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We present an efficient method to compute short-time expectation values in large collective spin
systems with typical forms of Markovian decoherence. Our method is based on a Taylor expansion
of a formal solution to the equations of motion for Heisenberg operators. This expansion can
be truncated at finite order to obtain virtually exact results at short times that are relevant for
metrological applications such as spin squeezing. In order to evaluate the expansion for Heisenberg
operators, we compute the relevant structure constants of a collective spin operator algebra. We
demonstrate the utility of our method by computing spin squeezing, two-time correlation functions,
and out-of-time-ordered correlators for 104 spins in strong-decoherence regimes that are otherwise
inaccessible via existing numerical methods. Our method can be straightforwardly generalized to
the case of a collective spin coupled to bosonic modes, relevant for trapped ion and cavity QED
experiments, and may be used to investigate short-time signatures of quantum chaos and information
scrambling.

I. INTRODUCTION

Collective spin systems are a versatile resource in
quantum science for a range of applications including
quantum-enhanced metrology and quantum simulation.
The study of such systems dates back to the mid-
twentieth century with the introduction of the Dicke
model[1] that describes atoms cooperatively interacting
with a single mode of a radiation field, and the Lipkin-
Meshkov-Glick (LMG) model, a toy model for testing
many-body approximation methods in contemporary nu-
clear physics[2–4]. On the experimental side, the de-
velopment of advanced trapping, cooling, and control
techniques in atomic, molecular, and optical (AMO)
systems have enabled the realization of collective spin
models in a broad range of platforms, including cold
atomic gasses[5, 6], Bose-Einstein condensates[7–10], ul-
tracold Fermi gasses[11–13], trapped ions[14], and optical
cavities[15–24], among others. These implementations
compliment innumerable theoretical studies in a vari-
ety of rich subjects, including quantum phase transitions
and criticality[25–28], non-equilibrium phenomena[29–
36], and precision mentrology[37–48].

One of the primary motivations for studying collective
spin systems is their application to quantum-enhanced
metrology. Quantum projection noise limits the error
∆φ in the measurement of a phase angle φ with N inde-
pendent spins to ∆φ ∼ 1/

√
N [37, 49]. Collective spin

systems provide a means to break through this limit
via the preparation of many-body entangled states such
as spin-cat states[44, 50, 51] and most notably spin-
squeezed states[37, 38, 41] that allow for measurement
errors ∆φ ∼ 1/Nε with 1/2 < ε ≤ 1, where ε = 1 sat-
urates the Heisenberg limit[52]. Such entangled states
can be prepared either via heralded methods such as

∗ mika.perlin@gmail.com

quantum nondemolition measurements[5, 6, 15, 16], or
via deterministic methods that require nonlinear dynam-
ics, typically realized with phonon-mediated[14], photon-
mediated[7, 17–24] or collisional[8–13] interactions. Al-
though a truly collective spin model requires uniform, all-
to-all interactions, as long as measurements do not dis-
tinguish between constituent particles, even non-uniform
systems may be effectively described by a uniform model
with renormalized parameters[53].

In the absence of decoherence, permutation symmetry
and total spin conservation divide the total Hilbert space
of a collective spin system into superselection sectors that
grow only linearly with system size N , thereby admitting
efficient classical simulation of its dynamics. Decoherence
generally violates total spin conservation and requires the
use of density operators, increasing the dimension of ac-
cessible state space to O

(
N3
)
[54, 55]. In this case, exact

simulations can be carried out for N . 100 particles.
If decoherence is sufficiently weak, dynamics can be nu-
merically solvable for N . 105 particles via “quantum
trajectory” Monte Carlo methods[56, 57] (also known as
“quantum jump” or “Monte Carlo wavefunction” meth-
ods) that can reproduce all expectation values of interest.
When decoherence is strong, however, these Monte Carlo
methods can take a prohibitively long time to converge,
as simulations become dominated by incoherent jumps
that generate large numbers of distinct quantum trajec-
tories that need to be averaged in order to accurately
compute expectation values. Even with strong decoher-
ence, dynamics are sometimes solvable through the cu-
mulant expansion[58] that neglects all n-body connected
correlators for n > 2. The growth of genuinely multi-
body correlations, however, eventually causes the cumu-
lant expansion to yield incorrect results with no clear
signature of failure. In the absence of other means to
compute correlators, it can therefore be difficult to iden-
tify the point at which correlators computed via the cu-
mulant expansion can no longer be trusted.

In this work, we present an efficient method to com-
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pute short-time dynamics of collective spin systems with
typical forms of Markovian decoherence. The only re-
striction on decoherence (beyond Markovianity) is that,
like the coherent collective dynamics, it must act identi-
cally on all constituent particles. Our method is based on
a formal solution to the equations of motion for Heisen-
berg operators, thereby bearing some resemblance to the
Mori formalism[59] and related work[60]. Specifically,
we expand a formal solution for a Heisenberg operator
into a Taylor series whose truncation can yield negli-
gible error at sufficiently short times. Evaluating the
resulting expansion requires knowing the structure con-
stants of a collective spin operator algebra; the calcula-
tion of these structure constants (in Appendices A–C) is
one of the main technical results of this work, which we
hope will empower both analytical and numerical stud-
ies of collective spin systems in the future. We bench-
mark our method against exact results from both ana-
lytical calculations and quantum trajectory Monte Carlo
computations of spin squeezing in accessible parameter
regimes, highlighting both advantages and limitations of
the short-time expansion. Finally, we showcase applica-
tions of our method by computing quantities that are
inaccessible to other numerical methods.

II. THEORY

In this section we provide the basic theory for our
method to compute expectation values of collective spin
operators, deferring lengthy derivations to the appen-
dices. We consider a system of N distinct spin-1/2 par-
ticles. Defining individual spin-1/2 operators ŝα=x,y,z ≡
σ̂α/2 and ŝ± ≡ ŝx±iŝy = σ̂± with Pauli operators σ̂α, we
denote an operator that acts with ŝα on the spin indexed
by j and trivially (i.e. with the identity 1̂) on all other

spins by ŝ
(j)
α . We then define the collective spin opera-

tors Ŝα ≡
∑N
j=1 ŝ

(j)
α for α ∈ { x, y, z,+,−}. Identifying

the set { Ŝm } as a basis for all collective spin operators,

with m ≡ (m+,mz,m−) ∈ N3
0 and Ŝm ≡ Ŝ

m+

+ Ŝmz
z Ŝ

m−
− ,

we can expand any collective spin operator Ô in the form

Ô =
∑
m

OmŜm (1)

with scalar coefficients Om ∈ C. If Ô is self-adjoint, for
example, then O∗m = Om∗ with m∗ ≡ (m−,mz,m+).

The corresponding Heisenberg operator is then Ô (t) =∑
mOm (t) Ŝm+ÊO (t), with time-dependent coefficients

Om (t) for time-independent Schrödinger operators Ŝm,

and mean-zero “noise” operators ÊO (t) that result from
interactions between the spin system and its environ-
ment, initially ÊO (0) = 0. These noise operators will
essentially play no role in the present work, but are nec-
essary to include for a consistent formalism of Heisenberg
operators in an open quantum system; see Appendix N

for further discussion. The expectation values of Heisen-
berg operators evolve according to

d

dt
〈Ô (t)〉 = 〈Ť Ô (t)〉 =

∑
m,n

〈Ŝm〉TmnOn (t) (2)

with a Heisenberg-picture time derivative operator Ť =
d/dt whose matrix elements Tmn ∈ C are defined by

Ť Ŝn ≡ i
[
Ĥ, Ŝn

]
−

+
∑
J
γJ Ď (J ) Ŝn =

∑
m

ŜmTmn,

(3)

where [X,Y ]± ≡ XY ± Y X; Ĥ is the collective spin
Hamiltonian; J is a set of jump operators with a cor-
responding decoherence rate γJ ; and Ď is a Heisenberg-
picture dissipator, or Lindblad superoperator, defined by

Ď (J ) Ô ≡
∑
Ĵ∈J

(
Ĵ†ÔĴ − 1

2

[
Ĵ†Ĵ , Ô

]
+

)
. (4)

Decoherence via uncorrelated decay of individual spins,
for example, would be described by the set of jump op-

erators J− ≡ { ŝ(j)
− : j = 1, 2, · · · , N }. The commutator

in Eq. (3) can be computed by expanding the product

Ŝ`Ŝm =
∑
n f`mnŜn with structure constants f`mn ∈ R

that we work out in Appendices A–C, and the effects of
decoherence from jump operators (i.e. elements of J ) of

the form ĝ(j) =
∑
α gαŝ

(j)
α and Ĝ =

∑
αGαŜα are worked

out in Appendices D–G. We consider these calculations
to be some of the main technical contributions of this
work, with potential applications beyond the short-time
simulation method presented here. These ingredients are
sufficient to compute matrix elements Tmn of the time
derivative operator Ť in Eq. (3) in most cases of practical
interest.

We note that particle loss is an important decoherence
mechanism in many experimental realizations of collec-
tive spin models[41]. In principle, a spin model has no
notion of the particle annihilation operators that gener-
ate particle loss, and therefore cannot capture this effect
directly. Nonetheless, for a system initially composed
of N particles, the effect of particle loss can be emu-
lated with O(1/N) error by the dissipator Ďloss defined

by ĎlossŜm = −|m|Ŝm, where |m| ≡
∑
αmα (see Ap-

pendix H). Furthermore, the effect particle loss can be
accounted for exactly by (i) introducing an additional

index on spin operators, Ŝm → ŜNm, to keep track of
different sectors of fixed particle number within a multi–
particle Fock space, and (ii) constructing jump operators
that appropriately couple spin operators within different
particle-number sectors. We defer a detailed exact ac-
counting of particle loss to future work.

The time derivative operator Ť will generally couple
spin operators Ŝn to spin operators Ŝm with higher
“weight”, i.e. with |m| > |n|. The growth of oper-
ator weight signifies the growth of many-body correla-
tions. Keeping track of this growth eventually becomes
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intractable, requiring us to truncate our equations of mo-
tion somehow. The simplest truncation strategy would
be to take

d

dt
〈Ô (t)〉 →

∑
w(m)<W

〈Ŝm〉
∑
n

TmnOn (t) (5)

for some weight measure w, e.g. w (m) = |m|, and a
high-weight cutoff W . The truncation in Eq. (5) closes
the system of differential equations defined by Eq. (2),
and allows us to solve it using standard numerical meth-
ods. Some initial conditions for this system of differ-
ential equations, namely expectation values of collective
spin operators with respect to spin-polarized (Gaussian)
states that are generally simple to prepare experimen-
tally, are provided in Appendix I.

The truncation strategy in Eq. (5) has a few limita-
tions: (i) simulating a system of differential equations
for a large number of operators can be time-consuming,
(ii) the weight measure w may need to be chosen care-
fully, as the optimal measure is generally system-depen-
dent, and (iii) simulation results can only be trusted up

to the time at which the initial value of operators Ŝm
with weight w (m) ≥ W have a non-negligible contribu-
tion to expectation values of interest. The last limitation
in particular unavoidably applies in some form to any
method tracking only a subset of all relevant operators.
We therefore devise an alternate truncation strategy built
around limitation (iii).

We can formally expand Heisenberg operators Ô (t) in
a Taylor series about the time t = 0 to write

〈Ô (t)〉 = 〈etŤ Ô (0)〉 =
∑
k≥0

tk

k!

∑
m,n

〈Ŝm〉T kmnOn (0) ,

(6)

where the matrix elements T kmn of the k-th time deriva-
tive operator Ť k are

T 0
mn ≡ δmn, (7)

T 1
mn ≡ Tmn, (8)

T k>1
mn ≡

∑
p1,p2,··· ,pk−1

Tmpk−1
· · ·Tp3p2

Tp2p1
Tp1n, (9)

with δmn = 1 if m = n and 0 otherwise. For sufficiently
short times, we can truncate the series in Eq. (6) by tak-
ing

〈Ô (t)〉 →
M∑
k=0

tk

k!

∑
m,n

〈Ŝm〉T kmnOn (0) . (10)

We refer Eq. (10) as the truncated short-time (TST) ex-
pansion of Heisenberg operators. Note that when com-
puting an expectation value 〈Ô (t)〉, the relation Ŝ†m =

Ŝm∗ , which by Hermitian conjugation of Eq. (2) also im-
plies that Tm∗n∗ = T ∗mn, cuts both the number of initial-

time expectation values 〈Ŝm〉 and the number of matrix

elements Tmn that we may need to explicitly compute
roughly in half.

Unlike the weight-based truncation in Eq. (5), the
nonzero matrix elements T kmn for k = 0, 1, · · · ,M in

Eq. (10) tell us which operators Ŝm are relevant for com-

puting the expectation value 〈Ô (t)〉 to a fixed order M .
The TST expansion thereby avoids the introduction of a
weight measure w that chooses which operators to keep
track of, and trades the cost of solving a system of dif-
ferential equations for the cost of computing expectation
values 〈Ŝm〉 and matrix elements T kmn. In all cases con-
sidered in this work, we find that the TST expansion is
both faster to evaluate and provides accurate correlators
〈Ô (t)〉 until later times t than the weight-based expan-
sion in (5) with weight measure w (m) = |m| and cutoff
W ≈M . We therefore restrict the remainder of our dis-
cussions to the TST expansion in Eq. (10), and provide a
pedagogical tutorial for computing correlators using the
TST expansion in Appendix J.

Three primary considerations limit the maximum time
t to which we can accurately compute a correlator
〈Ŝn (t)〉 using the TST expansion. First, maintaining
accuracy at larger times t requires going to higher orders
M in the TST expansion. An order-M TST expansion
of the correlator 〈Ŝn (t)〉 can involve a significant frac-

tion of operators Ŝm with weight |m| . M , which im-
plies the need to compute O

(
M3
)

initial-time expecta-

tion values 〈Ŝm〉 and O
(
M4
)

matrix elements T kmn. In
practice, with a straightforward implementation of the
TST expansion we find that these requirements gener-
ally restrict M . 50 – 70 with 8 – 50 gigabytes of ran-
dom access memory (RAM). Second, individual terms at
high orders of the TST expansion in Eq. (10) can grow
excessively large, greatly amplifying any numerical er-
rors and thereby spoiling cancellations that are neces-
sary to arrive at a physical value of a correlator, i.e. with
|〈Ŝn (t)〉| . S|n|. Finally, the TST expansion is essen-
tially perturbative in the time t, which implies that its
validity as a formal expansion eventually breaks down.
Precisely characterizing the implications of these last two
considerations for the TST expansion requires additional
analysis that we defer to future work. An investigation of
connections between the TST expansion and past work
related to the Mori formalism[59, 60], for example, might
answer questions about the breakdown and convergence
of the TST expansion. As we show from benchmarks of
the TST expansion in Section III, however, a detailed
understanding of breakdown is not necessary to diagnose

the breakdown time t
(M)
break beyond which the TST expan-

sion yields inaccurate results. Empirically, we find that
going beyond order M ≈ 35 yields no significant gains in
all cases considered in this work.
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III. SPIN SQUEEZING, BENCHMARKING,
AND BREAKDOWN

To benchmark our method for computing collective
spin correlators, we consider three collective spin mod-
els known to generate spin-squeezed states: the one-
axis twisting (OAT), two-axis twisting (TAT), and twist-
and-turn (TNT) models described by the collective spin
Hamiltonians[41]

HOAT = χŜ2
z , (11)

HTAT =
χ

3

(
Ŝ2

z − Ŝ2
y

)
, (12)

HTNT = χŜ2
z + ΩŜx, (13)

where we include a factor of 1/3 in the TAT Hamiltonian
because it naturally appears in realistic proposals to ex-
perimentally implement TAT[42, 61]. For simplicity, we
further fix Ω = χS (with S ≡ N/2 throughout this work)
to the critical value known to maximize the entanglement
generation rate of TNT in the large-N limit[62, 63].

Note that the OAT model is a special case of the
zero-field Ising model, whose quantum dynamics ad-
mits an exact analytic solution even in the presence
of decoherence[64]. The approximate and numerics-
oriented TST expansion is therefore an inappropriate tool
for studying the OAT model, which will merely serve as
an exactly solvable benchmark of our methods. Wher-
ever applicable, we will provide exact results for the OAT
model (see Appendix K, as well as the Supplementary
Material of Ref. [14]).

The Hamiltonians in Eqs. (11)–(13) squeeze the ini-

tial product state |X〉 ∝
(
|↑〉+ |↓〉

)⊗N
with Ŝx |X〉 =

S |X〉. Our measure of spin squeezing is the directionally-
unbiased Ramsey squeezing parameter determined by
the maximal gain in resolution ∆φ of a phase angle φ
over that achieved by any spin-polarized product state
(e.g. |X〉)[37, 41],

ξ2 ≡ (∆φmin)
2(

∆φpolarized

)2 =
N

|〈Ŝ〉|2
min
v⊥〈Ŝ〉
v·v=1

〈(
Ŝ · v

)2
〉
, (14)

where Ŝ ≡
(
Ŝx, Ŝy, Ŝz

)
is a collective spin operator-

valued vector, the minimization is performed over all unit
vectors v orthogonal to the mean spin vector 〈Ŝ〉, and for
brevity we have suppressed the explicit time dependence
of operators in Eq. (14). This squeezing parameter is en-
tirely determined by one- and two-spin correlators of the
form 〈Ŝα〉 and 〈ŜαŜβ〉. For the unitary dynamics dis-
cussed in this work, these correlators are obtainable via
exact simulations of quantum dynamics in the (N + 1)-
dimensional Dicke manifold of states { | S,m〉 } with net
spin S and spin projection m onto the z axis, i.e. with
〈S,m|Ŝ2|S,m〉 = S (S + 1) and 〈S,m|Ŝz|S,m〉 = m for
m ∈ {−S,−S + 1, · · · , S }. In the presence of single-
spin or collective decoherence, meanwhile, these corre-
lators are obtainable with the collective-spin quantum
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(a) Squeezing with unitary dynamics
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(b) Squeezing with decoherence: γ− = γ+ = γz = χ

FIG. 1. Spin squeezing of N = 104 spins initially in |X〉 under
(a) unitary and (b) non-unitary dynamics, computed using
exact methods (solid lines), quantum trajectory simulations
(dots), and the TST expansion in Eq. (10) with M = 35
(dashed lines). Solid circles mark the times at which the TST
expansion gives an unphysical result with ξ2 < 0.

trajectory Monte Carlo method developed in ref. [57]. In
this work, these exact and quantum trajectory simula-
tions will be used to benchmark the TST expansion in
Eq. (10).

Figure 1 compares the squeezing parameter ξ2 for
N = 104 spins initially in the state |X〉 evolved un-
der the Hamiltonians in Eqs. (11)–(13), as computed via
both benchmarking simulations and the TST expansion
in Eq. (10) with M = 35. Squeezing is shown for both
unitary dynamics (Figure 1a), as well as non-unitary dy-
namics in the presence of spontaneous decay, excitation,
and dephasing of individual spins at rates χ (Figure 1b),
respectively described by the sets of jump operators Jα ≡
{ ŝ(j)

α } with corresponding decoherence rates γα = χ for
α ∈ {−,+, z }. The results shown in Figure 1 were com-
puted in a rotated basis with (ŝz, ŝx) → (ŝx,−ŝz) and

|X〉 → |−Z〉 ≡ |↓〉⊗N , as well as appropriate transforma-
tions of the Hamiltonian and jump operators. The only
effects of this rotation on the results presented in Figure 1
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are to (i) reduce the time it takes to compute correlators

〈Ô (t)〉 with the TST expansion, and (ii) prolong the time
for which the TST expansion of TNT results agree with
benchmarking simulations. The speedup in a different
basis occurs because for the initial state |−Z〉, all initial-

time correlators 〈Ŝm〉 are zero unless m+ = m− = 0, and
all non-zero correlators take O (1) (i.e. constant in N)
time to compute, rather than O (N) time (see Appendix
I). In total, the use of a rotated basis reduces the com-
putation time of initial-time correlators from O

(
M3N

)
to O (M). The reason for prolonged agreement of TNT
results in a rotated basis is not entirely understood, and
provides a clue into the precise mechanism by which the
TST expansion breaks down (discussed below). We defer
a detailed study of this breakdown to future work.

The main lesson from Figure 1 is that the TST ex-
pansion yields essentially exact results right up until
a sudden and drastic departure that can be diagnosed
by inspection. The breakdown of the TST expansion
in Figure 1 induces an unphysical squeezing parameter
ξ2 < 0. In general, however, there is no fundamental re-
lationship between the breakdown of the TST expansion
and the conditions for a physical squeezing parameter
ξ2. A proper diagnosis of breakdown therefore requires
inspection of the correlators 〈Ŝn (t)〉 used to compute
the squeezing parameter ξ2, which upon breakdown will
rapidly take unphysical values with |〈Ŝn (t)〉| & S|n| (see
Appendix L for an example). The sudden and drastic de-
parture from virtually exact results is consistent with the
limitations of the TST expansion discussed at the end of
Section II. Specifically, we identify three possible mech-
anisms for breakdown: (i) a rapid growth in the order
M necessary for the TST expansion to converge, (ii) the
growth of numerical errors in excessively large terms of
the TST expansion, and (iii) the formal breakdown of
the perturbative expansion in the time t. In all of these
cases, a detailed cancellation eventually ceases to occur
between large terms at high orders in the TST expan-
sion. These large terms grow with the time t raised to
some large power (as high as M), and therefore rapidly
yield wildly unphysical results. In contrast to other ap-
proximate methods such as the cumulant expansion[58],
the TST expansion can thus diagnose its own breakdown,
which is an important feature when working in parame-
ter regimes that are inaccessible via other means to com-
pute correlators. Note that, due to the breakdown mech-
anisms of the TST expansion, going up through order
M = 70 does not significantly increase the breakdown

time t
(M)
break in Figure 1, and in some cases even shortens

t
(M)
break.

Although the TST expansion breaks down at short
times, it has two key advantages over the quantum tra-
jectory Monte Carlo method to compute correlators in
the presence of decoherence. First, computing spin cor-
relators with the TST expansion is generally faster and
requires fewer computing resources. The TST expan-
sion results in Figure 1b, for example, take ∼ 10 seconds
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FIG. 2. Spin squeezing of N = 104 spins initially in |X〉 with
spontaneous decay, excitation, and dephasing of individual
spins at rates γ− = γ+ = γz = 100χ. Computed using the
TST expansion in Eq. (10) with M = 35. Solid circles mark
the times at which the TST expansion gives an unphysical
result with ξ2 < 0.

to compute with a single CPU on modern computing
hardware. The quantum trajectory Monte Carlo results
in the same figure, meanwhile, take ∼ 104 CPU hours
to compute on similar hardware; the bulk of this time
is spent performing sparse matrix-vector multiplication,
leaving little room to further optimize serial runtime.
Parallelization can reduce actual runtime of the Monte
Carlo simulations to ∼ 10 hours by running all trajecto-
ries at once, but at the cost of greatly increasing com-
puting resource requirements. Though it may be possi-
ble to further speed up quantum trajectory Monte Carlo
simulations by introducing new truncation schemes, any
modifications (i) should be made carefully to ensure that
simulations still yield correct results, and (ii) are unlikely
to bridge the orders of magnitude in computing resource
requirements.

The second advantage of the TST expansion is
the capability to compute spin correlators in strong-
decoherence regimes of large systems that are entirely
inaccessible to other methods. As an example, Figure 2
shows squeezing of N = 104 spins initially in |X〉, un-
dergoing spontaneous decay, excitation, and dephasing
of individual spins at rates γ− = γ+ = γz = 100χ. The
system size in these simulations is too large for straight-
forward application of exact methods for open quantum
systems. Quantum trajectory Monte Carlo simulations,
meanwhile, take a prohibitively long time to converge
with such strong decoherence due to the multiplicity of
quantum trajectories that require averaging.

The results in Figure 2 show that the TNT model can
generate more squeezing than the OAT or TAT models
in the presence of strong decoherence. The better per-
formance of TNT is in part a consequence of the fact
that TNT initially generates squeezing at a faster rate
than OAT or TAT, thereby allowing it to produce more
squeezing before the degrading effects of decoherence kick
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in. We corroborate this finding with quantum trajectory
simulations of a smaller system in Appendix M. Strong-
decoherence computations of the sort used for Figure 2
put lower bounds on theoretically achievable spin squeez-
ing via TAT with decoherence in Ref. [48], exemplifying a
concrete and practical application of the TST expansion
and the collective-spin structure constants calculated in
this work.

IV. TWO-TIME CORRELATION FUNCTIONS
AND OUT-OF-TIME-ORDERED CORRELATORS

As a final example of collective-spin physics that is
numerically accessible via the TST expansion of Heisen-
berg operators, we consider the calculation of two-time
correlation functions and out-of-time-ordered correlators
(OTOCs). In particular, we consider the effect of deco-
herence on short-time behavior of the two-time connected
correlator

C (t) ≡ 1

S

(
〈Ŝ+ (t) Ŝ− (0)〉 − 〈Ŝ+ (t)〉 〈Ŝ− (0)〉

)
, (15)

and the expectation value of a squared commutator,

D (t) ≡ 1

S2

〈[
Ŝ+ (t) , Ŝ− (0)

]†
−

[
Ŝ+ (t) , Ŝ− (0)

]
−

〉
nn

,

(16)

in the context of the squeezing models in Section III. The
subscript on 〈·〉nn in Eq. (16) stands for “no noise”, and
denotes a correlator computed without the noise contri-
butions ÊO (t) to Heisenberg operators Ô (t). While lin-
ear contributions from noise operators as e.g. in Eq. (15)
always vanish under Markovian decoherence (see Ap-
pendix N), quadratic contributions that would otherwise
appear in Eq. (16) generally do not[65]. Determining the
effect of these noise terms generally requires making addi-
tional assumptions about the environment, which would
be a digression for the purposes of the present work. We
therefore exclude these noise terms in (16) in order to
keep our discussion simple and general; see Ref. [65] for
more detailed discussions of noise terms and the quantum
regression theorem underlying the calculation of multi-
time correlators.

In an equilibrium setting, correlation functions similar
to that in Eq. (15) contain information about the lin-
ear response of Heisenberg operators to perturbations of
a system; in a non-equilibrium setting, they contribute
to short-time linear response (see Appendix O). Simi-
lar correlators have made appearances as order parame-
ters for diagnosing time-crystalline phases of matter[66].
Squared commutators such as that in Eq. (16), mean-
while, are commonly examined for signatures of quantum
chaos and information scrambling[67–69]. In typical sce-
narios, such squared commutators initially vanish by con-
struction through to a choice of spatially separated oper-
ators. Collective spin systems, however, have no intrinsic

notion of locality or spatial separation. In our case, there-

fore, with the choice of initial state |X〉 ∝
(
|↑〉+ |↓〉

)⊗N
we merely have D (0) ∼ 1/N .

Figure 3 shows the behavior of C (t) and D (t) for
N = 104 spins, initially in the state |X〉, evolving under
the squeezing Hamiltonians in Eqs. (11)–(13) both with
and without spontaneous decay, excitation, and dephas-
ing of individual spins at rates γ− = γ+ = γz = 100χ.
In the case of unitary evolution under OAT, we find that
to an excellent approximation |C (t)| takes the functional

form f (t) = f (0) +aNχt+ (bNχt)
2

with a ∼ b ∼ 1, and

with a virtually perfect fit D (t) = D (0) +
(
[N + 1]χt

)2
.

For unitary evolution under TAT and TNT, we find that
to an excellent approximation both |C (t)| and D (t) take
the functional form f (t) = f (0) + a

[
exp (bNχt)− 1

]
with a ∼ b ∼ 1. As may be expected, the growth of C (t)
and D (t) is generally suppressed by decoherence. Figure
3 serves as an example for the type of behavior that is
accessible at short times with the TST expansion. These
examples are straightforward extend to equilibrium set-
tings and spin-boson systems.

V. CONCLUSIONS

We have presented an efficient method for computing
correlators at short times in collective spin systems. This
method is based on truncating a short-time expansion of
Heisenberg operators, and can access correlators on time
scales that are relevant to metrological applications such
as spin squeezing. In order to evaluate the truncated
short-time (TST) expansion of Heisenberg operators, we
have computed the structure constants of a collective spin
operator algebra, which we hope will empower future an-
alytical and numerical studies of collective spin systems.
Even though we considered only non-equilibrium spin-
squeezing processes in this work, our method can be ap-
plied directly in an equilibrium setting, and is straightfor-
ward to generalize to systems such as trapped ions and
optical cavities with collective spin-boson interactions.
In such contexts, our method may be used to benchmark
the short-time effects of decoherence, or study the onset
of quantum chaos and information scrambling.

ACKNOWLEDGMENTS

We acknowledge helpful discussions with Robert
Lewis-Swan, Kris Tucker, and Colin Kennedy; as well
as some technical contributions from Diego Barberena.
This work is supported by the Air Force Office of Sci-
entific Research (AFOSR) grant FA9550-18-1-0319; the
AFOSR Multidisciplinary University Research Initiative
(MURI) grant; the Defense Advanced Research Projects
Agency (DARPA) and Army Research Office (ARO)
grant W911NF-16-1-0576 and W911NF-19-1-0210; the
National Science Foundation (NSF) grant PHY-1820885;



7

100

101

|C
(t

)|

OAT

TAT

TNT

γ0 = 0

γ0 = 100χ

γ0 = 0

γ0 = 100χ

0 2 4 6

Time (Nχt)

0.00

−0.25

−0.50

φ
(t

)/
π

(a) Two-time correlator C (t) ≡ |C (t)| exp
[
iφ (t)

]
.

0 2 4 6

Time (Nχt)

10−2

10−1

100

101

102

D
(t

)

OAT

TAT

TNT

γ0 = 0

γ0 = 100χ

γ0 = 0

γ0 = 100χ

(b) Squared commutator D (t).

FIG. 3. The two-time connected correlator C (t) and squared commutator D (t), respectively defined in Eqs. (15) and (16), for
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|↑〉 + |↓〉

)⊗N
evolving under the squeezing Hamiltonians in Eqs. (11)–(13).
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lines), computed using the TST expansion in Eq. (10) with M = 20.
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Appendix A: Basic spin operator identities

The appendices in this work make ubiquitous use of various spin operator identities; we collect and derive some basic

identities here for reference. Note that despite the working definition of collective spin operators from Sα =
∑
j s

(j)
α ,

the identities we will derive involving only collective spin operators apply just as well to large-spin operators that
cannot be expressed as the sum of individual spin-1/2 operators. The elementary commutation relations between spin
operators are, with µ̄ ≡ −µ ∈ {+1,−1 } for brevity,[

s(j)
z , s(k)

µ

]
−

= δjkµs
(j)
µ ,

[
Sz, s

(j)
µ

]
−

=
[
s(j)

z , Sµ

]
−

= µs(j)
µ ,

[
Sz, Sµ

]
− = µSµ, (A1)[

s(j)
µ , s

(k)
µ̄

]
−

= δjk2µs(j)
z ,

[
Sµ, s

(j)
µ̄

]
−

=
[
s(j)
µ , Sµ̄

]
−

= 2µs(j)
z ,

[
Sµ, Sµ̄

]
− = 2µSz. (A2)

These relations can be used to inductively compute identities involving powers of collective spin operators. By pushing
through one spin operator at a time, we can find

(µSz)
m
s(j)
µ = (µSz)

m−1
s(j)
µ (1 + µSz) = (µSz)

m−2
s(j)
µ (1 + µSz)

2
= · · · = s(j)

µ (1 + µSz)
m
, (A3)

and

µs(j)
z Smµ = Sµµs

(j)
z Sm−1

µ + s(j)
µ Sm−1

µ = · · · = Smµ µs
(j)
z +ms(j)

µ Sm−1
µ , (A4)

where we will generally find it nicer to express results in terms of µs
(j)
z and µSz rather than s

(j)
z and Sz. Summing

over the single-spin index j in both of the cases above gives us the purely collective-spin versions of these identities:

(µSz)
m
Sµ = Sµ (1 + µSz)

m
, µSzS

m
µ = Smµ (m+ µSz) , (A5)

where we can repeat the process of pushing through individual Sz operators ` times to get

(µSz)
`
Smµ = (µSz)

`−1
Smµ (m+ µSz) = (µSz)

`−2
Smµ (m+ µSz)

2
= · · · = Smµ (m+ µSz)

`
. (A6)

Multiplying (A6) through by (µν)
`

(for ν ∈ {+1,−1 }) and taking its Hermitian conjugate, we can say that more
generally

(νSz)
`
Smµ = Smµ (µνm+ νSz)

`
, Smµ (νSz)

`
= (−µνm+ νSz)

`
Smµ . (A7)
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Finding commutation relations between powers of transverse spin operators, i.e. Sµ and Sµ̄, turns out to be con-
siderably more difficult than the cases we have worked out thus far. We therefore save this work for Appendix
B.

Appendix B: Commutation relations between powers of transverse spin operators

To find commutation relations between powers of transverse collective spin operators, we first compute

Smµ s
(j)
µ̄ = Sm−1

µ s
(j)
µ̄ Sµ + Sm−1

µ 2µs(j)
z (B1)

= Sm−2
µ s

(j)
µ̄ S2

µ + Sm−2
µ 2µs(j)

z Sµ + Sm−1
µ 2µs(j)

z (B2)

= s
(j)
µ̄ Smµ +

m−1∑
k=0

Skµ2µs(j)
z Sm−k−1

µ . (B3)

While (B3) gives us the commutator
[
Smµ , s

(j)
µ̄

]
−

, we would like to enforce an ordering on products of spin operators,

which will ensure that we only keep track of operators that are linearly independent. We choose (for now) to impose an

ordering with all s
(j)
µ̄ operators on the left, and all s

(j)
z operators on the right. Such an ordering will prove convenient

for the calculations in this section[70]. This choice of ordering compels us to expand

m−1∑
k=0

Skµ2µs(j)
z Sm−k−1

µ =

m−1∑
k=0

Skµ

[
2 (m− k − 1) s(j)

µ Sm−k−2
µ + Sm−k−1

µ 2µs(j)
z

]
(B4)

= m (m− 1) s(j)
µ Sm−2

µ +mSm−1
µ 2µs(j)

z , (B5)

which implies

Smµ s
(j)
µ̄ = s

(j)
µ̄ Smµ +m (m− 1) s(j)

µ Sm−2
µ +mSm−1

µ 2µs(j)
z , (B6)

and in turn

Smµ Sµ̄ = Sµ̄S
m
µ +mSm−1

µ (m− 1 + 2µSz) . (B7)

As the next logical step, we take on the task of computing

Smµ S
n
µ̄ = Sm−1

µ Snµ̄Sµ + n
[
Sm−1
µ Sn−1

µ̄ (1− n+ 2µSz)
]

= Snµ̄S
m
µ + n

m−1∑
k=0

Sm−k−1
µ Sn−1

µ̄ (1− n+ 2µSz)Skµ, (B8)

which implies

[
Smµ , S

n
µ̄

]
−

= Cmn;µ ≡ n
m−1∑
k=0

Sm−k−1
µ Sn−1

µ̄ (1− n+ 2µSz)Skµ. (B9)

We now need rearrange the operators in Cmn;µ into a standard order, which means pushing all Sz operators to the
right and, for the purposes of this calculation, all Sµ̄ operators to the left. We begin by pushing Skµ to the left of Sz,

which takes 2µSz → 2µSz + 2k, and then push Sm−k−1
µ to the right of Sn−1

µ̄ , giving us

Cmn;µ = n

m−1∑
k=0

(
Sn−1
µ̄ Sm−k−1

µ + Cm−k−1,n−1;µ

)
Skµ (2k + 1− n+ 2µSz) (B10)

= Dmn;µ + n

m−2∑
k=0

Cm−k−1,n−1;µS
k
µ (2k + 1− n+ 2µSz) , (B11)

where we have dropped the last (k = m− 1) term in the remaining sum because Cm−k−1,n−1;µ = 0 if k = m− 1, and

Dmn;µ ≡ mnSn−1
µ̄ Sm−1

µ (m− n+ 2µSz) . (B12)
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To our despair, we have arrived in (B11) at a recursive formula for Cmn;µ. Furthermore, we have not even managed
to order all spin operators, as Cm−k−1,n−1;µ contains Sz operators that are to the left of Skµ. To sort all spin operators
once and for all, we define

C(k)
mn;µ ≡ Cm−k,n;µS

k
µ, D(k)

mn;µ ≡ Dm−k,n;µS
k
µ, (B13)

which we can expand as

D(k)
mn;µ = (m− k)nSn−1

µ̄ Sm−k−1
µ (m− k − n+ 2µSz)Skµ (B14)

= (m− k)nSn−1
µ̄ Sm−1

µ (k +m− n+ 2µSz) , (B15)

and

C(k)
mn;µ = Dm−k,n;µS

k
µ + n

m−k−2∑
j=0

Cm−k−j−1,n−1;µS
j
µ (2j + 1− n+ 2µSz)Skµ (B16)

= D(k)
mn;µ + n

m−k−2∑
j=0

Cm−k−j−1,n−1;µS
j+k
µ (2j + 2k + 1− n+ 2µSz) (B17)

= D(k)
mn;µ + n

m−k−2∑
j=0

C
(k+j)
m−1,n−1;µ

(
2 [j + k] + 1− n+ 2µSz

)
(B18)

= D(k)
mn;µ + n

m−2∑
j=k

C
(j)
m−1,n−1;µ (2j + 1− n+ 2µSz) . (B19)

While the resulting expression in (B19) strongly resembles that in (B11), there is one crucial difference: all spin

operators in (B19) have been sorted into a standard order. We can now repeatedly substitute C
(k)
mn;µ into itself, each

time decreasing m and n by 1, until one of m or n reaches zero. Such repeated substitution yields the expansion

Cmn;µ = C(0)
mn;µ = Dmn;µ +

min{m,n }−1∑
p=1

E(p)
mn;µ, (B20)

where the first two terms in the sum over p are

E(1)
mn;µ = n

m−2∑
k=0

D
(k)
m−1,n−1;µ (2k + 1− n+ 2µSz) , (B21)

E(2)
mn;µ = n

m−2∑
k1=0

(n− 1)

m−3∑
k2=k1

D
(k2)
m−2,n−2;µ (2k2 + 2− n+ 2µSz) (2k1 + 1− n+ 2µSz) , (B22)

and more generally for p > 1,

E(p)
mn;µ =

n!

(n− p)!

m−2∑
k1=0

m−3∑
k2=k1

· · ·
m−p−1∑
kp=kp−1

D
(kp)
m−p,n−p;µ

p∏
j=1

(
2kj + j − n+ 2µSz

)
. (B23)

In principle, the expressions in (B12), (B15), (B20), and (B23) suffice to evaluate the commutator
[
Smµ , S

n
µ̄

]
−

= Cmn;µ,

but this result is – put lightly – quite a mess: the expression for E
(p)
mn;µ in (B23) involves a sum over p mutually

dependent intermediate variables, each term of which additionally contains a product of p factors. We therefore

devote the rest of this section to simplifying our result for the commutator
[
Smµ , S

n
µ̄

]
−

.

Observing that in (B23) we always have 0 ≤ k1 ≤ k2 ≤ · · · ≤ kp ≤ m − p − 1, we can rearrange the order of the
sums and relabel kp → ` to get

E(p)
mn;µ =

n!

(n− p)!

m−p−1∑
`=0

D
(`)
m−p,n−p;µ

(
2`+ Fnp;µ

) ∑
(k,p−1,`)

p−1∏
j=1

(
2kp−j − j + Fnp;µ

)
, (B24)
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where for shorthand we define

Fnp;µ ≡ p− n+ 2µSz,
∑

(k,q,`)

X ≡
∑̀
k1=0

∑̀
k2=k1

· · ·
∑̀

kq=kq−1

X. (B25)

We now further define

fnp`;µ (k, q) ≡ (`− k + q)
(
`+ k − q + Fnp;µ

)
, (B26)

and evaluate sums successively over kp−1, kp−2, · · · , k1, finding

∑
(k,p−1,`)

p−1∏
j=1

(
2kp−j − j + Fnp;µ

)
=

∑
(k,p−2,`)

p−1∏
j=2

(
2kp−j − j + Fnp;µ

)
fnp`;µ

(
kp−2, 1

)
(B27)

=
1

(r − 1)!

∑
(k,p−r,`)

p−1∏
j=r

(
2kp−j − j + Fnp;µ

) r−1∏
q=1

fnp`;µ
(
kp−r, q

)
(B28)

=
1

(p− 1)!

p−1∏
q=1

fnp`;µ (0, q) (B29)

=

(
`+ p− 1

p− 1

) p−1∏
q=1

(
`− q + Fnp;µ

)
. (B30)

Substitution of this result together with D
(`)
m−p,n−p;µ using (B15) into (B24) then gives us

E(p)
mn;µ =

n!

(n− p− 1)!
Sn−p−1
µ̄ Sm−p−1

µ Gmnp;µ (B31)

with

Gmnp;µ ≡
m−p−1∑
`=0

(
`+ p− 1

p− 1

)
(m− p− `)

(
`+m− p+ Fnp;µ

) (
2`+ Fnp;µ

) p−1∏
q=1

(
`− q + Fnp;µ

)
(B32)

=

(
m

p+ 1

) p∏
q=0

(
m− p− q + Fnp;µ

)
. (B33)

We can further simplify

p∏
q=0

(
m− p− q + Fnp;µ

)
=

p∏
q=0

(m− n− q + 2µSz) =

p+1∑
q=0

(−1)
p+1−q

[
p+ 1

q

]
(m− n+ 2µSz)

q
, (B34)

where
[
p
q

]
is an unsigned Stirling number of the first kind, and finally

p∑
q=0

(−1)
p−q

[
p

q

]
(m− n+ 2µSz)

q
=

p∑
q=0

(−1)
p−q

[
p

q

] q∑
`=0

(
q

`

)
(m− n)

q−`
(2µSz)

`
(B35)

=

p∑
`=0

2`
p∑
q=`

(−1)
p−q

[
p

q

](
q

`

)
(m− n)

q−`
(µSz)

`
. (B36)

Putting everything together, we finally have

E(p−1)
mn;µ = p!

(
m

p

)(
n

p

)
Sn−pµ̄ Sm−pµ

p∑
`=0

εp`mn (µSz)
`
, (B37)

with

εp`mn ≡ 2`
p∑
q=`

(−1)
p−q

[
p

q

](
q

`

)
(m− n)

q−`
, (B38)
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where in this final form E
(0)
mn;µ = Dmn;µ, which together with the expansion for Cmn;µ in (B20) implies that

[
Smµ , S

n
µ̄

]
−

=

min{m,n }∑
p=1

p!

(
m

p

)(
n

p

)
Sn−pµ̄ Sm−pµ

p∑
`=0

εp`mn (µSz)
`
, (B39)

and

Smµ S
n
µ̄ =

min{m,n }∑
p=0

p!

(
m

p

)(
n

p

)
Sn−pµ̄ Sm−pµ

p∑
`=0

εp`mn (µSz)
`
. (B40)

If we wish to order products of collective spin operators with Sz in between Sµ̄ and Sµ, then

Smµ S
n
µ̄ =

min{m,n }∑
p=0

p!

(
m

p

)(
n

p

)
Sn−pµ̄ Z

(p)
mn;µ̄S

m−p
µ , (B41)

where

Z
(p)
mn;µ̄ ≡

p∑
`=0

εp`mn
(
− [m− p] + µSz

)`
=

p∑
q=0

ζpqmn (µ̄Sz)
q
, (B42)

with

ζpqmn ≡
p∑
`=q

εp`mn

(
`

q

)
(−1)

`
(m− p)`−q = (−1)

p
2q

p∑
s=q

[
p

s

](
s

q

)
(m+ n− 2p)

s−q
. (B43)

Here
[
p
s

]
is an unsigned Stirling number of the first kind.

Appendix C: Product of arbitrary ordered collective spin operators

The most general product of collective spin operators that we need to compute is

Spqr`mn;µ = Spµ (µSz)
q
Srµ̄S

`
µ (µSz)

m
Snµ̄ =

min{ r,` }∑
k=0

k!

(
r

k

)(
`

k

)
Sp+`−kµ Z̃

(k)
qr`m;µS

r+n−k
µ̄ , (C1)

where

Z̃
(k)
qr`m;µ ≡ (`− k + µSz)

q
Z

(k)
r`;µ (r − k + µSz)

m
(C2)

=

k∑
a=0

ζkar`

q∑
b=0

(`− k)
q−b

(
q

b

) m∑
c=0

(r − k)
m−c

(
m

c

)
(µSz)

a+b+c
, (C3)

is defined in terms of Z
(k)
r`;µ and ζkar` as respectively given in (B42) and (B43). The (anti-)commutator of two ordered

products of collective spin operators is then simply[
Spµ (µSz)

q
Srµ̄, S

`
µ (µSz)

m
Snµ̄

]
±

= Spqr`mn;µ ± S
`mn
pqr;µ. (C4)

Appendix D: Sandwich identities for single-spin decoherence calculations

In this section we derive several identities that will be necessary for computing the effects of single-spin decoherence
on ordered products of collective spin operators, i.e. on operators of the form S`µ (µSz)

m
Snµ̄ . These identities all

involve sandwiching a collective spin operator between operators that act on individual spins only, and summing over
all individual spin indices. Our general strategy will be to use commutation relations to push single-spin operators
together, and then evaluate the sum to arrive at an expression involving only collective spin operators.
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We first compute sums of single-spin operators sandwiching (µSz)
m

, when necessary making use of the identity in
(A3). The unique cases up to Hermitian conjugation are, for S ≡ N/2 and µ, ν ∈ {+1,−1 },∑

j

s(j)
z (µSz)

m
s(j)

z =
∑
j

s(j)
z s(j)

z (µSz)
m

=
1

4

∑
j

1j (µSz)
m

=
1

2
S (µSz)

m
, (D1)

∑
j

s(j)
z (µSz)

m
s(j)
ν = (µSz)

m
∑
j

s(j)
z s(j)

ν =
1

2
(µSz)

m
νSν =

1

2
νSν (µν + µSz)

m
, (D2)

∑
j

s(j)
ν (µSz)

m
s(j)
ν =

∑
j

s(j)
ν s(j)

ν (µν + µSz)
m

= 0, (D3)

∑
j

s
(j)
ν̄ (µSz)

m
s(j)
ν =

∑
j

s
(j)
ν̄ s(j)

ν (µν + µSz)
m

= (S − νSz) (µν + µSz)
m
. (D4)

We are now equipped to derive similar identities for more general collective spin operators. Making heavy use of
identities (A4) and (B6) to push single-spin operators through transverse collective-spin operators, we again work
through all combinations that are unique up to Hermitian conjugation, finding∑

j

s(j)
z S`µ (µSz)

m
Snµ̄s

(j)
z =

1

2
(S − `− n)S`µ (µSz)

m
Snµ̄ + `nS`−1

µ (S + µSz) (−1 + µSz)
m
Sn−1
µ̄ , (D5)

∑
j

s(j)
z S`µ (µSz)

m
Snµ̄s

(j)
µ =

1

2
µS`+1

µ (1 + µSz)
m
Snµ̄ − µn

(
S − `− 1

2
[n− 1]

)
S`µ (µSz)

m
Sn−1
µ̄

− µ`n (n− 1)S`−1
µ (S + µSz) (−1 + µSz)

m
Sn−2
µ̄ , (D6)∑

j

s(j)
z S`µ (µSz)

m
Snµ̄s

(j)
µ̄ = −1

2
µS`µ (µSz)

m
Sn+1
µ̄ + µ`S`−1

µ (S + µSz) (−1 + µSz)
m
Snµ̄ , (D7)

∑
j

s(j)
µ S`µ (µSz)

m
Snµ̄s

(j)
µ = nS`+1

µ (µSz)
m
Sn−1
µ̄ − n (n− 1)S`µ (S + µSz) (−1 + µSz)

m
Sn−2
µ̄ , (D8)

∑
j

s(j)
µ S`µ (µSz)

m
Snµ̄s

(j)
µ̄ = S`µ (S + µSz) (−1 + µSz)

m
Snµ̄ , (D9)

∑
j

s
(j)
µ̄ S`µ (µSz)

m
Snµ̄s

(j)
µ = S`µ (S − `− n− µSz) (1 + µSz)

m
Snµ̄ + `n (2S − `− n+ 2)S`−1

µ (µSz)
m
Sn−1
µ̄

+ `n (`− 1) (n− 1)S`−2
µ (S + µSz) (−1 + µSz)

m
Sn−2
µ̄ . (D10)

Appendix E: Uncorrelated, permutationally-symmetric single-spin decoherence

In this section we work out the effects of permutationally-symmetric decoherence of individual spins on collective
spin operators of the form S`µ (µSz)

m
Snµ̄ . For compactness, we define

D (g)O ≡ D
(
{ g(j) : j = 1, 2, · · · , N }

)
O =

∑
j

(
g(j)†Og(j) − 1

2

[
g(j)†g(j),O

]
+

)
, (E1)

where g is an operator that acts on a single spin, g(j) is an operator that acts with g on spin j and trivially on all
other spins, and N is the total number of spins.

1. Decay-type decoherence

The effect of decoherence via uncorrelated decay (µ = −1) or excitation (µ = 1) of individual spins is described by

D
(
sµ
)
O =

∑
j

(
s

(j)
µ̄ Os(j)

µ −
1

2

[
s

(j)
µ̄ s(j)

µ ,O
]

+

)
=
∑
j

s
(j)
µ̄ Os(j)

µ − SO +
µ

2
[Sz,O]+ . (E2)
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In order to determine the effect of this decoherence on general collective spin operators, we expand the anti-commutator[
Sz, S

`
µ (µSz)

m
Snµ̄

]
+

= SzS
`
µ (µSz)

m
Snµ̄ + S`µ (µSz)

m
Snµ̄Sz = µS`µ (`+ n+ 2µSz) (µSz)

m
Snµ̄ , (E3)

which implies, using (D9),

D
(
sµ̄
) (
S`µ (µSz)

m
Snµ̄

)
= S`µ (S + µSz) (−1 + µSz)

m
Snµ̄ − S`µ

[
S +

1

2
(`+ n) + µSz

]
(µSz)

m
Snµ̄ , (E4)

and, using (D10),

D
(
sµ
) (
S`µ (µSz)

m
Snµ̄

)
= S`µ (S − `− n− µSz) (1 + µSz)

m
Snµ̄ − S`µ

[
S − 1

2
(`+ n)− µSz

]
(µSz)

m
Snµ̄

+ `n (2S − `− n+ 2)S`−1
µ (µSz)

m
Sn−1
µ̄

+ `n (`− 1) (n− 1)S`−2
µ (S + µSz) (−1 + µSz)

m
Sn−2
µ̄ . (E5)

Decoherence via jump operators s
(j)
µ̄ only couples operators S`µ (µSz)

m
Snµ̄ to operators S`µ (µSz)

m′
Snµ̄ with m′ ≤ m.

Decoherence via jump operators s
(j)
µ , meanwhile, makes operators S`µ (µSz)

m
Snµ̄ “grow” in m through the last term

in (E5), although the sum `+m+ n does not grow.

2. Dephasing

The effect of decoherence via single-spin dephasing is described by

D (sz)O =
∑
j

(
s(j)

z Os(j)
z −

1

2

[
s(j)

z s(j)
z ,O

]
+

)
=
∑
j

s(j)
z Os(j)

z −
1

2
SO. (E6)

From (D5), we then have

D (sz)
(
S`µ (µSz)

m
Snµ̄

)
= −1

2
(`+ n)S`µ (µSz)

m
Snµ̄ + `nS`−1

µ (S + µSz) (−1 + µSz)
m
Sn−1
µ̄ . (E7)

Decoherence via single-spin dephasing makes operators S`µ (µSz)
m
Snµ̄ “grow” in m, although the sum `+m+ n does

not grow.

3. The general case

The most general type of single-spin decoherence is described by

D (g)O =
∑
j

(
g(j)†Og(j) − 1

2

[
g(j)†g(j),O

]
+

)
, g ≡ gzsz + g+s+ + g−s−. (E8)

To simplify (E8), we expand

g†Og = |gz|2szOsz +
∑
µ

(
|gµ|2sµ̄Osµ + g∗µ̄gµsµOsµ + g∗zgµszOsµ + g∗µ̄gzsµOsz

)
, (E9)

and

g†g =
1

4
|gz|2 +

1

2

∑
µ

[
|gµ|2 (1− 2µsz) + µ

(
g∗zgµ − g∗µ̄gz

)
sµ

]
, (E10)

which implies

D (g)O =
∑

X∈{ z,+,−}

|gX |2D (sX)O +
∑
µ,j

(
g∗µ̄gµs

(j)
µ Os(j)

µ + g∗zgµs
(j)
z Os(j)

µ + g∗µ̄gzs
(j)
µ Os(j)

z

)
− 1

4

∑
µ

µ
(
g∗zgµ − g∗µ̄gz

) [
Sµ,O

]
+
. (E11)
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In order to compute the effect of this decoherence on general collective spin operators, we expand the anti-commutator[
Sµ, S

`
µ (µSz)

m
Snµ̄

]
+

= S`+1
µ

[
(µSz)

m
+ (1 + µSz)

m]
Snµ̄ − nS`µ (n− 1 + 2µSz) (µSz)

m
Sn−1
µ̄ . (E12)

Recognizing a resemblance between terms in (E12) and (D6), we collect terms to simplify∑
j

s(j)
z S`µ (µSz)

m
Snµ̄s

(j)
µ −

1

4
µ
[
Sµ, S

`
µ (µSz)

m
Snµ̄

]
+

= K`mn;µ + L`mn;µ (E13)

and likewise ∑
j

s(j)
µ S`µ (µSz)

m
Snµ̄s

(j)
z +

1

4
µ
[
Sµ, S

`
µ (µSz)

m
Snµ̄

]
+

= K`mn;µ +M`mn;µ (E14)

with

K`mn;µ ≡
1

4
µS`+1

µ

[
(1 + µSz)

m − (µSz)
m]

Snµ̄ , (E15)

L`mn;µ ≡ −µnS`µ
[
S − `− 3

4
(n− 1)− 1

2
µSz

]
(µSz)

m
Sn−1
µ̄ − µ`n (n− 1)S`−1

µ (S + µSz) (−1 + µSz)
m
Sn−2
µ̄ , (E16)

M`mn;µ ≡ µnS`µ

[
(S + µSz) (−1 + µSz)

m − 1

2

(
1

2
[n− 1] + µSz

)
(µSz)

m

]
Sn−1
µ̄ . (E17)

Defining for completion

P`mn;µ ≡
∑
j

s(j)
µ S`µ (µSz)

m
Snµ̄s

(j)
µ = nS`+1

µ (µSz)
m
Sn−1
µ̄ − n (n− 1)S`µ (S + µSz) (−1 + µSz)

m
Sn−2
µ̄ , (E18)

and

Q
(g)
`mn;µ ≡ g

∗
µ̄gµP`mn;µ +

(
g∗zgµ + g∗µ̄gz

)
K`mn;µ + g∗zgµL`mn;µ + g∗µ̄gzM`mn;µ, (E19)

we finally have

D (g)
(
S`µ (µSz)

m
Snµ̄

)
=

∑
X∈{ z,+,−}

|gX |2D (sX)
(
S`µ (µSz)

m
Snµ̄

)
+Q

(g)
`mn;µ +

[
Q

(g)
nm`;µ

]†
. (E20)

Note that the sum `+m+ n for operators S`µ (µSz)
m
Snµ̄ does not grow under this type of decoherence.

Appendix F: Sandwich identities for collective-spin decoherence calculations

In analogy with the work in Appendix D, in this section we work out sandwich identities necessary for collective-spin
decoherence calculations. The simplest cases are

SµS
`
µ (µSz)

m
Snµ̄Sµ̄ = S`+1

µ (µSz)
m
Sn+1
µ̄ , (F1)

SµS
`
µ (µSz)

m
Snµ̄Sz = µS`+1

µ (n+ µSz) (µSz)
m
Snµ̄ , (F2)

SzS
`
µ (µSz)

m
Snµ̄Sz = S`µ

[
`n+ (`+ n)µSz + (µSz)

2
]

(µSz)
m
Snµ̄ . (F3)

With a bit more work, we can also find

S`µ (µSz)
m
Snµ̄Sµ = S`+1

µ (1 + µSz)
m
Snµ̄ − nS`µ (n− 1 + 2µSz) (µSz)

m
Sn−1
µ̄ , (F4)

which implies

SµS
`
µ (µSz)

m
Snµ̄Sµ = S`+2

µ (1 + µSz)
m
Snµ̄ − nS`+1

µ (n− 1 + 2µSz) (µSz)
m
Sn−1
µ̄ , (F5)
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SzS
`
µ (µSz)

m
Snµ̄Sµ = µS`+1

µ (`+ 1 + µSz) (1 + µSz)
m
Snµ̄

− µnS`µ
[
` (n− 1) + (2`+ n− 1)µSz + 2 (µSz)

2
]

(µSz)
m
Sn−1
µ̄ . (F6)

Finally, we compute

Sµ̄S
`
µ (µSz)

m
Snµ̄Sµ =

[
S`µSµ̄ − `S`−1

µ (`− 1 + 2µSz)
]

(µSz)
m
[
SµS

n
µ̄ − n (n− 1 + 2µSz)Sn−1

µ̄

]
= S`µSµ̄ (µSz)

m
SµS

n
µ̄

− S`µ
[
` (`+ 1) + n (n+ 1) + 2 (`+ n)µSz

]
(1 + µSz)

m
Snµ̄

+ `nS`−1
µ

[
(`− 1) (n− 1) + 2 (`+ n− 2)µSz + 4 (µSz)

2
]

(µSz)
m
Sn−1
µ̄ , (F7)

where

Sµ̄ (µSz)
m
Sµ = Sµ̄Sµ (1 + µSz)

m
=
(
SµSµ̄ − 2µSz

)
(1 + µSz)

m
= Sµ (2 + µSz)

m
Sµ̄ − 2µSz (1 + µSz)

m
, (F8)

so

Sµ̄S
`
µ (µSz)

m
Snµ̄Sµ = S`+1

µ (2 + µSz)
m
Sn+1
µ̄

− S`µ
[
` (`+ 1) + n (n+ 1) + 2 (`+ n+ 1)µSz

]
(1 + µSz)

m
Snµ̄

+ `nS`−1
µ

[
(`− 1) (n− 1) + 2 (`+ n− 2)µSz + 4 (µSz)

2
]

(µSz)
m
Sn−1
µ̄ . (F9)

Appendix G: Collective spin decoherence

In this section we work out the effects of collective decoherence on general collective spin operators. For shorthand,
we define

D (G)O ≡ D
(
{G }

)
O = G†OG− 1

2

[
G†G,O

]
+
, (G1)

where G is a collective spin jump operator.

1. Decay-type decoherence and dephasing

Making use of the results in Appendix F, we find that the effects of collective decay-type decoherence on general
collective spin operators are given by

D
(
Sµ̄
) (
S`µ (µSz)

m
Snµ̄

)
= −S`+1

µ

[
(1 + µSz)

m − (µSz)
m]

Sn+1
µ̄

+
1

2
S`µ
[
` (`− 1) + n (n− 1) + 2 (`+ n)µSz

]
(µSz)

m
Snµ̄ , (G2)

and

D
(
Sµ
) (
S`µ (µSz)

m
Snµ̄

)
= S`+1

µ

[
(2 + µSz)

m − (1 + µSz)
m]

Sn+1
µ̄

− S`µ
[
` (`+ 1) + n (n+ 1) + 2 (`+ n+ 1)µSz

]
(1 + µSz)

m
Snµ̄

+
1

2
S`µ
[
` (`+ 1) + n (n+ 1) + 2 (`+ n+ 2)µSz

]
(µSz)

m
Snµ̄

+ `nS`−1
µ

[
(`− 1) (n− 1) + 2 (`+ n− 2)µSz + 4 (µSz)

2
]

(µSz)
m
Sn−1
µ̄ . (G3)

Similarly, the effect of collective dephasing is given by

D (Sz)
(
S`µ (µSz)

m
Snµ̄

)
= −1

2
(`− n)

2
S`µ (µSz)

m
Snµ̄ . (G4)
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2. The general case

More generally, we consider jump operators of the form

G ≡ GzSz +G+S+ +G−S−, (G5)

whose decoherence effects are determined by

G†OG = |Gz|2SzOSz +
∑
µ

(
|Gµ|2Sµ̄OSµ +G∗µ̄GµSµOSµ +G∗zGµSzOSµ +G∗µ̄GzSµOSz

)
, (G6)

and

G†G = |Gz|2S2
z +

∑
µ

(
|Gµ|2Sµ̄Sµ +G∗zGµSzSµ +G∗µ̄GzSµSz +G∗µ̄GµS

2
µ

)
, (G7)

which implies

D (G)O =
∑

X∈{ z,+,−}

|GX |2D (SX)O +
∑
µ

(
G∗µ̄GµSµOSµ +G∗zGµSzOSµ +G∗µ̄GzSµOSz

)
− 1

2

∑
µ

(
G∗µ̄Gµ

[
S2
µ,O

]
+

+G∗zGµ
[
SzSµ,O

]
+

+G∗µ̄Gz

[
SµSz,O

]
+

)
. (G8)

In order to compute the effect of this decoherence on general collective spin operators, we expand the anti-commutators[
S2
µ, S

`
µ (µSz)

m
Snµ̄

]
+

= S`+2
µ

[
(2 + µSz)

m
+ (µSz)

m]
Snµ̄ − 2nS`+1

µ (n+ 2µSz) (1 + µSz)
m
Sn−1
µ̄

+ n (n− 1)S`µ

[
(n− 1) (n− 2) + 2 (2n− 3)µSz + 4 (µSz)

2
]

(µSz)
m
Sn−2
µ̄ , (G9)[

SzSµ, S
`
µ (µSz)

m
Snµ̄

]
+

= µS`+1
µ

[
(`+ 1 + µSz) (µSz)

m
+ (n+ 1 + µSz) (1 + µSz)

m]
Snµ̄

− µnS`µ
[
n (n− 1) + (3n− 1)µSz + 2 (µSz)

2
]

(µSz)
m
Sn−1
µ̄ , (G10)[

SµSz, S
`
µ (µSz)

m
Snµ̄

]
+

= µS`+1
µ

[
(`+ µSz) (µSz)

m
+ (n+ µSz) (1 + µSz)

m]
Snµ̄

− µnS`µ
[
(n− 1)

2
+ 3 (n− 1)µSz + 2 (µSz)

2
]

(µSz)
m
Sn−1
µ̄ . (G11)

Collecting terms and defining

G(±)
z,µ ≡

1

2

(
G∗zGµ ±G∗µ̄Gz

)
, (G12)

L̃
(G)
`mn;µ ≡ µ

[(
`− n+

1

2

)
G(+)

z,µ +

(
`+

1

2

)
G(−)

z,µ

]
S`+1
µ (1 + µSz)

m
Snµ̄

− µ

[(
`− n+

1

2

)
G(+)

z,µ +

(
n+

1

2

)
G(−)

z,µ

]
S`+1
µ (µSz)

m
Snµ̄

+ µG(−)
z,µ S

`+1
µ µSz

[
(1 + µSz)

m − (µSz)
m]

Snµ̄ , (G13)

M̃
(G)
`mn;µ = −µn (n− 1)

[(
`− n+

1

2

)
G(+)

z,µ +

(
`− 1

2

)
G(−)

z,µ

]
S`µ (µSz)

m
Sn−1
µ̄

− 2µn

[(
`− n+

1

2

)
G(+)

z,µ +

(
`+

1

2
n− 1

)
G(−)

z,µ

]
S`µ (µSz)

m+1
Sn−1
µ̄

− 2µnG(−)
z,µ S

`
µ (µSz)

m+2
Sn−1
µ̄ , (G14)

P̃`mn;µ ≡ −
1

2
S`+2
µ

[
(2 + µSz)

m − 2 (1 + µSz)
m

+ (µSz)
m]

Snµ̄

+ nS`+1
µ

[
(n+ 2µSz) (1 + µSz)

m − (n− 1 + 2µSz) (µSz)
m]

Sn−1
µ̄

− n (n− 1)S`µ

[
1

2
(n− 1) (n− 2) + (2n− 3)µSz + 2 (µSz)

2

]
(µSz)

m
Sn−2
µ̄ , (G15)
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Q̃
(G)
`mn;µ ≡ G

∗
µ̄GµP̃`mn;µ + L̃

(G)
`mn;µ + M̃

(G)
`mn;µ, (G16)

we then have

D (G)
(
S`µ (µSz)

m
Snµ̄

)
=

∑
X∈{ z,+,−}

|GX |2D (SX)
(
S`µ (µSz)

m
Snµ̄

)
+ Q̃

(G)
`mn;µ +

[
Q̃

(G)
nm`;µ

]†
. (G17)

Note that the sum ` + m + n for operators S`µ (µSz)
m
Snµ̄ grows by one if Gµ 6= 0 or Gµ̄ 6= 0, and does not grow

otherwise.

Appendix H: Emulating particle loss in a spin model

Here we discuss the details of emulating particle loss with O(1/N) error, where N is the initial number of particles
in a system that we wish to describe with a spin model. Starting with the full algebra of creation and annihilation
operators (whether bosonic or fermionic) in a system, spin models are typically implemented by identifying a subal-
gebra of relevant “spin” operators that satisfy appropriate commutation relations. Two-state particles on a lattice,
for example, are described by annihilation operators cjs indexed by a lattice site j ∈ Z and an internal state index
s ∈ { ↑, ↓ }, enabling the straightforward construction of spin operators

σ(j)
x ≡ c†j,↑cj,↓ + h.c., σ(j)

y ≡ −ic†j,↑cj,↓ + h.c., σ(j)
z ≡ c†j,↑cj,↑ − c

†
j,↓cj,↓, 1(j) ≡ c†j,↑cj,↑ + c†j,↓cj,↓, (H1)

which satisfy same commutation relations as the standard Pauli operators. These spin operators can be more com-
pactly defined in the form

σ(j)
α ≡

∑
r,s∈{ ↑,↓ }

c†jr 〈r|σα|s〉 cjs, (H2)

where σα for α ∈ { x, y, z,1 } is a Pauli operator, with σ1 ≡ 1; and 〈r|σα|s〉 denotes a matrix element of σα. This
construction exemplifies how the set of jump operators J bare

loss ≡ { cjs } that generate particle loss cannot be constructed
from spin operators, which are generally bilinear in particle creation/annihilation operators. When working on the
level of a spin model, therefore, we can at best only emulate the effect of particle loss by some indirect means.

To understand the effect of particle loss on collective spin operators, we first define a single multi-body spin operator
addressing sites j = { j1, j2, · · · , j|j| },

σjα ≡
∏
j∈j

σ(j)
αj , (H3)

and expand

D
(
J bare

loss

)
σjα =

∑
k,s

(
c†ksσjαcks −

1

2

[
c†kscks, σjα

]
+

)
(H4)

=
∑
k∈j

∑
s

c†ksσ
(k)
αk
cks
∏
j∈j
j 6=k

σ(j)
αj +

∑
k/∈j

∑
s

c†kscksσjα −
1

2

∑
k

[
1(k), σjα

]
+

(H5)

=
∑
k∈j

∑
q,r,s

〈q|σαk |r〉 c
†
ksc
†
kqckrcks

∏
j∈j
j 6=k

σ(j)
αj − |j|σjα. (H6)

In order to have an actual spin model, fermionic statistics or energetic considerations must forbid multiple occupation

of individual lattice sites. In that case, the on-site four-point product c†ksc
†
kqckrcks = 0 vanishes, and

D
(
J bare

loss

)
σjα = −|j|σjα. (H7)

Up to O(1/N) corrections, a collective spin operator Sm essentially consists of |m|-body operators of the form σjα
with |j| = |m|, which implies that the dissipator Dloss defined by DlossSm = −|m|Sm describes particle loss with
O(1/N) error. We note that the dissipator Dloss is essentially the depolarizing channel, i.e. Dloss = D (Jloss) for

Jloss = { s(j)
α } with α ∈ { x, y, z } and j ∈ { 1, 2, · · · , N }. A direct implementation of Dloss with DlossSm = −|m|Sm,

however, is much more efficient than evaluating the depolarizing channel D (Jloss) with the ingredients in Appendices
D and E.
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Appendix I: Initial conditions

Here we compute the expectation values of collective spin operators with respect to spin-polarized (also Gaussian,
or spin-coherent) states. These states are parameterized by polar and azimuthal angles θ ∈ [0, π), φ ∈ [0, 2π), and lie

within the Dicke manifold spanned by states |k〉 ∝ SS+k
+ |↓〉⊗N with S ≡ N/2 and Sz |k〉 = k |k〉:

|θ, φ〉 ≡
[
cos
(
θ/2
)
e−iφ/2 |↑〉+ sin

(
θ/2
)
eiφ/2 |↓〉

]⊗N
=

S∑
k=−S

(
N

S + k

)1/2

cos
(
θ/2
)S+k

sin
(
θ/2
)S−k

e−ikφ |k〉 . (I1)

We can likewise expand, within the Dicke manifold,

Sz =

S∑
k=−S

k |k〉〈k| , Sµ =

S−δµ,1∑
k=−S+δµ,−1

gµ (k) |k + µ〉〈k| =
S−δµ̄,1∑

k=−S+δµ̄,−1

gµ̄ (k) |k〉〈k + µ̄| , (I2)

where µ̄ ≡ −µ ∈ {+1,−1 } and

gµ (k) ≡
√

(S − µk) (S + µk + 1), (I3)

which implies

S`µ (µSmz )Snµ̄ =

S−δµ,1 max{ `,n }∑
k=−S+δµ,−1 max{ `,n }

(µk)
m

`−1∏
p=0

gµ (k + µp)

n−1∏
q=0

gµ (k + µq)

 |k + µ`〉〈k + µn| (I4)

=

µS−δµ,1 max{ `,n }∑
µk=−µS−δµ,−1 max{ `,n }

(µk)
m (S − µk)!

(S + µk)!

[
(S + µk + `)!

(S − µk − `)!
(S + µk + n)!

(S − µk − n)!

]1/2

|k + µ`〉〈k + µn| (I5)

=

S−max{ `,n }∑
k=−S

km
(S − k)!

(S + k)!

[
(S + k + `)!

(S − k − `)!
(S + k + n)!

(S − k − n)!

]1/2 ∣∣µ (k + `)
〉〈
µ (k + n)

∣∣ . (I6)

This expansion allows us to compute the expectation value

〈θ, φ|S`µ (µSmz )Snµ̄ |θ, φ〉 = eiφµ(`−n)N !

S−max{ `,n }∑
k=−S

km (S − k)!fµ`n (k, θ)

(S + k)! (S − k − `)! (S − k − n)!
(I7)

= eiφµ(`−n) (−1)
m
N !

N−max{ `,n }∑
k=0

(S − k)
m

(N − k)!f̃µ`n (k, θ)

k! (N − k − `)! (N − k − n)!
(I8)

where

fµ`n (k, θ) ≡ cos
(
θ/2
)N+µ(2k+`+n)

sin
(
θ/2
)N−µ(2k+`+n)

, (I9)

f̃µ`n (k, θ) ≡ fµ`n (k − S, θ) = cos
(
θ/2
)2Nδµ,−1+µ(2k+`+n)

sin
(
θ/2
)2Nδµ,1−µ(2k+`+n)

. (I10)

Defining the states

|+Z〉 ≡ |0, 0〉 = |↑〉⊗N , |−Z〉 ≡ |π, 0〉 = |↓〉⊗N , |X〉 ≡ |π/2, 0〉 =

(
|↑〉+ |↓〉√

2

)⊗N
, (I11)

some particular expectation values of interest are

〈νZ|S`µ (µSz)
m
Snµ̄ |νZ〉 = δ`n ×

(S − n)
m N !n!

(N − n)!
µ = ν,

δn,0 (−S)
m

µ 6= ν,
, (I12)

and

〈X|S`µ (µSz)
m
Snµ̄ |X〉 = (−1)

m N !

2N

N−max{ `,n }∑
k=0

(S − k)
m

(N − k)!

k! (N − k − `)! (N − k − n)!
. (I13)
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Appendix J: Computing correlators with the truncated short-time (TST) expansion

Here we provide a pedagogical tutorial for computing correlators using the truncated short-time TST expansion.
For concreteness, we nominally consider N spins evolving under the one-axis twisting (OAT) Hamiltonian

HOAT = χS2
z , (J1)

additionally subject to spontaneous single-spin decay at rate γ−, with jump operators J− = { s(j)
− : j = 1, 2, · · · , N }.

The equation of motion for a Heisenberg operator
(
S`+S

m
z S

n
−
)

(t) is

d

dt

〈
S`+S

m
z S

n
−

〉
= iχ

〈[
S2

z , S
`
+S

m
z S

n
−

]
−

〉
+ γ−

〈
D (J−)

(
S`+S

m
z S

n
−

)〉
, (J2)

where we have suppressed the explicit time dependence of operators for brevity. Using the results in appendices C
and E 1 respectively to evaluate the commutator

[
S2

z , S
`
+S

m
z S

n
−
]
− and dissipator D (J−)

(
S`+S

m
z S

n
−
)

in (J2), we can

expand

d

dt
〈S`+Smz Sn−〉

= iχ 〈(`− n)S`+ (`+ n+ 2Sz)Smz S
n
−〉+ γ−

〈
S`+

[
(S + Sz) (−1 + Sz)

m −
(
S +

`+ n

2
+ Sz

)
Smz

]
Sn−

〉
. (J3)

In practice, we do not want to keep track of such an expansion by hand, especially in the case of e.g. the two-axis
twisting (TAT) and twist-and-turn (TNT) models with more general types of decoherence, for which the analogue of
(J3) may take several lines just to write out in full. Defining the operators Sm ≡ Sm+

+ Smz
z S

m−
− with m ≡ (m+,mz,m−)

for shorthand, we note that the vector space spanned by { Sm } is closed under time evolution. We therefore expand

d

dt
〈Sn〉 = 〈TSn〉 =

∑
m

〈Sm〉Tmn, (J4)

where T is a superoperator that generates time evolution for Heisenberg operators. In the present example, the matrix
elements Tmn ∈ C of T are defined by (J3) and (J4). For any Hamiltonian H with decoherence characterized by sets
of jump operators J and decoherence rates γJ , the matrix elements Tmn are more generally defined by

TSn = i [H,Sn]− +
∑
J
γJD (J )Sn =

∑
m

SmTmn. (J5)

The results in Appendices C, E, and G can be used to write model-agnostic codes that compute matrix elements
Tmn, taking a particular Hamiltonian H and decoherence processes { (J , γJ ) } as inputs.

In order to compute a quantity such as spin squeezing, we need to compute correlators of the form 〈Sn (t)〉, where
for clarity we will re-introduce the explicit time dependence of Heisenberg operators Sn (t). The order-M truncated
short-time (TST) expansion takes

〈Sn (t)〉 = 〈etTSn (0)〉 =
∑
k≥0

tk

k!
〈T kSn (0)〉 =

∑
k≥0

tk

k!

∑
m

〈Sm (0)〉T kmn →
M∑
k=0

tk

k!

∑
m

〈Sm (0)〉T kmn, (J6)

where T kmn are matrix elements of the k-th time derivative operator T k, given by

T 0
mn ≡

{
1 m = n,

0 otherwise
, T 1

mn ≡ Tmn, T k>1
mn ≡

∑
p1,p2,··· ,pk−1

Tmpk−1
· · ·Tp3p2

Tp2p1
Tp1n. (J7)

Matrix elements T kmn and initial-time expectation values 〈Sm (0)〉 are thus computed as needed for any particular
correlator 〈Sn (t)〉 of interest, and combined according to (J6). Note that initial-time expectation values 〈Sm (0)〉
are an input to the TST expansion, and need to be computed separately for any initial state of interest; expectation
values with respect to spin-polarized (Gaussian) states are provided in Appendix I. In practice, we further collect
terms in (J6) to write

〈Sn (t)〉 →
M∑
k=0

cnkt
k, cnk ≡

1

k!

∑
m

〈Sm (0)〉T kmn, (J8)

where cnk are time-independent coefficients for the expansion of 〈Sn (t)〉. After computing the coefficients cnk, there
is only negligible computational overhead to compute the correlator 〈Sn (t)〉 for any time t.
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Appendix K: Analytical results for the one-axis twisting model

The one-axis twisting (OAT) Hamiltonian for N spin-1/2 particles takes the form

HOAT = χS2
z =

1

2
χ
∑
j<k

σ(j)
z σ(k)

z +
1

4
Nχ, (K1)

where σ
(j)
z represents a Pauli-z operator acting on spin j. This model is a special case of the zero-field Ising Hamiltonian

previously solved in Ref. [64] via exact, analytical treatment of the quantum trajectory Monte Carlo method for
computing expectation values. The solution therein accounts for coherent evolution in addition to decoherence via
uncorrelated single-spin decay, excitation, and dephasing respectively at rates γ−, γ+, and γz (denoted by Γud, Γdu,
and Γel in Ref. [64]). Letting S ≡ N/2 and µ, ν ∈ {+1,−1 }, we adapt expectation values computed in Ref. [64] for

the initial state |X〉 ∝
(
|↑〉+ |↓〉

)⊗N
with Sx |X〉 = S |X〉 evolving under HOAT, finding

〈S+ (t)〉 = Se−κtΦ (χ, t)
N−1

, (K2)

〈
(
SµSz

)
(t)〉 = −µ

2
〈Sµ (t)〉+ S

(
S − 1

2

)
e−κtΨ (µχ, t) Φ (χ, t)

N−2
, (K3)

〈
(
SµSν

)
(t)〉 =

(
1− δµν

) (
S + µ 〈Sz (t)〉

)
+ S

(
S − 1

2

)
e−2κtΦ

(
[µ+ ν]χ, t

)N−2
, (K4)

where

Φ (X, t) ≡ e−λt
[
cos (ωXt) +

λ

ωX
sin (ωXt)

]
, Ψ (X, t) ≡ e−λt

(
∆ + iX

ωX

)
sin (ωXt) , (K5)

for

κ ≡ 1

2
(γ+ + γ− + γz) , λ ≡ 1

2
(γ+ + γ−) , ∆ ≡ γ+ − γ−, ωX ≡

√
X2 − λ2 − iX∆. (K6)

In order to compute spin squeezing as measured by the Ramsey squeezing parameter ξ2 defined in (14), we additionally
need analytical expressions for 〈Sz (t)〉 and 〈S2

z (t)〉. As these operators commute with both the OAT Hamiltonian

and the single-spin operators σ
(j)
z , their evolution is governed entirely by decay-type decoherence (see Appendix E 1),

which means

d

dt
〈Sz (t)〉 = S (γ+ − γ−)− (γ+ + γ−) 〈Sz (t)〉 , (K7)

d

dt
〈S2

z (t)〉 = S (γ+ + γ−) + 2

(
S − 1

2

)
(γ+ − γ−) 〈Sz (t)〉 − 2 (γ+ + γ−) 〈S2

z (t)〉 . (K8)

The initial conditions 〈Sz (0)〉 = 0 and 〈S2
z (0)〉 = S/2 then imply

〈Sz (t)〉 = S

(
γ+ − γ−
γ+ + γ−

)(
1− e−(γ++γ−)t

)
, 〈S2

z (t)〉 =
1

2
S + S

(
S − 1

2

)(
〈Sz (t)〉
S

)2

. (K9)

With appropriate assumptions about the relevant sources of decoherence, the expectation values in (K2)–(K4) and
(K9) are sufficient to compute the spin squeezing parameter ξ2 in (14) at any time throughout evolution of the initial
state |X〉 under HOAT.

Appendix L: Diagnosing breakdown of the TST expansion

In Figure 1 of the main text, the TST expansion provided nearly exact results for squeezing until a sudden departure
that quickly resulted in an unphysical squeezing parameter, ξ2 < 0. In general, however, there is no fundamental
relationship between the breakdown of the TST expansion and the conditions for a physical squeezing parameter ξ2. A
proper diagnosis of breakdown therefore requires inspection of the correlators 〈Sn (t)〉 used to compute the squeezing
parameter ξ2, which upon breakdown will rapidly take unphysical values with |〈Sn (t)〉| & S|n|. As an example,
Figure 4 shows the squeezing parameter ξ2 throughout decoherence-free evolution of N = 100 spins initially in the
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FIG. 4. Spin squeezing throughout decoherence-free evolution of N = 100 spins initially in the state |X〉, computed using both
exact methods (solid lines) and the TST expansion in Eq. (10) with M = 35 (dashed lines). Solid circles mark the times at
which the TST expansion gives an unphysical result with ξ2 < 0.
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FIG. 5. A collective spin correlator in the TAT model with N = 100 spins and no decoherence, computed using the TST
expansion with M = 35. The divergence of correlators of this sort can be used to diagnose the breakdown of the TST
expansion.

state |X〉. In this example, the squeezing computed by the TST expansion for the TAT model diverges from the exact
answer without an immediate and obvious signature of breakdown. Nonetheless, breakdown can still be diagnosed by
inspection of individual correlators, as shown in Figure 5, where we plot Im 〈S2

+〉 as a function of time for N = 100
spins evolving under the TAT without decoherence. Figure 5 shows that breakdown clearly occurs around Nχt . 7,

when the correlator 〈S2
+〉 begins to diverge to values & S2 =

(
N/2

)2
= 2500 in magnitude. A joint inspection of

figures 4 and 5 suffice to trace the anomalous behavior of ξ2 from Nχt ≈ 7 back to Nχt ≈ 6, when it first took a
sudden turn before becoming unphysical at Nχt ≈ 8.

Appendix M: Spin squeezing with strong decoherence

Here we provide supplementary evidence of our finding in Section III that the TNT model can produce more
squeezing than the OAT or TAT models in the presence of strong decoherence. To this end, Figure 6 shows the
minimal squeezing parameter ξ2

min achievable with N = 100 spins through the OAT, TAT, and TNT models as
a function of the rate γ0 at which individual spins undergo spontaneous decay, excitation, and dephasing. These
results were computed with quantum trajectory simulations, with 103 trajectories per data point. While the OAT
and TAT models produce more squeezing than TNT model with weak decoherence, this squeezing falls off faster with
an increasing decoherence rate γ0. The relative robustness of TNT is in part a consequence of the fact that TNT
initially generates squeezing at a faster rate than OAT or TAT, thereby allowing it to produce more squeezing before
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FIG. 6. Optimal spin squeezing of N = 100 spins undergoing spontaneous decay, excitation, and dephasing at rates γ− = γ+ =
γz = γ0, computed using quantum trajectory simulations with 103 trajectories per data point.

the degrading effects of decoherence kick in.

Appendix N: Heisenberg operators in open quantum systems

Here we explain the origin and character of the mean-zero “noise” operators EO (t) that appear in the expansion of
a Heisenberg operator O (t) =

∑
mOm (t)Sm + EO (t) with time-dependent coefficients Om (t) for time-independent

Schrödinger operators Sm. Our discussion should clarify why noise operators play no role in our calculation of
expectation values of the form 〈O (t)〉 and 〈OQ (t)〉, despite the fact that noise operators generally do need to be
considered in the calculation of more general multi-time correlators in open quantum systems[65].

In any closed quantum system with initial state ρ and propagator U (t), such that the state at time t is ρ (t) ≡
U (t) ρU† (t), time-dependent Heisenberg operators O (t) are uniquely defined from time-independent Schrödinger
operators O by

〈O (t)〉 ≡ tr
[
ρ (t)O

]
= tr

[
ρO (t)

]
. (N1)

Enforcing (N1) for arbitrary initial states ρ forces O (t) = U† (t)OU (t). In an open quantum system, however, the
definition of a Heisenberg operator is not so straightforward. Open systems can often be understood as subsystems
of a larger closed system. Consider therefore an open system S with environment E, a joint initial state ρSE , and
propagator USE (t). The reduced state ρS (t) of S at time t is

ρS (t) ≡ trE
[
ρSE (t)

]
= trE

[
USE (t) ρSEU

†
SE (t)

]
≡ US (t) ρS , (N2)

where ρS ≡ ρS (0) is a time-independent state of S in the Heisenberg picture, S denotes the space of operators on S,
and the quantum channel US (t) has the decomposition[71]

US (t) ρS =
∑
j

U (j)
S (t) ρSU (j)†

S (t) (N3)

with ordinary operators U (j)
S (t) on S. We can therefore expand

〈OS (t)〉 = tr
[
ρS (t)OS

]
= tr

[
US (t) ρSOS

]
= tr

[
ρSU†S (t)OS

]
= tr

[
ρSOS (t)

]
= 〈OS (t)〉 , (N4)

where U†S (t) is the adjoint map of US (t) (with respect to a trace inner product between operators on S), and we

define the time-dependent operator

OS (t) ≡ U†S (t)OS =
∑
j

U (j)†
S (t)OSU (j)

S (t) . (N5)
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We thus find that substituting OS (t) in place of OS (t) suffices for the calculation of correlators 〈OS (t)〉, thereby
accounting for the validity of the equation of motion in (2). As we show below, this substitution also suffices for the
calculation of two-time correlators of the form 〈OSQS (t)〉 when the environment E is Markovian.

The problem with defining Heisenberg operators OS (t) by OS (t) only becomes evident when considering products
of Heisenberg operators. One would like for the product of two Heisenberg operators OS (t) and QS (t) to satisfy
OS (t)QS (t) = (OSQS) (t). This intuition can be formalized by observing that

〈OS (t)〉 = tr
[
ρSE (t) (OS ⊗ 1E)

]
= tr

[
ρSE (OS ⊗ 1E) (t)

]
= 〈(OS ⊗ 1E) (t)〉 , (N6)

where 1E is the identity operator on E, expectation values of Heisenberg operators on system A ∈ {S,E, SE } are
taken with respect to the state ρA, and

(OS ⊗ 1E) (t) ≡ U†SE (t) (OS ⊗ 1E)USE (t) . (N7)

By expanding Heisenberg operators similarly to (N6) and (N7), we then find

〈OS (t)QS (t)〉 = 〈(OS ⊗ 1E) (t) (QS ⊗ 1E) (t)〉 = 〈(OSQS ⊗ 1E) (t)〉 = 〈(OSQS) (t)〉 . (N8)

The expression in (N5), however, makes it clear that generally OS (t)QS (t) 6=
(
OSQS

)
(t). To correct for this

discrepancy, we define

OS (t) ≡ OS (t) + EOS (t) (N9)

in terms of new “noise” operators EOS (t) that are essentially defined to enforce the consistency of operator products
such as OS (t)QS (t) = (OSQS) (t). Self-consistency forces noise operators to be mean-zero, as

〈EOS (t)〉 = 〈OS (t)〉 − 〈OS (t)〉 = 0. (N10)

Furthermore, if the environment E is Markovian, then noise operators are also uncorrelated with initial-time ob-
servables, i.e. 〈OSEQS (t)〉 = 0, which means that noise operators can be neglected in the calculation of two-time
correlators of the form 〈OSQS (t)〉. To see why, we observe that a Markovian environment is essentially defined to
satisfy

ρSE (t) = USE (t) ρSEU
†
SE (t) ≈ ρS (t)⊗ ρE = US (t) ρS ⊗ ρE , (N11)

with ρE a time-independent steady state of the environment. If we enforce (N11) for all states ρS , e.g. the maximally

mixed state ρ
(1)
S ∝ 1S and ρ

(2)
S ≡ ρ

(1)
S +OS with OS any traceless operator on S with operator norm‖OS‖ ≤ 1/ tr1S

(i.e. such that ρ
(2)
S remains positive semi-definite, or a valid quantum state), then by linearity we find that

USE (t) (1S ⊗ ρE)U†SE (t) ≈ US (t)1S ⊗ ρE , USE (t) (OS ⊗ ρE)U†SE (t) ≈ US (t)OS ⊗ ρE , (N12)

which implies that the Markov approximation (N11) holds even if we replace ρS by any operator on S, and in particular

USE (t) ρSE (OS ⊗ 1E)U†SE (t) = USE (t) (ρSOS ⊗ ρE)U†SE (t) ≈ US (t) (ρSOS)⊗ ρE . (N13)

We can therefore expand

〈OSQS (t)〉 = tr
[
ρSE (OS ⊗ 1E)U†SE (t) (QS ⊗ 1E)USE (t)

]
(N14)

= tr
[
USE (t) ρSE (OS ⊗ 1E)U†SE (t) (QS ⊗ 1E)

]
, (N15)

and invoke the Markov approximation in (N13) to find that

〈OSQS (t)〉 ≈ tr
[
US (t) (ρSOS)QS

]
= tr

[
ρSOSU†S (t)QS

]
= 〈OSQS (t)〉 , (N16)

which implies

〈OSEQS (t)〉 = 〈OSQS (t)〉 − 〈OSQS (t)〉 ≈ 0. (N17)

Noise operators thus play no role in the calculation of correlators such as C (t) in (15). In contrast, noise operators

generally do play a role in the calculation of multi-time correlators of the form 〈
∏
j O

(j)
S

(
tj
)
〉[65]. Furthermore, these

calculations generally require additional assumptions about the environment. To keep our discussion simple and
general, we therefore exclude the effects of noise terms in Section IV.
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Appendix O: Short-time linear response and two-time correlators

Here we discuss the appearance of two-time correlation functions in the short-time linear response of correlators to
perturbations of a Hamiltonian. Consider an initial Hamiltonian H perturbed by an operator V with ‖V ‖ � ‖H‖,
where ‖O‖ denotes the operator norm of O, such that the net Hamiltonian is H̃ = H + V . We denote the generator

of Heisenberg time evolution under the perturbed (unperturbed) Hamiltonian by T̃ (T ). These generators are related
by

T̃ = T + iV (O1)

where V is a superoperator whose action on operators O is defined by

VO ≡ [V,O]− . (O2)

Through quadratic order in the time t and linear order in the perturbation V , we can say that

etT̃ ≈ 1

2

[
etT , eitV

]
+
≈ etT +

1

2
it
[
etT , V

]
+
. (O3)

Defining perturbed and unperturbed Heisenberg operators Õ (t) and O (t) that respectively satisfy 〈Õ (t)〉 = 〈etT̃O〉
and 〈O (t)〉 = 〈etTO〉, we thus find that for sufficiently small times t and weak perturbations V ,

〈Õ (t)−O (t)〉 =

〈(
etT̃ − etT

)
O
〉
≈ 1

2
it
(
〈[V,O]− (t)〉+ 〈

[
V,O (t)

]
−〉
)
. (O4)

Two-time correlators 〈VO (t)〉 and 〈O (t)V 〉, in addition to the expectation values 〈(VO) (t)〉 and 〈(OV ) (t)〉, thus
determine the short-time linear response of correlators 〈O (t)〉 to perturbations V of a Hamiltonian.

[1] R. H. Dicke, Coherence in Spontaneous Radiation Processes, Physical Review 93, 99 (1954).
[2] H. J. Lipkin, N. Meshkov, and A. J. Glick, Validity of many-body approximation methods for a solvable model: (I). Exact

solutions and perturbation theory, Nuclear Physics 62, 188 (1965).
[3] N. Meshkov, A. J. Glick, and H. J. Lipkin, Validity of many-body approximation methods for a solvable model: (II).

Linearization procedures, Nuclear Physics 62, 199 (1965).
[4] A. J. Glick, H. J. Lipkin, and N. Meshkov, Validity of many-body approximation methods for a solvable model: (III).

Diagram summations, Nuclear Physics 62, 211 (1965).
[5] T. Takano, M. Fuyama, R. Namiki, and Y. Takahashi, Spin Squeezing of a Cold Atomic Ensemble with the Nuclear Spin

of One-Half, Physical Review Letters 102, 033601 (2009).
[6] J. Appel, P. J. Windpassinger, D. Oblak, U. B. Hoff, N. Kjærgaard, and E. S. Polzik, Mesoscopic atomic entanglement for

precision measurements beyond the standard quantum limit, Proceedings of the National Academy of Sciences 106, 10960
(2009).

[7] J. Klinder, H. Keßler, M. Wolke, L. Mathey, and A. Hemmerich, Dynamical phase transition in the open Dicke model,
Proceedings of the National Academy of Sciences 112, 3290 (2015).
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