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Violation of centrosymmetry (voc) in time-resolved diffraction patterns has been predicted in
ultrafast electron and x-ray diffraction from electronic and molecular motions. Extending from our
x-ray studies, we theoretically investigate the voc in time-resolved ultrafast electron diffraction
(ued) from ro-vibrational motion of oriented diatomic molecules lithium hydride and hydrogen. We
simulate and compare the electron and x-ray diffraction images, especially focused on the differences
in the voc and molecular interference fringes. In addition, using Newton diagrams, we provide an
intuitive semi-classical interpretation to explain how the voc is arisen from and related to the
particles’ motion and why is there an anticorrelation between the voc and molecular interference
fringes.

I. INTRODUCTION

A thorough understanding of the chemical or biological
functions of a molecule in reactions necessitates knowl-
edge of the connection between its structure and the reac-
tion dynamics [1, 2]. Direct imaging of transient molecu-
lar structures in real time, therefore, renders valuable in-
sight into underlying reaction mechanisms, thus allowing
one to possibly control them. However, imaging molecu-
lar motion demands stringent spatial and temporal reso-
lution. Due to their short wavelengths, ultrafast electrons
and x rays are frequently employed as probes to inves-
tigate structural dynamics with atomic precision [3–7].
In recent years there has been steady progress on im-
proving temporal resolutions in ultrafast electron diffrac-
tion [8–10] and microscopy [11–14]. In particular, novel
schemes and designs have been demonstrated to acceler-
ate, manipulate, and compress electron pulses with en-
ergies ranging from keV to MeV using dielectric laser
accelerators [15–19], radio-frequency cavities [20–24], ter-
ahertz radiation [25–28], and optical gating [29, 30]. Ow-
ing to these advances, time-resolved structural dynamics
in various systems have been studied using laser pump-
electron probe schemes, such as in photoinduced uni-
molecular reactions [31, 32] and in phase transitions and
lattice dynamics in condensed materials [33–40]. In addi-
tion to these experimental advances, theoretical models
have been developed for time-dependent coherent diffrac-
tion of ultrafast electrons [41–43] and x rays [44–47], and
simulations have been performed for the diffraction im-
ages of time-varying electronic and molecular motions.
In contrast to time-independent coherent diffraction,

simulations of time-resolved electron and x-ray diffrac-
tion predict a distinctive feature of non-resonant diffrac-
tion images of electronic [41, 43, 45, 48–50] or molecu-
lar [47] motions: asymmetric angular distributions. In
the first-order perturbation theory of time-independent
ultrafast electron diffraction (ued) from a molecule, the
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elastic scattering amplitude is proportional to the Fourier
transform of the molecular charge density ρ(x) (which in-
cludes both the nuclear and electron charges),

F (s) ∝

∫

dx eis·x ρ(x) , (1)

where s is the momentum transfer. Since F (−s) = F ∗(s)
and the differential cross section is the absolute square
of the scattering amplitude, dσ/dΩ = |F (s)|2, the angu-
lar distribution of the scattered electrons is always cen-
trosymmetric (i.e., there exists an inversion center in the
diffraction image) even though the charge density may
lack any symmetry. This property is called Friedel’s law
in crystallography [51]. As long as the density interpre-
tation (1) is adopted, centrosymmetry holds whether or
not the charge density ρ(x) depends on time. Therefore,
violation of centrosymmetry (voc) indicates that the
time-resolved diffraction images carry additional struc-
tural information that cannot be interpreted in terms of
a charge-density formulation (1).
In previous x-ray studies [45, 47–50] the voc asym-

metries are exclusively attributed to electron motions in
atoms or molecules since the Thomson scattering cross
sections for nuclei are much smaller than those for elec-
trons. In previous studies of ultrafast electron diffrac-
tion (ued) [41, 43] the focus was on the electronic mo-
tions in atoms with the nuclei treated as quasi-stationary
even though both nuclei and electrons contribute to the
scattering cross sections. Thus, it is unclear how the
voc is altered by scattering from nuclei when both elec-
trons and nuclei are in motion since the corresponding
scattering amplitudes depend differently on the momen-
tum transfer s. Furthermore, in studies of electronic mo-
tion in atoms [42, 43] the asymmetry was attributed to
the asymmetric momentum-density distributions of the
electron wiggling motions. The sign of the asymmetry
(indicating the direction into which the incident elec-
trons have higher probability to be scattered) reflects
the direction of the mean momentum of the asymmet-
ric momentum distribution. However, in a recent study
of molecular motion [47] in which the center of mass of
the molecule was assumed to be quasi-stationary, even
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though the sum of the momenta of the two atoms was
thus set zero, nevertheless voc was found to still occur
owing to ro-vibrational molecular motion. Moreover, as
will be shown and discussed in Sec. III B, the voc asym-
metry shows a somewhat unpredictable behavior: it ex-
hibits opposite signs (i.e., opposite directions into which
more electrons are scattered) for homonuclear and het-
eronuclear diatomic molecules having the same angular
orientation. Further studies of the nature of voc are thus
necessary to understand how the voc relates to the parti-
cle motions, in order that one can better utilize this phe-
nomenon to interpret time-resolved diffraction images.
In this paper we have performed simulations for ued

from the same diatomic molecular systems as in our re-
cent x-ray study [47]. The schematic setup for our time-
resolved ued from diatomic molecules undergoing ro-
vibrational motion is shown in Fig. 1. The molecular
motion is assumed to be initiated by some pump proce-
dure that impulsively excites an electron of the molecule
from the ground state to some excited state such that
the nuclei maintain their states of motion (which may be
pre-oriented) during the pumping process (i.e., we em-
ploy the Franck-Condon principle [52]). Then the ensu-
ing ro-vibrational motion in the excited electronic state is
probed by time-delayed ultrafast electron pulses. In or-
der to perform the molecular simulations, we generalize
the ued model used for atomic systems and present the
theory and our simulation details in Sec. II. In Sec. III
we then apply our model to two diatomic molecular sys-
tems, lithium hydride and hydrogen, and examine the
characteristics of the time-resolved ued images that re-
flect the ro-vibrational motion. In particular, we compare
ued and x-ray diffraction scattering patterns to eluci-
date how the voc and the interference fringes change
when one employs the two different probes. In Sec. IV,
we provide and discuss an intuitive semi-classical inter-
pretation, with the help of Newton diagrams, to explain
how the voc and interference fringes arise naturally from
kinematic relations in an electron-molecule collision and
from the wave properties of the particles. Finally, in
Sec. V we summarize our results and present our conclu-
sions. We also briefly discuss the feasibility of producing
an anisotropic nuclear motion which is necessary for the
voc observed in the simulations.

II. THEORY AND SIMULATION

The theory of time-resolved ued has been developed in
Refs. [41–43] for the purpose of imaging electronic mo-
tions in atoms. Generalization of the atomic formula-
tion to molecular cases is conceptually straightforward
(although computationally challenging): the electronic
state of an atomic target is replaced by that of a molec-
ular target. An analogous model for time-dependent co-
herent x-ray diffraction has been developed recently [47].
Since the technical aspects of the derivations and as-
sumptions have been detailed in our prior publications,
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FIG. 1. Schematic setup (a) for time-resolved ultrafast elec-
tron diffraction (ued) from diatomic molecules undergoing
ro-vibrational motion. An oriented molecule undergoes a ver-
tical transition (b) from its ground electronic state to some
excited state by means of a pump laser pulse. The ensuing
molecular motion in the excited state is probed by a time-
delayed ultrafast electron pulse with a detector recording the
diffraction pattern of the scattered electrons. By varying the
pump-probe delay, a series of time-resolved diffraction images
reveals the molecular motion. The molecular potential energy
curves of lithium hydride for the X1Σ+ and A1Σ+ states as
a function of internuclear distance R are shown in (b). For
future reference, the scattering angles θ and ϕ and the coor-
dinate system are defined in (a).

in the following sections we summarize the basic ideas
and major assumptions of our model and refer readers to
Refs. [41–43, 47] for specific details. After outlining the
general theory, we then present the parameters and fur-
ther assumptions specific to the molecular systems in the
present simulations. Unless specified otherwise, atomic
units (a.u.) are used throughout this paper.

A. Time-dependent scattering from vibrating
diatomic molecules

Consider time-resolved ued from a diatomic molecule
undergoing ro-vibrational motion:

e−(k0) +M∗(k1) → e−(ka) +M∗(kb) . (2)
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Here k0 and ka (k1 and kb) are the respective momenta
of the incident and scattered electrons (molecules). In
order to properly describe this time-dependent scatter-
ing, the incident electrons and molecules are modeled as
wave packets localized in space and time, so that their
center-of-mass motions, the moment of collision, and the
temporal resolution can be well defined. The localization
of the wave packets is attained by wave-packet integrals

that coherently superpose plane-wave basis states with
momentum space probability amplitudes. The momen-
tum amplitude a0(k0) of the incident electron pulse is
modeled as a Gaussian distribution centered at the av-
erage momentum of the pulse. The longitudinal width
of the momentum density |a0(k0)|

2 is determined by the
duration of the electron pulse. We further assume that
the electron wave packet is transform limited [i.e., no
chirp in the momentum amplitude a0(k0)] at the mo-
ment of collision, as pulse-compression techniques can be
used to offset the dispersion of the pulse that occurs dur-
ing its propagation toward the molecular target. The
molecular wave function can be factorized into external
and internal parts, i.e., for the center-of-mass and the ro-
vibrational motions respectively. For the external part,
the momentum amplitude a1(k1) of the molecular wave
packet is assumed to be quasi-stationary and localized
in space, owing to the slow thermal motion of the heavy
molecule. For the internal part, because of the impul-
sive excitation, the time zero of the ro-vibrational mo-
tion is well defined, provided that the time scale of the
nuclear motion is much longer than that of the pump
procedure. Therefore, the internal molecular state can
be approximated as a coherent superposition of molecu-
lar eigenstates, with the amplitudes determined by the
Franck-Condon factors for this excitation.
Based upon the above considerations, the entrance

state of the scattering system (2) satisfying the initial
conditions may be written as

ψ
(+)
coh =

∫

dk0 dk1 a0(k0) a1(k1)
∑

n

Cn ψ
(+)
i , (3)

where ψ
(+)
i is a scattering state labeled by an index of

the entrance channel i = {k0,k1, n}, where the quantum
number n denotes symbolically the internal molecular
eigenstate (i.e., the collection of electronic, rotational,
and vibrational quantum numbers), and Cn is the cor-
responding amplitude of the state n. The first part of
Eq. (3) (before the summation over n) comprises the
two wave-packet integrals representing the center-of-mass
motions of the electron and the molecule; the second part
describes the molecular ro-vibrational motion. Note that
the incident electron pulses for different pump-probe de-
lays are modeled by the same amplitude a0(k0); thus the
dependence of the entrance state on the time delay (i.e.,
the time between the creation of the molecular motion
and the arrival of the incident electron pulse) resides in
the phase of the amplitudes Cn of the ro-vibrational mo-
tion [cf. Eq. (31) of Ref. [41]]. The scattering state can

be expressed in terms of the asymptotic state ψi of the
entrance channel i and the electron-molecule interaction
V [53],

ψ
(+)
i = ψi +G(+)(εi)V ψ

(+)
i , (4)

where G(+)(εi) is the interaction-free Green’s function
with entrance channel energy εi, and V comprises the
Coulomb interactions between the incident electron and
the charged particles in the molecular target. The super-
script (+) indicates that the scattering state satisfies the
outgoing-wave boundary condition.

B. Transition amplitude and the
ensemble-averaged scattering probability (EASP)

After constructing the entrance state (3) for the inci-
dent electron and molecule, the wave packets are then
propagated in time, and the transition amplitudes at dif-
ferent time delays are calculated. The transition ampli-
tude from the initial state to a final state f 6= i is the
projection

Af ≡ lim
t→∞

(

ψf (t), ψ
(+)
coh (t)

)

, (5)

where ψf is the asymptotic state of the exit channel
f = {ka,kb,m} with energy εf . Substituting Eq. (3),
together with Eq. (4), into Eq. (5), the transition ampli-
tude can be evaluated. In order to simplify the calcula-
tion, we make the following assumptions. In typical ued
experiments, the kinetic energies of the electron pulses
range from tens of keV to a few MeV, so the first-order
Born approximation is adequate to evaluate the transi-
tion matrix element,

Tfi ≡ (ψf , V ψ
(+)
i ), (6)

for molecular targets comprised of light atoms. For the
same reason, exchange effects between the incident elec-
tron and the molecular electrons are neglected. Details
concerning the evaluation of Tfi can be found in the dis-
cussion following Eq. (32) in Ref. [41]. In brief, since the
entrance state (3) is a coherent superposition state, the
transition amplitude,

Af =
∑

n

Cn

∫

dk0 dk1 a0(k0) a1(k1) 2π δ(εf − εi)Tfi,

(7)

is a coherent sum of the transition matrix elements Tfi

for all components in the entrance state i to the final
state ψf , weighted by their corresponding amplitudes
a0, a1, and Cn and satisfying the conservation of en-
ergy component-wise. Here, δ(·) is the Dirac δ function
representing the conservation of energy.
The scattering probability involves an integration and

sum of the transition density |Af |
2 over exit channels



4

f = {ka,kb,m},

P =
∑

m

∫

dka dkb |Af |
2
, (8)

where the ranges of the incoherent final-state sum and the
momentum integrals depend on the unresolved exit chan-
nels in diffraction measurements. We assume that only
the scattering angles θ and ϕ of the incident electrons
are measured [see Fig. 1 for definitions of these angles].
Thus, unresolved channels, such as elastic (m = n) and
inelastic (m 6= n) transitions, the final momentum kb of
the molecule, and the kinetic energy of the scattered elec-
tron, are summed. In addition, the target gas is consid-
ered to be an ensemble of molecules randomly positioned
in space, for controlling the positions of molecules with
atomic precision remains a challenge in gas-phase scat-
tering. Therefore, the scattering probability (8) must be
further averaged over all possible positions of the molec-
ular targets,

〈P〉 = E[P(b)] , (9)

where E[ · ] stands for the expectation value, and b is a
random variable for the position of a molecular target.
We assume that the molecular gas ensemble is homo-
geneous in its transverse direction (with respect to the
propagation direction of the incident electrons) with a
dimension much larger than the cross section of the in-
cident electron pulse. However, its longitudinal dimen-
sion is assumed to be narrow in order to avoid loss of
temporal resolution due to group velocity mismatch be-
tween the pump laser and the probe electron pulses prop-
agating through the gas ensemble. The effect of veloc-
ity mismatch can be further mitigated using tilted op-
tical or electron pulses [54, 55] or relativistic electron
pulses [21, 22], so this effect is neglected in our model. For
the details of the ensemble average, see the discussions
of Eqs. (28), (30), and (31) in Ref. [43]. The ensemble-
averaged scattering probability (easp) is the principal
equation used to simulate the time-resolved diffraction
images in this paper.
In order to understand how the scattering probabil-

ity (8) describes the delay dependence and governs the
temporal resolution in time-resolved measurements, we
provide the following observations and analysis. The en-
trance state (3) is a wave packet coherently superposing
multiple momentum and energy components, and the in-
formation on the delay dependence is carried by the am-
plitudes Cn. As the collision induces transitions from the

components ψ
(+)
i of ψ

(+)
coh to a final state ψf , these tran-

sitions Tfi, weighted by their amplitudes a0, a1, and Cn,
can interfere with each other in the scattering probability,
yielding a time delay dependence that reflects the molec-
ular motion. The interference of two transitions to the
same final state requires also that the conservation laws
of momentum and energy are satisfied. As a result, the
energy difference between two molecular eigenstates has
to be counterbalanced by two momentum components

of the electron pulse having the same energy difference.
A large energy difference between the molecular eigen-
states (i.e., corresponding to a fast quantum beat) sets
the minimum bandwidth of a pulse for such interference
to occur, which in turn, according to Heisenberg’s uncer-
tainty relation, determines the maximum pulse duration
and temporal resolution of the time-resolved measure-
ment.

Having thus presented our theoretical framework, in
what follows we provide details concerning our simula-
tions of ued from oriented diatomic molecules undergo-
ing ro-vibrational motion.

C. Calculation of transition matrix elements

As shown in Eq. (7), calculation of the transition am-
plitudes Af requires knowledge of the transition ma-
trix elements Tfi. In the first-order Born approxima-
tion, the transition matrix elements are approximated by
Tfi ≃ (ψf , V ψi). Thus, the first step in calculating Tfi

is to determine the eigenstates of the molecular target.
We employ the Born-Oppenheimer approximation, so the
eigenstates factorize into electronic and nuclear parts.
The electronic energies as a function of internuclear dis-
tance (i.e., the molecular potential energy curves) are
obtained from the literature or from quantum chemistry
simulations. The vibrational wave functions are calcu-
lated using these potential energy curves and a Fourier
grid Hamiltonian method [56].

As our focus is on the voc induced by the nuclear mo-
tion, we assume that the quantum beat motion of the
electron excited by the pump pulse is so fast such that
it cannot be resolved by the electron pulse. As a result,
the overall scattering probability is an incoherent sum of
the scattering probabilities from the excited and ground
electronic states, and the information of the correlation
between the electronic states is lost in the measurement
[see, e.g., Ref. [43]]. In addition, under the Born approxi-
mation where the scattering mechanism is simple, inelas-
tic electronic transitions seem unlikely to alter the fea-
tures in diffraction patterns significantly. Furthermore,
we note that the inelastic electronic transitions peak in
the forward direction for ued [57] and their contribu-
tions can be reduced by energy-resolved measurements.
Therefore, we do not include these transitions. The dis-
tortion of the valence electron density due to the binding
force is also neglected. Thus, the elastic scatterings from
the molecular electronic states are approximated using
atomic form factors [see also the discussions of Eqs. (41)
and (42) in Ref. [47]]. The atomic form factors are ob-
tained from Ref. [58]. Note finally that although molecu-
lar electronic transitions are neglected, transitions among
the ro-vibrational molecular states are included in calcu-
lating the transition amplitudes.

The transition matrix elements for ued from a di-
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atomic molecule are thus approximated as

Tfi ≃ δ(Pf − Pi)

2
∑

j=1

1

2π2

1

s2
(

− Zj + fj(s)
)

×

∫

dR eis·Rj φ∗m φn , (10)

where Pf = ka + kb and Pi = k0 + k1 are the respective
total linear momenta of the exit and entrance channels,
δ(·) is the Dirac δ function representing the conservation
of momentum, s = k0 − ka is the momentum transfer
during the collision, Zj is the nuclear charge of the jth
atom in the molecule, fj(s) is the atomic form factor, R
is the internuclear distance, Rj is the position vector of
the jth atom in the molecular reference frame, and φm
and φn are the respective final and initial nuclear eigen-
states. We have also used the fact that the mass of a
nucleus is much larger than that of an electron. The ex-
pression after the j-summation in the first line of Eq. (10)
is the atomic scattering amplitude from the jth atom,
and the second line is the transition amplitude for the
nuclear state (i.e., the ro-vibrational state) in which in-
formation on the molecular structure is embedded. In
other words, Tfi is approximated as a coherent sum of
the scattering amplitudes from the constituent atoms in
a molecule weighted by the amplitude of the n→ m nu-
clear transition and it satisfies the conservation of linear
momentum.

D. Wave-packet amplitudes

Having calculated the transition matrix elements (10),
the wave-packet integrals in Eq. (7) can be performed to
obtain the transition amplitude. To proceed, we must
specify the amplitudes a0, a1, and Cn. The electron
pulses are assumed to be axially symmetric and well col-
limated, so the transverse width of the momentum am-
plitude a0(k0) is small and thus Tfi is insensitive to inte-
gration over the transverse momenta in the wave-packet
integrals. Hence, the transverse momentum components
of k0 in Tfi are approximated to be zero and the cor-
responding momentum integrals are calculated analyt-
ically. The momentum amplitude in the longitudinal

direction is of the form a0(k0) ∝ e−(k0−p0)
2/2σ2

0 , where
p0 is the central momentum and σ0 is the Gaussian
width. The central kinetic energy of the incident electron
pulse is 10.0 keV (p0 ≈ 27.1 a.u.), and the full-width-at-
half-maximum (fwhm) duration of the pulse is 1.0 fs
(σ0 ≈ 7.4 × 10−4 a.u.). The longitudinal momentum in-
tegral is calculated numerically using a Gauss-Hermite
quadrature. The transition matrix is also assumed to
be insensitive to variation of the momentum k1 of the
molecule, so the k1-integral is calculated analytically.
As aforementioned, the vibrational amplitudes of the

nuclear state Cn are determined by the Franck-Condon
factors of the excitation, which can be found in Figs. 1
and 5 of Ref. [47]. In addition, we assume the molecules

are oriented in such a way that two-thirds of the ex-
cited population is in the rotational state Ji = 0 and
the remainder of the excited population is in the state
Ji = 1, with Mi = 0 for both values of Ji. The reasons
for choosing such rotational state are to acquire an ori-
ented molecule with minimum populated rotational lev-
els to ease the computation but still yield a reasonable
degree of orientation. The rotational state gives an ori-
entation with 〈cos θmol〉 ≈ 0.54, which is achievable as
shown in the simulations [59–61].

E. Molecular scattering intensity

The easps as functions of scattering angles θ and ϕ
are calculated using Eq. (8) by summing all unresolved
exit channels and averaging over the molecular ensemble.
The final-state sum in Eq. (8) includes all molecular ro-
vibrational states. In order to ease the computation, we
further assume that Tfi is insensitive to the rotational
quantum number Jf of the final state φm, so the clo-
sure relation for the rotational state of φm can be used.
The ranges of summation for the final vibrational and ro-
tational quantum numbers depend on the molecule and
the momentum transfer. Typical ranges of the vibra-
tional and rotational transitions in our simulations are
∆v ≤ 40 and ∆J ≤ 50, respectively. The scattering
intensities from the pre-oriented molecular ground state
are neglected, for it behaves like a stationary state in our
model as a consequence of the impulsive excitation and
the negligence of inelastic electronic transitions.
Since we are concerned with time-resolved imaging

of molecular motion, the diffraction images presented
in Sec. III below are easps that are processed to ac-
centuate features associated with the molecular geome-
try. The following procedures are used to calculate the
molecular scattering intensity, which is similar to mod-
ified molecular scattering intensities presented by oth-
ers (e.g., Refs. [62, 63]). The terms in the scattering
probability P can be categorized according whether they
stem from individual atoms (atomic scattering) or from
the interference of transition amplitudes from two dif-
ferent atoms (molecular scattering). The atomic scat-
terings give no information about the molecular struc-
ture and are removed from our easps. For a di-
atomic molecule, this term’s contribution is given ap-
proximately by s−4(| − Z1 + f1(s)|

2 + | − Z2 + f2(s)|
2),

where the momentum transfer is approximated using the
result for elastic scattering:

s = 2 p0 sin(θ/2). (11)

To remove the contribution of this term to our easps,
we use the following procedure. For each pump-
probe delay, the two-dimensional diffraction image
is reduced to a one-dimensional one by integrating
over the azimuthal scattering angle ϕ (see Fig. 1).
Then that reduced scattering probability is fitted to
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s−4(| − Z1 + f1(s)|
2 + | − Z2 + f2(s)|

2) to obtain a pro-
portionality factor. The proportionality factors for all
delays are averaged, and this averaged proportionality
factor is used to remove a baseline of the atomic scat-
tering contributions from all two-dimensional diffraction
images. Finally, to compensate for the decrease of the
scattering intensities at large scattering angles θ, these
baseline-removed diffraction images are further divided
by the factor s−4 (−Z1 + f1(s)) (−Z2 + f2(s)).

III. TIME-RESOLVED UED FROM DIATOMIC
MOLECULES IN RO-VIBRATIONAL MOTION

We have found that the voc effect stemming from the
ro-vibrational motion of diatomic molecules is most sig-
nificant in diatomic molecules that involve the hydrogen
atom. This is because of the large amplitudes of such mo-
tions when one of the atomic components is a light atom,
with the H atom being the lightest of all. In this section
we present results for two types of diatomic molecules in
order to illustrate character of the voc effect in time-
resolved ued. The first one is a heteronuclear molecule,
lithium hydride. The second one, the homonuclear hy-
drogen molecule in which one of the atoms is an isotope
of the hydrogen atom, demonstrates that the voc can
also be observed in that case.

A. Deuterated lithium hydride molecule

The oriented ro-vibrational motion of deuterated
lithium hydride (LiD) in the excited A1Σ+ state as a
function of time is presented in the right column of
Fig. 2, which shows the weighted molecular density in
the yz plane perpendicular to the propagation direction
of the electron pulses (see Fig. 1 for the definition of the
coordinate system). The potential energy curves, taken
from Ref. [64], are shown in Fig. 1(b). Deuterium is
used to increase the period of the vibration and to better
localize the molecular wave packet. The molecular densi-
ties in right column of Fig. 2 are weighted by the square
of the internuclear distance, R2, in order to compensate
for the decrease of the densities as the molecular wave
packet spreads outward. The molecular axis R is defined
as the position vector of the D atom relative to that of
the Li atom. As shown in the right panel of Fig. 2(a),
at time t = 0 fs the LiD molecules are oriented so that
the molecular axesR of the LiD molecules point predom-
inantly toward the positive z direction; the corresponding
molecular wave packet is localized about the equilibrium
bond length 3 a.u. Then the wave packet moves outward,
spreading as it moves in the excited molecular poten-
tial. The wave packet reaches the outer turning point
R ≈ 8 a.u. at about t = 58.0 fs, after which the molecule
oscillates backward in the second half of the vibration.
Owing to the much longer time scale of the rotational
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FIG. 2. Right column: Molecular density of the ro-vibrational
motion of deuterated lithium hydride (LiD) in the excited
state A1Σ+ as a function of time. The molecules are oriented
at time t = 0 predominantly with the D atoms to the right of
the Li atoms. The molecular density is weighted by the square
of the internuclear distance, R2, in order to compensate for
the decrease of the density as the atoms move apart. Left

column: Time-resolved molecular scattering intensities of 1-fs
(fwhm) 10 keV electron pulses from LiD molecules undergo-
ing ro-vibrational motion; results are plotted as functions of
the momentum transfer s and the azimuthal scattering an-
gle ϕ at pump-probe delay times corresponding to those for
the molecular densities in the right column. The color bars
are in arbitrary units. Owing to symmetry, only the upper
diffraction images and molecular densities are shown.

motion, no appreciable change of the angular distribu-
tion is observed during the first few cycles of vibration.
The time-resolved diffraction images for 1-fs (fwhm)

electron pulses from LiD molecules undergoing ro-
vibrational motion are shown in the left column of Fig. 2
as a function of the magnitude of the momentum transfer,
s, and the azimuthal scattering angle ϕ. The magnitude
of the momentum transfer is calculated using Eq. (11),
since (for our high-energy incident electrons) inelastic
transitions will not change the value of s significantly. At
zero pump-probe delay [Fig. 2(a)], the diffraction image
shows a concentric ring pattern, as in a Young’s dou-
ble slit experiment, resulting from interference of the
scattering amplitudes from the Li and D atoms. The
diffraction pattern is centrosymmetric and peaks in the
ϕ = 0◦ and 180◦ directions, reflecting the orientation of
the molecules. (The peaking is most prominent for the
inner rings.) As the bond length increases [Fig. 2(b)], the
rings concentrate toward the forward direction s = 0 a.u.
Meanwhile, the outer rings lose their visibility (i.e., con-
trast). In addition to the usual ring pattern, the diffrac-
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tion image at large momentum transfer (s & 4 a.u.) ex-
hibits an asymmetric angular distribution with respect
to ϕ = 90◦. The probability for the incident electrons to
scatter toward the left (ϕ = 180◦) is slightly larger than
for scattering toward the right (ϕ = 0◦). Furthermore,
the asymmetry reverses its sign as the molecule oscillates
backward [Fig. 2(d)]. Note that when the wave packet
reaches the turning points [Figs. 2(a), (c), and (e)], the
diffraction patterns are essentially centrosymmetric.
In order to better quantify the voc effect in time-

resolved ued, we define the asymmetry as the ratio of
the difference between the values of the easp 〈P(ϕ)〉
[see Eqs. (8) and (9)] at ϕ = 0◦ and 180◦ divided by
their sum:

Asymmetry ≡
〈P(ϕ = 0◦)〉 − 〈P(ϕ = 180◦)〉

〈P(ϕ = 0◦)〉+ 〈P(ϕ = 180◦)〉
. (12)

The asymmetries at different time delays within the first
half of a vibrational period are plotted as a function of
momentum transfer in Fig. 3(a). At zero delay, the asym-
metry is zero for all values of momentum transfer. When
the molecule starts to vibrate, the asymmetry oscillates
about zero for small momentum transfers (s . 3 a.u.)
and then decreases monotonically for large values of s.
The magnitude of the asymmetry for s & 3 a.u. increases
continuously until 29.0 fs, which roughly corresponds to
the time at which the molecule is halfway toward the
outer turning point of the vibrational motion. Thence-
forth the magnitude decreases. In general, the magnitude
of the asymmetry is largest at large momentum transfers
for all time delays.
The easp asymmetries for ultrafast x-ray scatter-

ing from the LiD molecule undergoing the same ro-
vibrational motion are shown in Fig. 3(b). The x-ray
results, taken from Ref. [47], are for an x-ray pulse whose
central frequency is 59.3 keV and whose fwhm duration
is 1.0 fs. The main difference between the electron and
x-ray simulations is that the atomic scattering amplitude
in ued includes additional contributions from the nuclei
[i.e., the Zj term in Eq. (10)]. Comparing Figs. 3(a)
and 3(b), one sees that the asymmetries in the case of
x-rays have greater magnitudes and simpler behaviors
(i.e., there are no oscillations about zero for small s).
Nevertheless, the overall behaviors are still very similar,
i.e., for s & 3 a.u. the asymmetries decrease essentially
monotonically with increasing s and the maximum mag-
nitudes occur for a time delay of 29.0 fs. In order to in-
vestigate the source of the sign oscillation for s . 3 a.u.
in Fig. 3(a), we calculate the part of the asymmetry in
ued originating from the nuclei, Li and D, by setting the
atomic form factors fj(s) in Eq. (10) equal to zero. The
results in Fig. 3(c) show that the sign oscillations disap-
pear. Given that the x-ray asymmetries in Fig. 3(b) (in
which the x-rays only scatter from the LiD electrons) also
do not have oscillations for small values of s, the results
in Fig. 3(c) suggest that the oscillations seen in Fig. 3(a)
stem from interference of the ued scattering amplitudes
from electrons and nuclei.
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FIG. 3. Comparison of the easp asymmetries, defined in
Eq. (12), for (a) 1-fs ultrafast electron pulses and (b) 1-fs
x-ray pulses scattered from LiD molecules undergoing ro-
vibrational motion. The asymmetries are plotted as a func-
tion of momentum transfer s. Note that a negative asymme-
try means that more incident electrons or x-ray photons are
scattered toward ϕ = 180◦ than toward ϕ = 0◦. Different
lines correspond to different pump-probe delay times as spec-
ified in the legend in panel (a). In panel (c), the asymmetry
is calculated for scattering from the Li and D atomic nuclei
alone, treated as point charges (i.e., neglecting scattering from
the atomic electrons).

The contributions of ued from the LiD nuclei also have
nontrivial effects on the molecular scattering intensities.
Figure 4 compares the molecular scattering intensities,
calculated as described in Sec. II E, for both 1-fs electron
pulses [in Fig. 4(a)] and 1-fs x-ray pulses [in Fig. 4(b)]
as a function of momentum transfer for six time delays
in the first half period of the LiD vibrational motion.
In all cases, the azimuthal angle is ϕ = 0◦. Compared
with the electron molecular scattering intensities, those
for the x-rays quickly lose their contrast as the momen-
tum transfer increases. One barely discerns any oscilla-
tory behaviors beyond s ≈ 4 a.u. for all delay times in
Fig. 4(b), whereas such oscillations are clearly seen for
the first three time delays in Fig. 4(a). The rapid de-
crease of the contrast even distorts the positions of the
extreme in the x-ray case, thus affecting the determi-
nation of internuclear bond lengths. For example, the
deepest minimum in the electron case (for a time delay
t = 0 fs) occurs at s ≈ 1.4 a.u., but this minimum is
shifted to a slightly lower value (s ≈ 1.3 a.u.) in the x-
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FIG. 4. Comparison of the molecular scattering intensities
(calculated as described in Sec. II E) for (a) electron and (b)
x-ray diffraction from the LiD molecule as a function of mo-
mentum transfer s for six different pump-probe delay times.
In all cases, the azimuthal angle is ϕ = 0◦. To facilitate
comparisons, the molecular scattering intensities are normal-
ized to the maximum intensity for time delay t = 0 fs and
s = 0 a.u.

ray case.

B. Deuterated hydrogen molecule

Electron diffraction from a hydrogen molecule under-
going ro-vibrational motion does not exhibit any voc in
its diffraction images owing to the symmetry of the H2

molecule. However, we show here that the voc can occur
in ued from the HD molecule undergoing ro-vibrational
motion owing to the different velocities of the two iso-
topic atoms comprising the otherwise homonuclear di-
atomic molecule. We also show that there is a notable
difference in the voc effects exhibited in the ued images
for scattering from the HD and LiD diatomic molecules.
Figure 5(a) shows the molecular potential energy

curves of the ground X1Σ+
g and excited B1Σ+

u electronic
states of the HD molecule, which are calculated using the
complete active-space self-consistent field method from
the Gaussian 16 package [65]. The excited potential
curve is slightly shifted by 0.13 a.u. toward the origin to
simplify the numerical computations. This shift changes
the Franck-Condon factors, and, accordingly, the ensuing
motion of the wave packet in the excited state. Without
the shift the nuclei move faster and further from each
other, and the wave packet spreads wider. Therefore,
the spacing of the interference fringes and the degree of
the voc change as they reflect the internuclear distance
and the nuclear motion, respectively. However, since the
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FIG. 5. (a) Molecular potential energy curves of the X1Σ+
g

and B1Σ+
u states of the hydrogen molecule as a function of in-

ternuclear distance R. (b) The radial molecular wave packet
for ro-vibrational motion of the deuterated hydrogen molecule
(HD) in the excited B1Σ+

u state as a function of time. The
molecular scattering intensities for 1-fs (fwhm) 10 keV elec-
tron pulses from HD molecules undergoing ro-vibrational mo-
tion are shown for two azimuthal scattering angles: (c) ϕ = 0◦

and (d) ϕ = 180◦ [see Fig. 1(a) for definition of ϕ].

shift is small and the alteration of the nuclear motion
seems insignificant, we think that the voc-related fea-
tures focused in the paper should remain the same. The
radial molecular density in the B1Σ+

u state as a function
of time is plotted in Fig. 5(b). The molecular axis vector
R points from the D atom to the H atom and, for the pur-
pose of comparison, the orientation and angular distribu-
tion of the HD molecules at zero time delay are chosen to
be the same as for the LiD molecules [see the right panel
in Fig. 2(a)]. As seen in Fig. 5(b), the B1Σ+

u state also
supports a large vibration amplitude; however, the dis-
persion of the HD excited molecular wave packet is more
significant than the dispersion shown in the right column
of Fig. 2 for the LiD excited molecular wave packet.
The time-resolved molecular scattering intensities at

ϕ = 0◦ and 180◦ as a function of pump-probe delay are
presented in Figs. 5(c) and 5(d), respectively. As for the
LiD molecule, the interference fringes vary with the time
delay, which reflects the vibrational motion of the HD
molecule. In addition, comparing the results for ϕ = 0◦

and ϕ = 180◦, voc can be observed at large momentum
transfers s & 3.0 a.u. as the molecule vibrates. Specifi-
cally, the scattering intensities at ϕ = 0◦ are larger than
those at ϕ = 180◦ as the bond length increases, and the
asymmetry changes its sign after the molecule reaches
its outer turning point at a time delay of t ≈ 15 fs. One
sees also that the interference fringes for time delays of
5 ≤ t ≤ 30 fs are not visible for large momentum trans-
fers. Contrary to the LiD molecule, the voc in the HD
case is exclusively caused by the motion of the hydrogen
atoms because, in our model, the atomic scattering am-
plitudes from the H and D atoms are identical. Notably,
the asymmetries have opposite signs for the LiD and HD
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molecules despite the fact that in both the LiD and HD
cases the molecular axis R points from the heavy atom
to the light one. Moreover, both molecules share the
same initial orientation and angular distribution. How-
ever, whereas the scattering intensities increase in the
direction of motion of the H atom in the HD case (i.e.,
the direction of dR/dt or ϕ = 0◦), they instead increase
in the direction of motion of the Li atom in the LiD case
(i.e., the direction of −dR/dt or ϕ = 180◦), as may be
seen in the left column of Fig. 2.

IV. SEMI-CLASSICAL INTERPRETATION

Having seen the character of the time-resolved diffrac-
tion images from the molecular ro-vibrational motion,
in this section we provide a semi-classical interpretation
of the voc in the diffraction images in Figs. 2 and 5
and discuss some implications from such interpretation.
Since our interpretation utilizes Newton diagrams which
are seldom applied in ued, we first introduce the New-
ton diagram in the simplest scenario: a binary collision
in Sec. IVA. Then the simple scenario is generalized to a
scattering from a vibrating molecule in Sec. IVB, where
one will see how the voc relates to the nuclear motion.
Next, we argue that the interference fringes cannot be ob-
tained simply by appending a position-dependent phase
to the scattering amplitude, which is frequently employed
in time-independent ued theory. Instead, we discuss in
Sec. IVC that the interference fringes appear when both
the projectile and molecule are treated as wave pack-
ets in a time-resolved scattering. Finally, we also say a
few words about time-resolved coherent x-ray diffraction
from the same semi-classical perspective in Sec. IVD.

A. Newton diagram for a binary collision

Since the velocities and angular distributions of reac-
tants and products in collisions are measured in labora-
tory reference frames (hereafter, lab frames for short),
these kinematic and dynamic quantities are usually
transformed to center-of-mass (cm) frames to remove
the overall cm motion for analyses and interpretations.
The Newton diagram is a graphical device that facili-
tates such coordinate transformations and visualizes the
relationships of velocities and differential scattering cross
sections in both reference frames. Figure 6(a) shows
the Newton diagram for an elastic collision between two
beams of projectiles and scatterers crossing perpendicu-
larly. In the lab frame, the velocities of the projectile and
scatterer are denoted, respectively, by v0 (vertical arrow)
and v1 (horizontal arrow), and the corresponding quanti-
ties in the cm frame are labeled with a prime (i.e., v′

0 and
v
′

1). Since the velocities of the two particles are always
counter-propagating in the cm frame, the velocity vc of
the cm frame must lie on the straight line connecting the
heads of v0 and v1. The precise position of vc along this

line can be simply determined by the mass ratio of the
projectile and scatterer, for the total linear momentum
must be zero in the cm frame (i.e., m0|v

′

0| = m1|v
′

1|,
where m0 and m1 are the masses of the projectile and
scatterer, respectively).

After the collision, the projectile recoils from the scat-
terer with an asymptotic velocity va. For an elastic scat-
tering, the conservation of energy and momentum dic-
tates that, in the cm frame, only the trajectory of the
projectile is deflected and there is no change of magni-
tude in its asymptotic velocity (i.e., |v′

a| = |v′

0|). Ac-
cordingly, the velocities of all scattered projectiles lie on
a circle centered at vc with the radius |v′

0| [which is the
blue circle in Fig. 6(a)]. The angular distribution of the
scattered projectiles on this Newton circle depends on
the dynamics of the collision (i.e., the scattering mecha-
nism). From the Newton diagram one sees that, in the cm
frame, the projectile moves in the direction of 11 o’clock
and the “physical” scattering angle θ′ ≡ ∠(v′

0,v
′

a) should
be measured with respect to v

′

0, while in the lab frame
the scattering angle θ ≡ ∠(v0,va) is defined with respect
to v0. Moreover, the kinetic energy of the scattered pro-
jectile can differ from the incident one in the lab frame
[e.g., |va| > |v0| in Fig. 6(a)], even though the scattering
is elastic.

As a consequence of the transformation between the
lab and cm frames, differential cross sections (dcss) of
the projectile in the two frames are related by the Jaco-
bian of the coordinate transformation. The dcs trans-
forms as [66–68]

dσ

dΩ
=

dσ

dΩ′

∣

∣

∣

∣

dΩ′

dΩ

∣

∣

∣

∣

=
dσ

dΩ′

v
2
a

v′2
a

∣

∣ cos δ
∣

∣ , (13)

where dσ/dΩ and dσ/dΩ′ are the respective dcss in the
lab and cm frames, and δ ≡ ∠(va,v

′

a) is the angle be-
tween va and v

′

a. Geometrically, the ratio of the velocity
square in Eq. (13) is responsible for the change of areas
of the surface elements (subtended by the solid angles dΩ
and dΩ′ in the lab and cm frames, respectively) in the
transformation, and cos δ takes account of the projection
of the flux normal to the surface element. Because of the
Jacobian factor, as long as the velocity vc of the cm frame
has a nonzero transverse component with respect to the
velocity v0 of the incident projectile, the dcs in the lab
frame exhibits an asymmetric angular distribution with
respect to the forward direction θ = 0◦, even though the
angular distribution dσ/dΩ′ in the cm frame is symmetric
with respect to θ′ = 0◦. Figure 6(b) depicts an example
of the dcs in the lab frame for the collision geometry in
Fig. 6(a) with an assumption that the dcs is isotropic
in the cm frame. Namely, it shows the Jacobian of the
transformation as functions of scattering angles θ and ϕ.
One can clearly see the projectiles are more probable to
scatter toward right direction (i.e., ϕ < 90◦), and this
asymmetry in the dcs reflects the (trivial) cm motion in
the binary collision.
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FIG. 6. Semi-classical interpretation of the asymmetry and interference fringes in coherent diffraction from ro-vibrational
motion of diatomic molecules. (a) Newton diagram for a binary collision of two beams of projectiles and scatterers. The origin
of the diagram is labeled by O. The velocities of the incident projectile and scatter are denoted, respectively, by v0 and v1,
and the velocity of the scattered projectile is denoted by va. The velocity of the center-of-mass (cm) frame is vc, and the
velocities with respect to the cm frame are labeled with a prime (e.g., v′

a). The circles with solid and dash lines are the Newton
circles for the elastically scattered projectiles and scatterers, respectively. The parameters are m1/m0 = 7 and |v1|/|v0| = 1/3.
(b) Asymmetric differential cross section (dcs) of the projectile in the lab frame resulting from the cm motion. The dcs is
generated using Eq. (13) by assuming that the dcs in the cm frame is isotropic. (c) Newton diagram for the scattering of
projectiles from heteronuclear diatomic molecules AB. At the moment of collision, the molecule is vibrating such that the
velocities of the atoms A and B are vA and vB, respectively. The parameters are mA/m0 = 28, mB/m0 = 7, |vA|/|v0| = 1/12,
and |vB|/|v0| = 1/3. (d) voc in the dcs of the projectile scattered from the vibrating AB molecule. The dcss of both A and
B are isotropic in their own cm frames but with different scattering intensities: σ′

A/σ
′

B = 4. (e) Newton diagram for pulsed
projectiles scattered from a vibrating molecular wave packet of AB. The color and its shade of brightness indicate the phase
and magnitude of the scattering amplitudes A (va) [see Eq. (15)], respectively. The velocity distributions of the atoms are
assumed to be two-dimensional Gaussian distributions with widths δvj , and the velocity distribution of the projectile has a
one-dimensional Gaussian envelope with a width δv0y. The parameters are δv0y/|v0| = 1/150, and |δvj |/|vj | = 1/2 (j = A, B).
(f) Example of a time-resolved diffraction image from the vibrating molecular wave packet.

B. Newton diagram for a collision from a vibrating
molecule

Now let us replace the scatterers by some (fictitious) di-
atomic moleculesAB whose cm is at rest in the lab frame.
Assume that, at the moment of collision, the molecule is
vibrating such that the velocities of atoms A and B are
vA and vB, respectively, as shown in Fig. 6(c). If one
neglects the influence of the other atom when the pro-
jectile collides with one of the atoms, then the scattering
can be considered as a sum of two independent scatter-
ings from the atoms A and B (i.e., independent-atom
model). Accordingly, the dcs of the projectile-molecule
scattering is a sum of the dcss of the constituent atoms.
As indicated in Fig. 6(c), the dcss of atoms A and B
exhibit opposite asymmetries, for the horizontal compo-
nents of their cm velocities point in opposite directions,
and the overall asymmetry of the total dcs is a result of
the competition between the asymmetries of A and B.
In Fig. 6(d), we show the dcs of the projectile scattered

from the vibrating AB molecule, assuming that the dcss
of A and B are isotropic in their own cm frames but the
scattering intensity of A is four times stronger than that
of B. The dcs manifests voc asymmetry, but the degree
of the asymmetry is reduced as compared with Fig. 6(b).
In short, from the perspective of the Newton diagrams
in Figs. 6(a) and (c), the voc effect in diffraction images
is a direct consequence of scattering kinematics of refer-
ence frame transformation as one measures the scattering
intensities from moving particles.

Three corollaries can be inferred from the above ob-
servations of the Newton diagram in Fig. 6(c). First,
anisotropy of molecular geometry alone is insufficient to
break the centrosymmetry of diffraction patterns; how-
ever, disparity between particles’ motion is necessary to
produce the asymmetry. As shown in the right column
of Fig. 2, the heteronuclear LiD molecules maintain their
orientation (i.e., geometric anisotropy) throughout the
first few cycles of the vibrational motion, and the diffrac-
tion images can still exhibit centrosymmetry as seen in
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Figs. 2(a), (c), and (e). However, voc occurs as the ori-
ented molecules start vibrating [Fig. 2(b)], and the asym-
metry reverses its sign as the Li and D atoms flip their di-
rections of motion after reaching the outer turning point
[Fig. 2(d)]. Furthermore, anisotropy in molecular motion
solely is enough to break the centrosymmetry. For the
case of homonuclear HD molecules, orientation is irrele-
vant to geometric anisotropy because in our model, from
the perspective of the incident electrons, the H and D
atoms are electronically identical when they are station-
ary, but the voc can still be seen resulting from the ro-
vibrational motion in Figs. 5(c) and (d). In addition, this
asymmetry exists in any reference frame because it re-
flects the relative motion of the constituent atoms rather
than the overall cm motion of the molecule.
Second, the degree of voc asymmetry pertains to the

velocity of a scatterer, not its momentum. Given that
AB is at rest in the lab frame, the magnitudes of the mo-
menta of A and B are the same (i.e., mA|vA| = mB|vB|),
but the lighter atom B has larger cm velocity vcB , thus
inducing a greater degree of asymmetry. Moreover, the
competition of the asymmetry for a diatomic molecule
depends on the relative velocities (or masses) and scatter-
ing intensities of the constituent atoms. However, these
factors usually tend to counteract to each other. As the
molecule vibrates, although the light atom moves faster,
thus rendering a bigger asymmetry in its dcs, the heavier
one usually has stronger scattering intensity, thus domi-
nating the overall dcs. This is what we observed in the
cases of LiD and HD molecules. In the HD case, both H
and D atoms have the same atomic scattering amplitude
in our model, but since the H atom moves faster in the
vibrational motion, the asymmetry reflects the motion of
the H atom (i.e., the scattering intensity increases in the
same direction of motion of the H atom). On the other
hand, in the LiD case, although the D atom moves faster,
the Li atom has larger scattering intensity. As a result,
the asymmetry indicates the motion of the Li atom.
Third, the momentum transfer s = m0 (v0 − va)

calculated without considering the cm motion (thus,

|va|
!
= |v0| for elastic scattering) is only approximate,

though in typical situations of ued such approximation
can be quite accurate (see caution in the last paragraph
of Sec. IVC).
While the above classical picture renders an intuitive

interpretation of the asymmetry in time-resolved diffrac-
tion images, an important feature of coherent diffraction,
namely the interference fringe, is absent from the dcs in
Fig. 6(d). Microscopic particles also exhibit wave be-
haviors, possessing probability amplitudes and phases.
Hence, treated as a matter wave, a scattered projectile
carries a scattering amplitude f(s) with a phase eis·Rj

depending on the position Rj of the scatterer. Under the
independent-atom model, the total scattering amplitude

f(s) = fA(s) e
is·RA + fB(s) e

is·RB (14)

is a sum of the scattering amplitudes from A and B,
and the dcs is the absolute square of the scattering am-

plitude, dσ/dΩ = |f(s)|2 (strictly speaking, for elastic
scattering). Therefore, interference fringes arise as the
two amplitudes in Eq. (14) interfere, yielding a modula-
tion in the dcs that oscillates as a function of momentum
transfer s.
However, even by assigning the position-dependent

phases eis·RA and eis·RB to the Newton circles of A
and B, respectively, in Fig. 6(c), no interference fringes
can emerge because the two Newton circles intersect (at
most) at two points. In other words, the projectiles recoil
from the atoms A and B with different speeds in almost
every direction (even though each scattering event is elas-
tic). These scattered projectiles correspond to states
with different asymptotic momenta and, therefore, their
scattering amplitudes do not interfere (in conventional
dcs measurements). This is still true even there is no vi-
bration (i.e., both A and B are at rest in the lab frame).
This counterintuitive circumstance lies in the fact that
the Newton diagram in Fig. 6(c), wave mechanically, does
not represent a vibrating molecule. Molecules have well-
defined geometries and their constituent atoms vibrate
around their equilibrium positions. However, since the
velocities of the atoms A and B are well defined (i.e.,
no uncertainty in their momenta), the uncertainty in the
positions of the atoms is actually infinite, according to
the uncertainty relation.

C. Newton diagram for a collision from a
molecular wave packet

To rectify this, the molecule should be modeled as a
wave packet with some distribution associated with the
molecular geometry and motion. Figure 6(e) illustrates
this by modeling the atoms A and B as wave packets with
Gaussian amplitudes in velocity. The incident projectile
is also considered as a wave packet for the time-dependent
collision, having a Gaussian distribution along the verti-
cal direction with a width δv0y. Then the scattering am-
plitude A from the wave packet of atom j, where j = A
or B, is obtained by convoluting the scattering ampli-
tude fj(s) with the probability amplitudes of the projec-
tile a0(v0y) and the atom aj(vj) under the constraints of
elastic scattering:

A (va) ∝

∫

dv0y dvj a0(v0y) aj(vj) fj(s) e
is·Rj . (15)

The scattering amplitude fj(s) is assumed to be sym-
metric with respect to the physical forward direction
θ′ = 0◦ and decreases as ∝ 1/s. For the position-
dependent phase eis·Rj , the molecule is further assumed
to be aligned along the direction of vibration (i.e., the di-
rection of velocity vj) with a fixed length Rj . (Note that
this deviates from a pure quantal treatment in that both
the momentum and position distributions of the atoms
A and B are specified.)
Owing to uncertainty in the velocities, the Newton cir-

cles in Fig. 6(c) become non-concentric shells as seen in
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Fig. 6(e). Therefore, as the two Newton shells overlap,
the scattering amplitudes from A and B can interfere.
Figure 6(f) shows an example of the time-resolved diffrac-
tion image (which is taken from the LiD case). The in-
terference fringes can be seen now but only in the small
scattering angle (θ . 10◦), and the fringe visibility fades
as θ increases. On the other hand, the asymmetry is more
prominent at large scattering angle (θ & 15◦) where the
interference fringes disappear. This can be understood
by examining the Newton diagram in Fig. 6(e). Due
to the off-centered Newton shells, the two shells overlap
less significantly at larger scattering angle than in the
forward direction, thus the visibility of the interference
fringes degrades. This anticorrelation between the fringe
visibility and the degree of the asymmetry interestingly
demonstrates the uncertainty relation of complementary
variables of position and momentum because the inter-
ference fringes come from the relative positions of the
atoms but the asymmetry is due to their motions. We
note that the above explanation only partially accounts
for the loss of the visibility which can also be attributed
from the spreading (i.e., delocalization) of the molecular
wave packet.

Some remarks about the above semi-classical interpre-
tation are in order. (i) The loss of fringe visibility and
voc effect in diffraction measurements are direct conse-
quences of molecular motion. While reduced visibility
may increase the uncertainty in determination of molec-
ular geometry, it nevertheless reflects the nature of a
molecular motion. However, we found that by reduc-
ing the pulse duration (i.e., analogous to a faster shut-
ter speed) to “freeze particles’ motion” can enhance the
visibility, though it is still unable to avoid the uncer-
tainty resulting from the delocalization of molecular wave
packet. (ii) While the interpretation is compatible with
our quantum formulation [see the discussion of Eq. (10)],
there are some physics unable to be (easily) captured by
the simple picture using the independent-atom model.
One aspect is the correlation between the motions of
the constituent atoms in a molecule. Because of molec-
ular bonding, atomic movements are not independent.
Therefore, not all components in Newton shells lead to
an interference when they overlap in a Newton diagram;
two atomic scattering amplitudes can interfere only un-
der certain conditions. For example, in Fig. 6(e) two
amplitudes interfere, in addition to satisfying the con-
servation laws, when the velocities of A and B are such
that the cm velocity of AB is at rest in the lab frame
(i.e., mA|vA| = mB|vB|). Another missed aspect is that
no inelastic transitions between ro-vibrational states are
included in the scattering amplitudes A (va). On the
other hand, the quantum simulations include all tran-
sitions among the ro-vibrational states [i.e., the second
line of Eq. (10)]. According to the discussion in Sec. II B,
we know that such interference of the inelastic transi-
tions plays nontrivial role in time-dependent scattering,
imposing delay dependence and temporal resolution in
time-resolved measurements. (iii) Coherent diffraction

from electronic motion in atoms and molecules also ex-
hibits the voc effect [41, 43, 45, 48–50]. The physical
mechanism behind this asymmetry should be the same as
in the molecular motion; however, electronic motion ex-
hibits more wave characteristic because, compared with
nuclear states, electronic states are more delocalized in
space and energy spacing is larger.
Before concluding the discussion of the semi-classical

interpretation, we want to caution readers. In order to il-
lustrate the physical mechanism behind the voc effect in
time-resolved diffraction, the parameters chosen to draw
the Newton diagrams in Fig. 6 are exaggerated. In typ-
ical ued, the speeds |v0| of incident electrons are usu-
ally orders of magnitude larger than the motions of con-
stituent atoms in molecules, and the mass of electron is
also orders of magnitude smaller than those of atoms.
Therefore, the cm velocity of each electron-atom pair is
very small, and, accordingly, the asymmetry is weak. In
many cases, the cm frame can be approximated as sta-
tionary in the lab frame. This explains why we found
that the voc asymmetry is most significant in large am-
plitude vibrations of diatomic molecules involving hy-
drogen atom. In addition, the theory is based on the
first-order Born approximation in non-resonant diffrac-
tion. Other mechanisms such as resonant and multiple
scatterings may induce asymmetry as well. Similar voc
phenomenon has also been observed in photoionization
spectra [69–71].

D. Semi-classical interpretation for x-ray
diffraction

Although the nature of photons and their interaction
with charged particles are very different from those of
electrons, under the circumstances of non-resonant, first-
order perturbative interaction the formulation describing
time-dependent x-ray diffraction [47] is essentially equiv-
alent to the ued one. Therefore, the same semi-classical
picture should also be applied to the x-ray diffraction.
In the theory of classical electrodynamics, the scattering
of electromagnetic radiation from a (stationary or mov-
ing) charged particle can be considered as a process of
re-emission of the radiation from the driven oscillatory
motion of the particle. From the perspective of the rest
frame of a moving electron, the scattering is simply the
Thomson scattering (or the Compton scattering if the
momentum of the photon is significant), so the dcs is
centrosymmetric. However, from the perspective of the
lab frame, the angular distribution of the re-emitted ra-
diation shows asymmetric pattern resulting from the ref-
erence frame transformation. In order to apply the for-
mulation used in ued, the analysis needs to be modified,
as there is no cm frame for photon scattering. Instead
of the center-of-mass frame, analogous analysis can be
performed using the center-of-momentum frame in which
the total momentum of the scattering system is zero.
The coordinate transformation between the laboratory
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FIG. 7. (a) Ratio and (b) product of the atomic scattering
amplitudes from Li and D atoms for x-ray (solid line) and
electron (dash-dotted line) diffraction. In the x-ray case, the
atomic scattering amplitude includes only the contribution
from the electrons [i.e., atomic form factor fj(s)], but in the
electron case, both the nucleus and electrons contribute to
the scattering amplitude [see Eq. (10)].

and center-of-momentum frames is similar to the one in
Eq. (13) in which variables like va are replaced by the
corresponding ones like ka, provided that relativistic ef-
fect is negligible. Accordingly, many of the above ued

corollaries are still applicable to the x-ray diffraction.
We would also like to explain the differences in the

asymmetry (Fig. 3) and the molecular scattering inten-
sity (Fig. 4) between the electron and x-ray diffraction
from LiD molecules, applying the insights learned from
the semi-classical picture. Since the molecular motions
are identical in both cases, the differences come from
the differences in the probe pulses and/or the scatter-
ing mechanisms. According to the previous paragraphs,
the main characteristic of the probe pulse that affects
the asymmetry (via the Jacobian factor) is its veloc-
ity/momentum distribution. However, we only found
weak dependence of the asymmetry on the momentum
of the incident particles. Thus, the main factor con-
tributing to the differences results from the scattering
mechanism, namely, the atomic scattering amplitude in
Eq. (10). From Figs. 6(c) and (d), we know that the
asymmetry is mainly contributed from the atomic scat-
tering rather than from the molecular scattering (i.e., the
interference of atomic scattering amplitudes) and that
the competition of the asymmetry depends on the rel-
ative strength of the scattering intensities from Li and
H atoms. Therefore, in Fig. 7(a) we plot the ratios of

the atomic scattering amplitude of Li atom to that of D
atom for the x-ray (solid line) and electron (dash-dotted
line) diffraction as a function of momentum transfer. In
addition to the contribution from the atomic electrons,
the scattering amplitude for the electron diffraction in-
cludes the contribution from the nucleus. One can see
that for both cases the ratios are larger than one. The
ratio for the electron diffraction has a maximum at zero
momentum transfer, and the ratio falls and approaches to
the ratio of the nucleus charge ZLi/ZD as the momentum
transfer increases. In contrast, except for small momen-
tum transfer, the ratio for the x-ray case is larger than
that of the electron and monotonically increases with the
momentum transfer. Since the scattering from the Li
atom dominates the scattering intensities (thereby the
asymmetry), the ratios explain why the asymmetry of
the x-ray case is stronger than that of the electron case.
Figure 4 shows that the molecular scattering intensi-

ties of ued have more prominent interference fringes at
large momentum transfer than those of x-ray diffraction.
Unlike the asymmetry, the modulation of the scattering
intensities comes from the molecular scattering, so we
plot the product of the atomic scattering amplitudes for
the x-ray and electron cases in Fig. 7(b). We see oppo-
site behaviors in the two cases. The product for the x-ray
diffraction monotonically decreases, but the product for
the electron case increases monotonically and approaches
to the constant ZLi×ZD. This explains why the visibility
decreases so fast for the x-ray diffraction.

V. SUMMARY AND DISCUSSION

We have discussed the basic ideas of modeling time-
dependent ued and presented the time-resolved ued

imaging of ro-vibrational motion of diatomic molecules
LiD and HD. The simulated diffraction images show
delay-dependent interfering ring patterns that reflect the
molecular orientation and the change of the internuclear
distance during the vibrational motion. In addition, the
diffraction images exhibit asymmetric angular distribu-
tions whenever the vibrational motion of the two atoms
breaks the inversion symmetry. The comparison of the
electron and x-ray diffraction in the case of LiD molecule
shows that the presence of the scattering from the nuclei
indeed affects the asymmetry and molecular scattering
intensities in ued. The scattering from the nuclei en-
hances the contrast of the ring patterns at large scatter-
ing angle θ but slightly reduces the degree of the asym-
metry.
We also present a semi-classical interpretation for the

origin of the voc asymmetry, the change of the sign
of the asymmetry from the LiD to HD molecules, and
the anticorrelation between the visibility of the interfer-
ence fringes and the degree of the voc. These phenom-
ena can be understood as consequences of the scatter-
ing kinematics of reference frame transformation. In a
ued from a moving scatterer, a symmetric dcs in the cm
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frame can appear asymmetric in the lab frame because
of the reference frame transformation [see Eq. (13)]. The
sign and degree of the asymmetry respectively indicate
the direction and magnitude of the scatterer’s velocity
with respect to the incident electron. Moreover, elec-
trons scattered from the different atoms of a vibrating
diatomic molecule render opposite asymmetries because
of the countermovement of the atoms. The competition
of the asymmetries results in the sign change of the over-
all asymmetry between the LiD and HD molecules. Like-
wise, since the velocity of a scattered electron depends
on the motion of the scatterer at the moment of scat-
tering, electrons scattered toward the same direction but
from different atoms can recoil with different speeds if the
molecule is vibrating. Thus, their scattering amplitudes
may not interfere, and the contrast of the interference
fringes degrade accordingly. The degradation is most sig-
nificant when there occurs the highest disparity between
the atoms’ motion. With the help of Newton diagrams,
the scattering kinematics of reference frame transforma-
tion can be easily visualized, and the above phenomena
can be intuitively understood.

Finally, we remark the feasibility of creating an
anisotropic nuclear motion. Our scheme in Sec. I in-
volves a pre-oriented diatomic molecule before the pump
process so that the excited wave packet exhibits an
anisotropic nuclear vibration. A number of techniques
have been developed or proposed to orient molecules us-
ing a static electric field, laser pulses, few-cycle terahertz
pulses, or a combination of them [72–75]. Orientation

of a molecule is typically separated into two regimes:
adiabatic and nonadiabatic, based on the relative time
scale between the pulse duration and the rotational pe-
riod of the molecule. A long-term, high-degree orien-
tation can usually be achieved in the adiabatic regime
where molecular rotational states with different J , fol-
lowing an external strong field adiabatically, evolve to
pendular states that liberate about the orientation axis.
However, the presence of the external field can influence
the motion of the incident electron pulses. On the other
hand, a field-free orientation can be achieved in the nona-
diabatic regime where a short pulse produces a coherent
rotational wave packet that orients transiently after the
pulse is gone. In particular, for lithium hydride, sim-
ulations have been shown high-degree orientations are
possible using few-cycle terahertz pulses [59–61].
Instead of pre-orientation, it is possible, but with a

caveat, to create a vibrational wave packet and orient a
molecule simultaneously with a single pulse. Since a very
different time scale between a rotational and a vibrational
motion, the vibrational motion may have been dephased
(i.e., the vibrational wave packet has been delocalized)
as the rotational wave packet orients.
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