
, (1)

where ~Ω is the band gap at the avoided crossing and β is
the higher of the two band numbers participating in the
avoided crossing [20, 21]. PLZ increases when the band
gap is reduced or when the quasimomentum is swept
faster. To successfully perform a high-efficiency BO, PLZ

must be small. Even though there are two avoided cross-
ings for each excited band, the one at q = 0(±~k) will

always be smaller for b odd(even) and will have a greater
contribution to tunneling loss during a BO. For the pa-
rameters of the data in Fig. 2, PLZ ' 10−8(10−25) for
the loss probability during one BO in the first-excited
(ground) band.

IV. MAGIC DEPTH BLOCH OSCILLATIONS IN
EXCITED BANDS

To verify the magic depth hypothesis and explore its
applicability in interferometry, we systematically applied
BOs in one arm of a Mach-Zehnder interferometer (MZ)
and analyzed the resultant phase shifts (Fig. 3). The ba-
sic beamsplitter-mirror-recombiner pulses of our MZ con-
sist of π/2 − π − π/2 third-order Bragg pulses coupling
states |0〉 and |6~k〉.

We first compare the effects of phase shifts from a BO
in b = 0 with that in b = 1 within the MZ. The BO
pulse is applied on one arm (upper one in Fig. 3(a)) dur-
ing the first half of the MZ, inmediately following the
beamsplitter pulse, accelerating the upper arm from the
state |6~k〉 to the state |(n+ 6)~k〉. After a short free
evolution time (10µs in Fig. 3(a)), this arm is then de-
celerated back to |6~k〉 with a Bragg π−pulse of order
n/2 (n = 2 in the figure). The mirror pulse then swaps
the momenta of the upper and lower arms. In the sec-
ond half of the MZ, the |6~k〉 (lower) arm is accelerated
to |(n+ 6)~k〉 using a Bragg π−pulse, and is allowed to
evolve for some time (630µs in Fig. 3(a)) before being de-
celerated back to |6~k〉 with another Bragg π−pulse. A
final π/2 recombiner pulse is applied when the two arms
overlap and the population in each momentum state is
measured using time-of-flight absorption imaging. As the
phase φg of the recombiner pulse is varied, the fractional
population f6~k in the |6~k〉 state oscillates sinusoidally
(see Fig. 3(b,c)). The phase Φ of this oscillation is the dif-
ference in the phases accrued by the two interferometer
arms. We determine this MZ phase by fitting a sinusoid
function and observing its behavior as a function of the
BO pulse depth U0 for the ground and excited bands (see
Fig. 3(d)).

The depth-dependence of the MZ phase is well ex-
plained using our Bloch-bands model. During the BO
pulse, each interferometer arm is in a particular band of
the lattice. As the depth U0 is varied, the band energies
change, resulting in a phase shift on each interferometer
arm given by

1

~

∫
pulse

(E(q(t), U0(t))− Ef (q(t)))dt (2)

which is the difference between the band energy
E(q(t), U0(t)) and the free-space energy Ef (q(t)), where
U0(t) and q(t) are determined by the parameters of the
BO pulse. During the BO pulses, the phase accrual for
each arm can be organized into contributions from the
intensity ramps and the frequency sweep. Since the fi-
nal MZ phase is the difference between phase accrued
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FIG. 3. (a) Space-time diagram of the Mach-Zehnder interfer-
ometer (to scale) showing the upper and lower arms (purple
and pink lines respectively) and atom-optics sequence (green
line) for one BO in either the ground or an excited band ap-
plied to the upper arm. The purple (pink) highlight indicates
that a particular pulse affects the momentum of the upper
(lower) arm. Pulses which affect the momentum of both arms
are highlighted in gray. (b) Representative interferometer sig-
nal for one BO in the first-excited band (U0 = 11.2Er). Each
data point is the average of three population measurements.
Solid line is the best-fit sinusoid. (c) Same as (b) but for
b = 0 and U0 = 9.7Er. (d) The interferometer phase shift as
a function of lattice depth for one BO in the ground band (red
filled circles) or first-excited band (blue filled triangles) shows
good agreement with Bloch-bands calculations (solid lines)
for ΦBO (Eq. 3). (e) Visibilities of the interferometer signals
for b = 1 and b = 0. The BO parameters are ∆/Γ = +1300,

δ̇ = 2π × 83 kHz/msec and intensity ramp times of 300µs for
all the data in this figure.

by each arm, the interferometer phase shift due to a BO
pulse can be written as:

ΦBO = φ1,I + φ1,f − φ2,I − φ2,f (3)

where φi,I is the phase accrued by arm i (where i = 1(2)
is the upper(lower) arm in Fig. 3(a)) during the intensity
ramp and φi,f is the phase accrued by arm i during the
frequency sweep. Each of these phase shifts is calculated
using Expression (2).

It is important to note that the non-accelerating arm
during the BO process (lower arm in Fig. 3(a)) can make
a non-negligble contribution in the evaluation of ΦBO.
However, since this arm is always in a higher band de-
termined by its speed relative to the lattice frame, it
performs Landau-Zener tunneling transitions across rel-
atively small band gaps (PLZ ' 1) at each avoided cross-
ing during the BO. Thus the lab-frame momentum of this

interferometer arm does not change during the frequency
sweep.

Figure 3(d) demonstrates that in the first-excited band
(b = 1), there is a local maximum corresponding to a
magic depth at U0 ' 10Er, while the ground band (b = 0)
exhibits monotonic behavior. Our observations are well-
matched by our calculations based on the Bloch-bands
picture.

In addition to demonstrating the existence of the magic
depth, Fig. 3 also shows the usefulness of this property
for AI, as evidenced in the signal quality for b = 1 versus
b = 0 (Fig.3(b,c)). We define the visibility of such signals
as Vis = Max−Min

Max+Min × 100%, where Max and Min refer to
the maximum and minimum of the fitted sinusoid. As
shown in Fig. 3(e), the visibility for b = 1 is around 80%,
dramatically better than the 10% level for b = 0 over the
entire range of depths explored. As another measure of
the difference in signal stability and corresponding appli-
cability for interferometry, the error in the fitted phase
δΦ is 0.073 radians for b = 1 and 1.4 radians for b = 0, av-
eraged over the presented data sets. These observations
clearly show the high sensitivity of interferometer phase
noise to lattice intensity fluctuations in ground-band BO.
Furthermore, the visibility for the b = 0 data trend down-
ward with increasing depth (Fig. 3(e)), consistent with an

increased value of U0|∂〈E〉∂U0
| (Fig. 1(b), Fig. 3(d)) leading

to greater phase noise.
The magic depth property is ubiquitous to excited-

band BOs and we demonstrate its existence for different
numbers of Bloch oscillations as well as for different ex-
cited bands. In Fig. 4(a) we present measurements of
depth-dependent MZ phase shifts for different numbers
of BOs performed in the first-excited band. For these
measurements, an interferometer geometry similar to Fig.
3(a) was used with either 0, 1, or 2 BOs (corresponding
to n = 0, 2, 4) performed in b = 1 in the first half of the
MZ, using different ranges for the frequency sweep. In
the 0 BO (n = 0) case, only the intensity ramps were ap-
plied during the BO pulse on the upper arm in the first
half of the MZ and no acceleration or deceleration pulses
were applied on the lower arm during the second half. As
can be seen in the figure, there is very good agreement
between our theoretical model and experimental obser-
vations.

We define UMD as the value of U0 at which the con-

dition ∂〈E〉
∂U0

= 0 is satisfied. Thus UMD for a particu-
lar band is independent of experimental parameters, as
shown in Fig. 1(b). In actual experiments however, the
intensity ramps necessary to maintain adiabaticity lead
to depth values for the condition ∂ΦBO

∂U0
= 0 to be higher

than UMD. This can be seen in Fig. 4(a) as the posi-
tion of the local maximum approaching the dashed line
marking UMD for b = 1, as the number of applied BOs
increases. Thus UMD corresponds to the limiting value
of the magic depth as the number of BOs increases and
the intensity ramp time becomes insignificant compared
to the frequency sweep time.

Another feature of the plots in Fig. 4(a) is that they
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FIG. 4. Magic depths observed as maxima in Mach-Zehnder
interferometer phase shifts as functions of depth for excited-
band BOs. (a) Shows data for the first-excited band for zero
(purple triangles), one (blue circles), and two (green squares)
BOs together with the Bloch-bands calculations (solid lines).
Note that the “1 BO” data is the same as in Fig. 3(d). The
dashed line marks UMD (see text). (b) Interferometer phases
for BOs performed in the second (yellow) and third (black)

excited band. The BO parameters are ∆/Γ = +1300, δ̇ =
2π × 83 kHz/msec and intensity ramp times of 300µs for all
the data in this figure.

cross each other at U0 ' 17Er. This corresponds to
the depth where the average band energy is equal to the
average free-space (U0 = 0) energy (see Fig.1(b)), and
ΦBO in Eq. 3 only has contributions from the intensity
ramps, which are the same for all the data sets.

In Fig. 4(b), we present measurements of depth-
dependent MZ phase shifts for higher bands (b = 2 and
b = 3). For these measurements, an interferometer ge-
ometry identical to Fig. 3(a) was used and only the initial
δ of the BO pulse was adjusted according to the desired
band number. Our data clearly indicates that the magic
depth increases with band number, and again we find
very good agreement between our theoretical model and
experimental observations.

V. LARGE MOMENTUM SEPARATION
INTERFEROMETERS WITH EXCITED-BAND

BLOCH OSCILLATIONS

To fruitfully apply the magic depth property towards
creating large momentum separation between interferom-
eter arms, additional criteria have to be considered. High
frequency sweep rates are desirable to apply large mo-
mentum transfer in a short time. Furthermore, the de-
coherence from spontaneous scattering can start to play
a role for large numbers of BOs. In this section we first
demonstrate, in subsection A, the role of spontaneous
scattering in determining optimum sweep rates for BOs.
In subsection B we investigate how the magic-depth BO

operation parameters scale with band number b to guide
future efforts in using this tool towards high precision
interferometry.

A. Optimum Frequency Sweep Rate for high
momentum transfer

The period of the Bloch oscillation, TBO (equivalently

δ̇), has to be chosen to optimize efficiency, balancing the

considerations that a short TBO (large δ̇) causes more
tunneling to other bands (Eq.1) while a long TBO (small

δ̇) causes more spontaneous scattering. We demonstrate
this behavior by determining the efficiency of BOs as the
fraction of atoms in the target momentum state in time-
of-flight absorption images. The measured efficiency for
a 10 BO (20~k) pulse at U0 = UMD in b = 2 as a function
of TBO (Fig. 5(a)) exhibits a clear maximum. The gen-
eral features of our data are well-reproduced by a simple
model (thick solid line in Fig. 5(a)) incorporating PLZ and
spontaneous scattering in an expression for the efficiency
of n/2 BOs:

(1− Pint)
2 × [(1− PLZ)× exp(−RsTBO)](n/2) (4)

Here Pint is the spontaneous scattering probability during
each of the two identical intensity ramps and Rs = U0

8~
Γ
∆

corresponds to the spontaneous scattering rate [22] dur-
ing the frequency sweep, and we have taken the average
intensity experienced by an atom in the standing wave
to be one half of the peak intensity. This parameter-free
model reproduces our observations quite well, exhibiting
a maximum at an optimum sweep time which we label
as TBO,opt.

We note that while this model reproduces the observed
location of optimum efficiency, it slightly underestimates
the value for the peak, which is observed to be 99.4% per
~k. We can improve on the model by noting that the
atomic wavefunction during the BO process is not uni-
form but localized at the antinodes of the blue-detuned
lattice, which reduces the Rs factor in Eq. 4. Accounting
for the reduced average intensity due to the non-uniform
spatial wavefunction produces the thin solid line shown
in Fig. 5(a), in better agreement with the data but still
slightly underestimating the peak efficiency.

In our theoretical calculations of PLZ we have used the
avoided crossing value at the minimum bandgap point,
given by q = ±~k for b = 2. At U0 = UMD, the band dis-
persion still has substantial curvature (see Fig.1(a) where
U0 ' UMD for b = 1) and the use of Eq. 1 should be rea-
sonably valid.

By operating magic-depth BOs near the optimum time
determined in Fig. 5(a) and extending the overall MZ
time, we demonstrate stable interferometry with the
application of 20 BOs (40~k) on the upper arm only.
This experiment was performed in a geometry similar
to Fig. 3(a) with n = 20, but with a decelerating BO
pulse replacing the Bragg deceleration pulse in the up-
per arm, allowing for a greater number of BOs to be
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FIG. 5. (a) The efficiency for 10 BOs in b = 2 as a function
of the BO period for U0 = 27.5Er. The peak efficiency per ~k
of momentum gain was measured to be 99.4%. The thick and
the thin solid lines are theoretical model curves (see text). (b)
Interferometer signal for a sequence consisting of 20 BOs in
band 2 with U0 = 27.5Er and TBO = 120µs. Solid line is the
best-fit sinusoid. ∆/Γ = +3500 and intensity ramp times of
300µs for all the data in this figure.

applied. Even though the second BO pulse reverses the
momentum transfer from the first BO pulse (with 20~k
each), the lattice-induced phase shifts from both BOs
have the same sign and add. As shown in Fig. 5(b), we
obtain a clear MZ signal for these conditions. The sinu-
soidal fit returns a visibility of 13% and a phase error
δΦ = 0.57 rad. Our current level of light intensity fluc-
tuations of < 2% [19], should contribute < 40 mrad to
the phase uncertainty (arising from the local curvature
of 〈E〉 at UMD and detailed below) [23]. The lower visi-
bility and higher phase noise observed in Fig. 5(b) com-
pared to that in Fig. 3(b) can be explained by noting that
the total interferometer time for the 20 BOs experiment
was 6.7 ms, which is more than twice as long as all other
experiments reported in this work. The MZ geometry
is sensitive to mirror vibrations which become a signifi-
cant source of phase fluctuations at long interferometer
times [24]. We can thus infer that vibration noise is the
principal contributor to the visibility reduction at these
long interferometer times, consistent with other reports
for vibration-sensitive interferometers [24, 25].

While Fig.5(b) demonstrates that excited-band BOs
can be used to impart large momentum transfer within
an interferometer, its full exploitation with the benefits
of large n values will require using an interferometer ge-
ometry that is insensitive to mirror vibrations, such as a
contrast interferometer [25, 26] or a simultaneous conju-
gate interferometer [27].
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ten excited bands. (d) shows TBO,opt and (e) shows peak
efficiency per ~k for ∆/Γ = 104. (f) shows the calculated
interferometer phase noise per ~k for 1% intensity noise.

B. Scaling of Magic Depth Properties with Band
Number

In order to further assess the usefulness of the magic
depth properties towards high-precision interferometry,
we analyze how these properties scale with band number.
Our results can serve as a guide in choosing experimental
parameters to simultaneously optimize for high efficiency
and suppression of lattice-induced phase noise.

Calculated UMD values and the corresponding (mini-
mum) band gaps ~Ω for excited-bands up to b = 10 are
shown in Figure 6(a,b). Both UMD and ~Ω have the ex-
pected monotonically increasing behavior and show ap-
proximately quadratic and linear scaling with band num-
ber, respectively. Even when operating at the magic
depth, residual interferometric phase fluctuations will
arise from the local curvature of 〈E〉 at UMD. Since ex-
perimental intensity fluctuations are usually a fixed per-

centage of the average intensity, we plot 1
2 |

∂2〈E〉
∂U2

0
|
UMD
×

U2
MD in (Fig. 6(c)) to elucidate this scaling. The magic-

depth properties shown in Fig. 6(a-c) are common to all
systems (provided sinusoidal lattices are used) and can
be used to guide choices for experimental paramaters.

As shown in Fig. 5(a), optimum BO efficiency requires
choosing an optimum BO frequency sweep rate, which
in turn depends on the choice of detuning ∆. Since our
Eq. 4 (thick solid line in Fig.5(a)) already captures our
observations quite well, we use this approach to evaluate
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the optimum sweep time TBO,opt for a chosen ∆/Γ = 104

(see Fig.6(d)). The corresponding efficiency, which we
take to be a conservative estimate, remains quite high
at ' 99.5% per BO (Fig.6(e)). The expected phase fluc-
tuations from lattice-induced shifts at UMD can then be

calculated as ∆Φ = 2π× 1
2 |

∂2〈E〉
∂U2

0
|
UMD
×U2

MD× 1
2TBO,opt×

( r
100 )2 per ~k for a relative intensity noise of r%. The re-

sulting plot of ∆Φ as a function of b (Fig.6(f), for r = 1)
shows that the expected phase noise grows very weakly
with b and stays below 1 mrad per ~k for b = 1 through
10. While this may suggest that the choice of b is not
very important, the strong dependence of TBO,opt on b fa-
vors using higher b to minimize the time for acceleration
processes and thus allow for longer free evolution time
or interaction time for interferometric sensing. Finally,
we note that the optimum choice for b for a given appli-
cation will also depend on the experimentally accessible
maximum intensity for the lattice beams (see Fig.6(a)).

VI. OUTLOOK AND SUMMARY

We have proposed and demonstrated the existence of
particular lattice depths in excited-band Bloch oscilla-
tions where the average energy of the band is first-order
insensitive to lattice intensity fluctuations. Operation
at such magic depths can be maintained in combination
with high efficiency of BOs, making this property of value
to precision atom interferometry. Using experimentally
confirmed operational characteristics, we have provided
projections for scaling up of this method to very large
momentum transfers. In particular, efficient momentum
transfer with several hundred BOs seems feasible with
manageable (. 1 radian) lattice-induced phase fluctua-
tion effects. Our results are presented scaled to recoil en-

ergy and recoil momentum, and should be directly adapt-
able to interferometry with other atomic species.

We can assess the improvements that this method can
bring to a fine-structure constant measurement using
contrast interferometry [25]. In recent work, Bragg pulses
were employed for acceleration to an inter-arm momen-
tum separation of 112 photon recoils [19] within such
an interferometer. However, the performance was lim-
ited by the efficiency of momentum transfer, resulting in
signal reduction for large momenta. Comparing the mo-
mentum transfer efficiency of 98.45% per ~k in [19] with
the highest values in Fig.6(e), we can conservatively ex-
pect a four-fold increase in momentum separation with
magic-depth excited-state BOs, leading to a sixteen-fold
improvement in sensitivity to α for the same interferome-
ter time. By operating at TBO,opt for b = 4 to reduce the
acceleration time, and in a vertical geometry to increase
the free evolution time, an overall improvement of more
than a factor of 100 is attainable, allowing for a sub-part-
per-billion measurement of the fine structure constant
and consequent test of QED theory. Our excited-band
magic-depth BO technique may also benefit other AI ap-
plications that currently rely on Bragg diffraction pro-
cesses for large momentum transfer including gravimetry
[28] and gravity gradiometry [29].
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