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We study the creation process of an electron-positron pair as a result of the collision between two incoming 

photons with full spatial and temporal resolution.  The dynamics of the four involved particles is described by 

a simplified model based on a Yukawa Hamiltonian in one spatial dimension.  This quantum field theoretical 

approach permits us to go beyond the usual external field approximation and to study the depletion of the two 

colliding photon wave packets due to the back-reaction of the created electron-positron pair.  If the spatial 

extension of the incoming photons is sufficiently narrow, we predict an interesting blue shift with regard to the 

optimum incoming photon momentum that can maximize the pair creation yield close to the threshold 

momentum.  
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1. Introduction 

 In 1934 a pioneering work by G. Breit and J.A. Wheeler [1] proposed for the first time that the collision 

of two highly energetic photons could lead to the creation of an electron-positron pair.  This process is from a 

fundamental point of view very interesting, as it provides the simplest mechanism under which pure light 

quanta can be converted into matter therefore providing a direct manifestation of the equivalency between 

energy and mass.  Starting in the 1960s, further studies of the pair creation process via the multiphoton 

absorption in strong electromagnetic fields were reported [2-5].   

 Due to the technical difficulty to generate gamma rays with sufficiently high intensity, this phenomenon 

has not been confirmed directly by experiments up to this point.  However, a more complicated version of this 

process was realized in the famous SLAC experiment in 1997 [6], where a highly accelerated electron beam 

was first used to create high-energy photons via the nonlinear inverse Compton scattering mechanism [7-8].  

Subsequently, these photons interacted with the same laser to generate multi-photon electron-positron pairs.  

As the power of the experimentally available laser fields has steadily increased over the last years, there are 

also plans to revisit the multi-photon Breit-Wheeler process within an all-optical environment. 

 Due to its fundamental significance, the process has also been studied widely from a theoretical point of 

view [9-14].  There are numerous interesting calculations that aim to determine the transition rates for realistic 

laboratory conditions, where the two counter propagating laser fields have complicated space-time profiles.  

Here it was proposed to generalize the usual laser-dressed final states by modified Volkov states [15] that can 

incorporate perturbatively spatial and temporal inhomogeneities [16-18]. 

 In this work, the emphasis is more on the fundamental quantum field theoretical features of this basic 

process.  We note that similar to the original Breit-Wheeler work, most theoretical treatments consider the 

interaction under the external field approximation, where the photons are described by a classical 

electromagnetic field with a predetermined spatial and periodic temporal dependence.  This restriction to 

classical external fields prohibits the theoretical access to truly dynamical features of the photons, such as their 

role in particle dressing [19-21], energy shifts and other intrinsically quantum field theoretical characteristics. 

 The present work is different from prior studies in two respects.  First, it does not approximate the two 

colliding photons by two time-dependent force fields with a prescribed temporal dependence, but as two fully 

coupled quantum field theoretical variables that are being treated on the same dynamical level as the electron 

and positron.  Second, by superimposing states with different total momentum, we can examine the collision 

within the quantum field theoretical framework with space-time resolution.  

 This manuscript is structured as follows.  In Section 2, we introduce the model system, its notation and 

the underlying fundamental Hamiltonian that becomes accessible to numerical simulations.  In Section 3, we 
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reduce the dynamics to an essential state system.  In Section 4, we adiabatically eliminate the intermediate 

three-particle states, which reduces the dynamics to an effective two-level system.  We also test the range of 

validity of this approximation.  In Section 5, we analyze the time evolution of the pair production for an 

infinitely extended initial two-photon state into a continuum of final electron-positron states.  We also derive a 

Breit-Wheeler rate and compare it with the one obtained from the perturbative Fermi's Golden rule.  In Section 

6, we examine how the Breit-Wheeler decay rate obtained from two monochromatic photons can guide the 

study of the space-time resolved photon-photon scattering, where the initial state is a superposition of photons 

with various momenta.  We examine the time-dependence of the spatial densities for the photons and the 

created electron-positron pairs during and after the collision.  In Section 7, we summarize the work and 

discuss open questions.  For better readability and a better focus on the physical predictions, we have shifted 

major mathematical derivations to three appendices. 

 

2. The model system 

 In this section we briefly introduce our toy model and its notation.  In order to be able to examine the 

photon-photon interaction from a quantum field theoretical perspective, numerous theoretical restrictions have 

to be made up front to make the system computationally feasible.  We denote the momenta of the electrons, 

positrons and photons by p, q and k, respectively.  The two fermions have a bare mass M and the photon is 

assumed to have a small mass m, whose numerical value could be chosen zero, but in order to avoid possible 

infra-red singularities in our computer simulations, we choose a small but finite value, m  M.  Furthermore, 

we assume that the model photon has a zero spin component along the propagation direction and that the 

spatial dimension is restricted to only one, represented by the x-axis.  We choose this simple model as it 

permits us to examine numerically the validity of several approximations that accompany this theoretical 

framework.  In atomic units, where m= =e=1, the bare energies are given by Ep  [M2c4+c2p2]1/2 for the 

electrons, q  [M2c4+c2q2]1/2 for the positrons and by k  [m2c4+c2k2]1/2 for the photons.  The fermionic 

momentum creation and annihilation operators fulfill the usual anti-commutator relationships, [b(p),b(p)†]+ = 

(p–p)  [d(q),d(q)†]+ = (q–q) [b(p),b(p)]+ =  [d(p),d(p)]+ =  [b(p)†,b(p)†]+ =  [d(p) †,d(p)†]+ =  

[d(q)†,b(p)]+ = , [b(q)†,d(p)]+ = , while the corresponding bosonic operators fulfill the usual commutator 

relationships [a(k),a(k)]– =  [a(k)†,a(k)†]– =  and [a(k),a(k)†]– = (k–k).  The interaction energy coupling 

the fermionic and bosonic field operators is chosen in this model study as V=  c3/2 dx † 3 A , with the 

22 Pauli matrix 3.  In Appendix A, we derive the form for the Hamiltonian H.  For our numerical purposes 
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it is represented on the discretized numerical grid as 

 

   H = p Ep b(p)† b(p)  + q Eq d(q)† d(q)  +  k k a(k)† a(k)  +  n=18 Vn   (2.1) 

 

where the eight fundamental interactions of our model of qed are given by 

 

   V1 = g  p k UU(p,p–k,k)  bp† bp–k ak  (2.2a) 

   V2 = g  p k UU(p,p+k,k)  bp† bp+k ak†   (2.2b) 

   V3 = g p k UD(p,p–k,k)  bp† d–p+k† ak  (2.2c) 

   V4 = g  p k UD(p,p+k,k)  bp† d–p–k† ak†  (2.2d)   

   V5 = g  p k DU(p+k,p,k)  d–p-k bp ak  (2.2e) 

   V6 = g  p k DU(p–k,p,k)  d–p+k bp ak†  (2.2f) 

   V7 = g  p k DD(–p,–p–k,k)  dp dp+k† ak  (2.2g) 

   V8 = g  p k DD(–p,–p+k,k)  dp dp–k† ak†  (2.2h) 

 

where for notational convenience we denote the discrete momenta from now on as subscripts.  We have 

introduced the coupling constant g   p1/2 c5/2.  We have absorbed the parameters p and c5/2 into g only for 

notational simplicity.  The concrete dynamical scenario of the Breit-Wheeler effect will suggest that for 

renormalization purposes  (and not g) is the relevant coupling constant, which has the unit of a mass.  This is 

also fully consistent with prior work with this Hamiltonian [22], where the bound state energy for a fixed  

became independent of (sufficiently small) p. 

 The interactions of Eq. (2.2) represent the well-known eight processes: 

 e– +  → e–, e– → e–  +    → e– + e+, 0 → e– + e+ + , e– + e+ +  → 0, e– + e+ → , e+  +  → e+, and e+ 

→ e+ +  .  We show in Appendix A, that the four different types of coupling functions UU, DD, UD and 

DU can be related to only the two functions  

 

 UU(p,p',k)   [E(p)E(p') + M2c4 – pp'c2]1/2 [8(k) E(p) E(p')]–1/2   (2.2i) 

 UD(p,q,k)    sign(p/q+1) [E(p)E(q) – M2c4 + pqc2]1/2 [8(k) E(p) E(q)]–1/2   (2.2j) 
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These are the results of the scalar product among the Dirac spinors and act as natural cut-off functions as they 

decrease with increasing momenta p and k.   

 As a consequence of the translation invariance, the Hamiltonian commutes with the total momentum 

operator p p b(p)† b(p)  +  q q d(q)†d(q) + k k a(k)† a(k).  As we will see below, the resulting conservation of 

the total momentum simplifies our analysis significantly, even though a pair of uncorrelated spatially localized 

photon wave packets cannot take a sharp momentum. 

 We should point out that despite the approximations concerning the spatial dimensions, the fermions’ 

spin directions, and non-vanishing mass of the model photons, due to its fundamental character this 

Hamiltonian (and its reduced versions) has been studied in a wide variety of contexts.  For example, to name a 

few, this includes the examination of the origin of attractive and repulsive interfermionic forces due to the 

exchange of intermediating photons [23], the evolution of bare electrons into physical electrons under photon 

emission [24,25], a space-time resolved Compton scattering [26], the formation of fermion bound states in the 

perturbative and also Borel summable non-perturbative regimes [22,27,28]. 

 The Hamiltonian has the three adjustable parameters including the two bare masses m and M and the 

coupling constant .  These free parameters need to be chosen appropriately such that the eigenvalues of H 

associated with the physical single fermion and photon would take the correct energy.  These renormalization 

constants depend on the largest momentum included in the calculations.  In this work, we delay the mass and 

charge renormalization and perform it only after the reduction of the Breit-Wheeler dynamics to a Hilbert 

space spanned by just the dynamically relevant states. 

 

3. Reduction to an essential state system with a continuum of final states 

 In this section, we assume that the initial state for our system is given by two spatially 

infinitely-extended bare photons of sharp momentum K1 and K2, i.e. |(t=0) = |K1K2.  This two-particle 

state is normalized based on momentum, i.e. K1K2|K3K4 = K1K3 K2K4, where our notation always assumes 

K1K2 and K3K4.  As this state is not an energy eigenstate, its corresponding bare energy (associated with the 

interaction-free Hamiltonian) 1+ 2 can play a role at most in the weak-coupling limit.  As the total 

momentum is conserved, this initial state couples only to those subsets of states, whose momentum is 

precisely equal to K1+K2.   

 In our model, the Breit-Wheeler process is described by the transition from the initial two-photon state 

|K1K2  a(K1)† a(K2)† |vac to the final group of electron-positron states |PQ  b(P)† d(Q)† |vac.  For given 
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photon momenta K1 and K2, we will identify the most effectively coupled momenta P and Q in the sections 

below, which must fulfill the momentum conservation equation K1 + K2 = P + Q.  Due to the assumption that 

both photons are infinitely extended and therefore constantly interacting, we can derive here a pair-creation 

rate BW for the Breit-Wheeler pair process, which is identical to the decay rate of the initial state.  For 

simplicity we focus here on those created electrons that propagate into the positive x-direction associated with 

a positive momentum P and the positron's momentum is always defined as Q  –P +K1+K2. 

 In order to capture the main mechanism for the Breit-Wheeler process, we consider only those 

interactions that occur in lowest order of the coupling constant .  As we display in Figure 1, the initial state 

|(t=0) = |K1,K2 is coupled via the photon annihilation provided by V3 (which is proportional to b† d† a) to 

two sets of continuum states characterized by an electron-positron pair and a photon with momentum K1 or 

K2. 

 

 

Figure 1   Sketch of the relevant couplings between the initial two-photon state |K1K2 and the final 

electron-positron states |PQ, where P + Q = K1 + K2.  The initial state is coupled to two single-photon continua 

characterized by K1 and K2, respectively.  Each state of this continuum is then coupled to exactly two 

electron-positron states.  

 

Under the continued annihilation of the remaining photon provided by the interactions V1 ( b†ba) or V7 ( 

dd†a), each (continuum) state is then coupled to two unique pairs of electron-positron states.  In this restricted 

subspace, the time evolution of the state |(t) can be expressed by the expansion 
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  |(t)  =  C12(t) |K1K2+p Ce–e+(p,t) |p q+p CK1(p,t) |p q K1+p CK2(p,t) |p q K2    (3.1) 

 

where the corresponding value for the positron momentum q is different in each state and is fixed by the 

momentum conservation.  The reduction of the dynamically accessible Hilbert space to a restricted subspace 

containing only states with two photons, two fermions and states with a single photon and two fermions does 

not permit the simulation of several higher order processes.  For example, a subsequent collision of the created 

electron-positron pair can generate four photon states that were omitted in this approach.  Our theoretical 

framework is therefore intrinsically perturbative in nature and omits some of the processes that could 

contribute to the radiative corrections. 

 In Appendix A we derive the equations for these expansion coefficients, that lead to: 

 

 i dC12/dt        = (1 + 2) C12  +  p (p, K2) CK1(p) + p (p, K1) CK2(p)  (3.2a) 

 i dCK1(p)/dt     = EK1(p)Ck1(p) + (p, K2)C12 + (p, K1)Ce–e+(p+K1) 

                                  + sign [(p–K1–K2)(p-K2)] (p-K1-K2,K1) Ce–e+(p)  (3.2b) 

 i dCK2(p)/dt     =  EK2(p) Ck2(p) + (p, K1) C12 + (p,K2) Ce–e+(p+K2)  

                                  + sign [(p–K1–K2)(p–K1)] (p–K1–K2,K2) Ce–e+(p)  (3.2c) 

 i dCe–e+(p)/dt   =  (Ep + Eq) Ce–e+(p) 

                  +  sign [(p–K1–K2)(p–K2)](p–K1–K2, K1) CK1(p) + (p,–K1) CK1(p–K1) 

                  +  sign [(p–K1–K2)(p–K1)](p–K1–K2, K2) CK2(p) + (p,–K2) CK2(p–K2)  (3.2d) 

 

where coupling functions (p, K) and (p, K) are defined in terms of the s in Appendix A.  Due to hermiticity 

of the corresponding effective Hamiltonian in this sub-space, this set of equations preserves the total norm of 

the state, given by 1 = (t)|(t)  = |C12(t)|2 + p [|Ce–e+(p,t)|2 + |CK1(p,t)|2 + |CK2(p,t)|2].   

 

4  Simplification of the essential state system to only a single final state 

4.1  The six-level system 

 The equations (3.2) describe the coupling of a single initial state |K1,K2 to a set of final 

electron-positron states |p,q.  However, to better understand the role of final state and the corresponding 
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dynamics, we first focus on the dynamics leading to a particular single electron-positron final state 

|P,Q=K1+K2–P, whose momenta are denoted by capital letters.  In other words, we will examine the 

interaction between the initial and final state and only four other intermediate states with coupling between 

them indicated by the thick arrows in Figure 1.  As illustrated in the figure, only the three operators V1, V3 and 

V7 in the interaction energy operator can couple the initial two photon state |K1,K2 to the final 

electron-positron state |P,Q= –P+K1+K2.  Note that the four intermediate states take the general form |p,q,k, 

describing a single electron-positron pair and one photon.  They are the result of the action of V3 (containing 

the operator product b†d†a) onto |K1,K2, where the remaining photon is annihilated and converted to an 

electron-positron pair.  For notational simplicity, these intermediate states are abbreviated as  

 

   |A    |p=P, q= –P+K1, k=K2  (4.1a) 

   |B    |p=P, q= –P+K2, k=K1   (4.1b) 

   |C    |p= –Q+K1, q=Q, k= K2   (4.1c) 

   |D    |p= –Q+K2, q=Q, k= K1    (4.1d) 

 

These four intermediate states have the bare state energies EA  2 + EP + E–P+K1, EB  1 + EP + E–P+K2, EC 

 2 + E–Q+K1 + EQ and ED   1 + E–Q+K2 + EQ.  Finally, the action of V1 or V7 reduces these four states to 

|PQ.  In the following we shorten our notation even more by defining the expansion amplitudes as 

   

   CK   C12(K) (4.2a) 

   CA(p)    CK2(p)  (4.2b) 

   CB(p)    CK1(p)  (4.2c)  

   CC(p)    CK2(p–K2)  (4.2d) 

   CD(p)    CK1(p–K1)  (4.2e)  

   CP    Ce–e+(p)  (4.2f) 

 

 Equivalently, we come to the same coupling terms, if we had expanded the time evolution operator up to 

second order in time, (corresponding to the weak-coupling limit), to obtain Exp[– i Ht]  1 – i H t + (–i H t)2/2.  
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This truncated propagator couples the initial state solely to the four intermediate states.  As any interaction 

would change the number of photons in any state, the Hamiltonian does not couple the four intermediate states 

directly to each other.  Using the more compact notation, the six time-dependent expansion coefficients have 

to satisfy  

 

 i dCK/dt = (1 + 2) CK  +  

              + [A(P) CA(P,t) + B(P) CB(P,t) + C(P) CC(P,t) + D(P) CD(P,t)]  (4.3a) 

 i dCA(P)/dt =  EA(P) CA + A(P) CK + A(P) CP  (4.3b) 

 i dCB(P)/dt =  EB(P) CB + B(P) CK + B(P) CP  (4.3c) 

 i dCC(P)/dt =  EC(P) CC + C(P) CK + C(P) CP  (4.3d) 

 i dCD(P)/dt =  ED(P) CD + D(P) CK + D(P) CP  (4.3e) 

 i dCP/dt =  (Ep + EQ) CP + 

                +    A(P) CA(P,t) + B(P) CB(P,t)+ C(P) CC(P,t)+ D(P) CD(P,t)  (4.3f) 

 

These equations are similar to Eqs. (3.2), but do not contain any summations over infinite number of states.  

The values for the coupling constants follow from the scalar products between the corresponding states.  For 

example, A  A|V3|K1K2 =  p=P, q= –P+K1, k=K2 |V3| K1K2 =  p=P, q= –P+K1 |V3| K1 = g UD(P,P–K1, 

K1).  They are consistent with the  and  functions defined in Appendix A.  Here is the complete list of the 

relevant eight couplings 

 

   A(P)  =    g UD(P,P–K1, K1)  (4.4a) 

   B(P)  =    g UD(P,P–K2, K2)  (4.4b) 

   C(P)  =    g UD(P–K2,P–K1–K2, K1)  (4.4c) 

   D(P)  =    g UD(P–K1,P–K1–K2, K2)  (4.4d) 

   A(P)  = – g DD(P–K1, P–K1–K2, K2)   (4.4e) 

   B(P)   = – g DD(P–K2, P–K1–K2, K1)   (4.4f) 

   C(P)   =    g UU(P, P–K2, K2)   (4.4g) 

   D(P)  =    g UU(P,P–K1, K1)   (4.4h) 
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4.2  Reduction to a two-level system via adiabatic elimination of the four intermediate states 

4.2.1  Derivation of the set of equations 

 As the energies of the four intermediate states are sufficiently larger than the bare energies of the initial 

and final states |K1K2 and |PQ, we can adiabatically eliminate these non-resonant intermediate states.  To do 

so, we transform all first six amplitudes for each momentum P into a rotating coordinate system, Cj  

exp[–i(1 + 2)t] cj (for j=K, A, B, C, D, P).  In order to eliminate the four coefficients associated with the 

intermediate states, we approximate d/dt cj(P) = 0 for j=A, B, C and D.  This allows us to solve the resulting 

algebraic equations for the four cj.  If we insert the cj into the equation for cK and cP and transform back to the 

original (not-rotated) coordinate frame, we obtain a two-level like system [29,30]: 

 

         i dCK/dt  =  (1 + 2 + 1) CK + (P) CP   (4.5a) 

   i dCP/dt  =  (P) CK + [EP + EQ + 2(P)] CP  (4.5b) 

 

where the initial two-photon amplitude CK is coupled directly to the final state amplitude CP.  Here the 

effective coupling  and energy shifts 1 and 2 are given by 

 

 1(P)    A(P)2 (1+2–EA(P))–1 + B(P)2 (1+2–EB(P))–1  

                   + C(P)2 (1+2–EC(P))–1 + D(P)2 (1+2–ED(P))–1   (4.6a) 

 2(P)  A(P)2 [1+2–EA(P)]–1 + B(P)2 [1+2–EB(P)]–1   

                    + C(P)2 [1+2–EC(P)]–1 + D(P)2 [1+2–ED(P)]–1  (4.6b) 

 (P)   A(P) A(P) [1+2–EA(P)]–1+ B(P) B(P) [1+2–EB(P)]–1  

                   + C(P) C(P) [1+2–EC(P)]–1 + D(P) D(P) [1+2–ED(P)]–1   (4.6c)  

 

 Before we analyze the Breit-Wheeler process from a space-time resolved scattering perspective in 

Section 6, we examine the dynamics for the case where the initial state |K1K2 is coupled to only a single final 

state |PQ.  This has three purposes.  First, we will test the validity of the adiabatic elimination of the four 

intermediate states.  Second, it will provide approximate but analytical solution for an easier analysis of the 

spatially resolved scattering.  Third, it permits us to derive the Breit-Wheeler rate BW based on the 

Fermi-Golden rule approach. 
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4.2.2  Range of validity of the adiabatic elimination of the intermediate states 

 For the special case where the initial state |K1K2 is coupled to only a single final state |PQ, the 

corresponding effective Hamiltonian 22 matrix is given by {{1 + 2 + 1(P), (P)},{(P), EP + EQ + 2(P) 

}}. The Hamiltonian has the two eigen-energies E /2    /2, where   [E2 + 4 21/2 and where the 

difference and the sum of the diagonal elements are abbreviated as E  2+1+1–EP–EQ –2 and E  

 2+1+1+EP+EQ +2.  We note that even if the two bare energies 1+2 and EP+EQ were chosen equal to 

each other and 1=2=0, the coupling  would lift any energy degeneracy, as  is always non-zero.  Due to the 

occurrence of avoided crossings, it is not even possible to choose any set of bare energies such that the 

spectrum becomes degenerate. 

 With the initial conditions CK(t=0) = 1 and CP(t=0) = 0, this set of two coupled equations can be easily 

solved analytically and we obtain the following solution for the two amplitudes and the corresponding 

probabilities 

 

   CK(t)  = [Cos( t/2) – i E Sin[ t/2 ] Exp[–i E t/2]  (4.7a) 

   CP(t)  = – 2 i  Sin[ t/2]/   Exp[–i E t/2]  (4.7b) 

   |CK(t)|2  = Cos2( t/2) + E22  Sin2[ t/2]  (4.7c) 

   |CP(t)|2  = 4 2 Sin2 [ t/2]/2    (4.7d) 

 

In the special case  = 0 it reduces to CK(t) = Exp[–i(1+2+1) t] and CP(t) = 0, as expected.  The period of 

this population transfer is given by 2/, which in the small coupling limit and for E=0 becomes /.  We 

can also read off the maximum population transfer into the state |PQ, associated with the characteristic time 

t* , as 

 

  max |PQ|(t)|2  = |C2(t*)|2 =  4 2/(E2 + 4 2  (4.8) 

 

This means, the largest pair-creation probability for the Breit-Wheeler process [|CP(t*)|2 =1] is possible if the 

"dressed" resonance condition 1 + 2 + 1 = EP + EQ + 2, i.e. E=0, is fulfilled.  Interestingly, as 1 and 2 

are not identical to each other, the naïve resonance condition based on the bare energies, i.e., 1 + 2 = EP + EQ 
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becomes less meaningful.  For example, if we take the state space with Ptot = 0, then E=0 can be solved for P 

as a function of K, leading to EP = 1 + (1 – 2)/2.  As the bare energies of the four intermediate states are 

larger than 1 + 2, both energy shifts 1 and 2 are negative.  Whether the true fermionic "resonance" energy 

that maximizes the created particle yield needs to be larger or smaller than the photon's bare energy depends 

on the relative magnitudes of the coupling constants  and .  This dependence on K1 might also be in 

contradiction to prior claims [1] that it is "unnecessary to use quantized light wave in the pair creation 

problem".  

 In order to estimate the validity of the adiabatic elimination of the four intermediate levels, we need to 

choose some specific parameters.  In our numerical illustrations we use atomic units where the speed of light is 

c=137.036 a.u.  The choice of the bare masses M=1 a.u. and m = 0.1 a.u., requires the photon momenta to be at 

least K1 = –K2 = 136.35 a.u. to create an electron-positron pair at rest, corresponding to the energy 21.  For 

the photon momentum, we chose from now on K1 = 150 a.u. and K2 = –150 a.u., such that Q= – P to preserve 

the total momentum.   

 In the very weak coupling limit, one could (incorrectly) expect that the energy shifts 1 and 2 can be 

neglected.  Here the bare-energy resonance condition 21 = EP + EQ would predict Pbare = 62.52 a.u..  

However, in this bare-energy degenerate case the relevant energy shift simplifies to E = 1–2, which scales 

quadratically in  and therefore has the same scaling as    Therefore, the maximum amplitude of the upper 

state, given by max[|CP|2]  = 4 2/2  =  2 [E2 + 4 2–1, does not approach unity, but a -independent 

value equal to max[|CP|2] =   2 [(1–2)2 + 4 2–1 = 0.2488 for P = Pbare.  This means that even in the very 

weak perturbative limit, the resonant value of Pres, that satisfies E = 0, can never be chosen equal to Pbare to 

maximize |CP(t)|2, even though Pres certainly approaches Pbare in the small -limit.  In fact, the largest 

population becomes extremely sensitive to the particular choice of P.  For example, for  = 0.1, we obtain 

max[|CP|2] = 1 for P = Pres = 62.52139651917575, but only max[|CP|2] = 0.2488 for P = Pbare = 

62.52138319775083. 
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Figure 2   Range of validity of the adiabatic elimination of the four intermediate states |A, |B, |C and |D.  

We compare the exact time dependence of the two-photon probablity |C1(t)|2 = K1K2|(t)|2 based on the 

coupling to the electron-positron state |PQ via the four intermediate states with the analytical but 

approximate solution given by Eq. (4.7c) for g =2.5 c2/5  (circles) and g =10 c2/5  (crosses). [K1 = 150 a.u., 

K2 = –K1, fermion mass M =1 a.u., boson mass m = 0.1 a.u., in order to stay on resonance (E=0, such that 

max |C2(t)|2=1), we chose P = 63.33266228629012 (for g=2.5 c2/5  ) and P = 74.8682167011005 (for g=10 

c2/5 ).   

 

 We found that for g less than 2.5c5/2, the first five oscillations in |CK(t)|2 predicted by the approximate 

analytical expression Eq. (4.7c) were graphically indistinguishable from the exact solutions that contained the 

four intermediate states.  In order to show how the higher-order corrections manifest themselves in the 

time-dependence of |CK(t)|2 we compare in Figure 2 the exact behavior for g = 2.5 c5/2 (continuous line) and g 

= 10 c5/2 (dashed line) with the predicted behavior according to Eq. (4.7c).  In order to stay at full resonance 

(E = 0), such that max[|CP|2] = 1, we had to increase P as the coupling g was increased.  As (P) itself 

increases with P in this domain (see Figure 4a of Section 5.2.1 below), even the scaled frequency /g2 = [E2 

+ 4 21/2/ g2 increases with g.  

 The correction to |CK(t)|2 due to the presence of the intermediate states manifests itself in two ways.  

First, the actual oscillation period is longer than the predicted value / = /[(1–2)2 + 4 2] such that after a 

few oscillations the true graph gets out of phase with the approximate one predicted by Eq. (4.7c).  Second, the 

graph is no longer sinusoidal, but there are additional larger frequencies contained in the graph that reflect the 



                                                  14            12/13/2019 

 

 

large energy difference between the initial and the four intermediate states.   

 

5.  Dynamics of a single two-photon state coupled to an infinite set of final states 

5.1 The model equations  

 In this Section we will lift the restriction that the initial two-photon state is coupled only to a single final 

electron-positron state with a specific momentum P and Q with P + Q = K1 + K2.  This situation was also 

depicted by the couplings in Fig. 1, where the initial state |K1K2 is coupled via the intermediary three-particle 

states to an entire set of final states |PQ.  In other words, we assume here that our state is given by the 

superposition |(t) = CK(t) |K1K2 + P CP(t) |P Q, with the norm given by 1 = (t)|(t)  = |CK(t)|2 + P 

|CP(t)|2.  Furthermore, if we remove the energy shifts 1 and 2(P) (that arose from the adiabatic elimination) 

from Eqs. (4.5), we obtain 

 

         i dCK/dt  =  (1 + 2) CK + P (P) CP    (5.1a) 

   i dCP/dt  =  (EP + EQ) CP + (P) CK   (5.1b) 

 

 In order to avoid any charge or mass renormalization at this stage, we have formally set the two energy 

shifts 1 and 2 equal to zero.  A more systematic and mathematically rigorous derivation of this 

"renormalization" is beyond the goal of this work, so we postpone the discussion of this rather nontrivial issue 

to further work and just quote a few prior works that have examined various renormalization schemes [31-34] 

for general approaches that are similar to this work.   

 This set of equations serves as the main model for this section.  We should point out that the dynamics 

will depend on the choice of the set of final momenta.  While the time evolution of CK(t) should not depend on 

the choice of the largest momentum P (if chosen sufficiently large), we would expect that the average mode 

spacing p between the resonantly excited momentum states |P Q, will affect the decay rate of the amplitude 

CK(t).  It should be obvious that this rate should therefore increase with an increasing density of the final 

states, which is proportional to p–1.  As we will argue below, this p dependence is actually quite physical 

and expected.  Also, to simply replace the summation in Eq. (5.1a) P (P) CP by the integral dP (P) CP 

would be unphysical as this would violate the dimension of the equation, as the amplitudes and CK and CP are 

unitless. 
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5.2  Time dependence of the solutions CK(t) and CP(t) 

 The set of coupled equations for CK and the set of CP can be solved analytically using the dominant pole 

approximation.  As this type of coupled equations is rather standard in atomic physics, we shift the solution 

technique based on Laplace-transformations and Green's function-based to Appendix B.  In the time domain 

the final solutions are 

 

 CK(t)  = Exp[– i (1+2– )t] Exp[–BW t/2]   (5.2a) 

 CP(t) = – (P) Exp[– i(EP+EQ)t] [Exp[i (+i BW) t] – 1]/( + i BW)    (5.2b) 

 |CK(t)|2  =  Exp[–BW t]  (5.2c) 

 |CP(t)|2  =  (P)2/[2 + (BW)2] [1 + Exp[– BW t] – 2 Exp[– BW/2 t] Cos[t]] (5.2d) 

 

where we have defined the energy difference  = (EP+EQ) – (1+2) +  and  denotes the principal part of 

the integral dP (P)2 /[(1+2) – (EP+EQ)].  The parameter  

 

     BW    2 [(Pres,1) (Pres,1)2 +(Pres,2) (Pres,2)2 ]/p   (5.3) 

 

denotes the Breit-Wheeler pair-creation rate, and the two resonant momenta Pres,1 and Pres,2 follow (in the 

absence of the shift ) from the solution to the equation (1+2) – (EP+EQ) = 0.  The density is given by  

(P) = {d[EP+EQ]/dP}–1 = c–2 {p/EP – Q/EQ}–1 leading to     

 

  (P) = c–2 {p [M2c4+c2P2]–1/2 – (Ptot–P) [M2c4+c2(Ptot–P)2]–1/2}–1.       (5.4) 

 

 The dependence of the electron-positron pair creation rate BW on the numerical parameter such as the 

mode spacing p is physically fully expected.  If we return to the original (unitless) coupling constant  

 (=g c–5/2p–1/2), we see that the scaling BW ~ 4 p corresponds to a meaningful inverse proportionality to 

the physical extension L of our numerical box (L=2/p), i.e. BW ~ L–1.  This conclusion is fully consistent 

with the corresponding quantum mechanical wave-based and also quantum particle-based picture of two 

colliding photons.  In the first picture, the corresponding wave function of each photon (with sharp 

momentum) is normalized to unity, i.e. 0L dx |(x)|2 =1, which means that the spatial probability density of 
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each photon is 1/L.  The total interaction probability per time unit, BW, is then given by the product of the two 

spatial probabilities integrated over the total interaction length L, resulting in the expected overall 1/L 

dependence.  Very similarly, if we assume that the two photons were spatially localized at different locations 

with the box L and need to overlap in order to annihilate (into the fermionic particle pair), then the average 

delay time for this collision to happen (~BW–1) would be linearly proportional to the average distance they 

have to travel until they meet.  As the finite width of each photon can be safely assumed to be independent of 

L, this distance is directly proportional to L, which suggests again that BW ~ L–1.   

 We should point out that the different short-time scaling of |CK(t)|2 = 1 – BW t and |CP(t)|2 = (P)2 t2   is 

not necessarily a contradiction to the normalization |CK(t)|2 + P |CP(t)|2 =1.  In fact, while each individual 

probability grows |CP(t)|2 quadratically in time, it can be shown that the sum P |CP(t)|2 = BW t grows only 

linearly in time.  We show in Appendix C, that the usual Fermi-Golden rule [35] approach can predict only the 

short-time decay according to |CK(t)|2  = 1 – BW t, however, consistently with the same rate BW as given in 

Eq. (5.3).  

 

5.3 Range of validity of the Breit-Wheeler decay rate BW  

 As we have seen in Sec. 4.2.2 for K1 = 150, the adiabatic elimination was justified as long as the 

coupling constant g was less than about 2.5 c5/2.  In this section we will examine numerically, for which range 

of coupling constants g the dominant-pole approximation can be justified, that led to the prediction of an 

exponential decay, i.e., |CK(t)|2  = Exp(–BW t).   
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Figure 3   Testing the validity of the dominant-pole approximation.  We compare the exact time dependence 

of |CK(t)|2 = K1K2|(t)|2 with the approximate exponential decay Exp[–BW t] (open circles).  [K1 = 150 

a.u., K2 = –K1, fermion mass M =1 a.u., boson mass m = 0.1 a.u., number of final states |PQ was 800 with 

p=2/L and L = 16 a.u.]  

 

 In order to obtain the exact numerical solutions to the full set of equations (5.1), we have discretized the 

momentum P on a N-dimensional grid (i.e. Pn = (–N/2 + n) p, n = 1,2,... N), and solved the resulting (1+N) 

coupled equations numerically.  We have increased the number of grid points N until we obtained numerically 

converged results. 

 In Figure 3 we compare the exact decay of |CK(t)|2 obtained from the numerical solution to the coupled 

set of equations (5.1) with the analytical prediction given by Eq. (5.2c)  (open circles).  We found that for K1 = 

150 a.u. and p=1 the numerical value of the Breit-Wheeler decay rate computed for Pres = Pbare is given by 

BW  4 1.9.  We see that for g < 2 c5/2 the agreement is superb, whereas for a larger g, such as g = 4 c5/2 the 

deviation is obvious.  For an even larger coupling we see that the analytical expression becomes very 

inaccurate, as the coupling to the other states is so large, that we even observe a non-exponential decay. 
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 As a side issue, we remark that there is also an effect due to the discreteness of the final momentum 

states, characterized by a non-zero mode spacing p = 2/L.  For example, had we repeated the calculation in 

Figure 3 with a larger p, then the perfect match with the exponential decay would only occur for times t < 

L/c, corresponding to the minimum time it takes for a particle with speed c to cover the distance L.  For t > L/c 

the system is able to resolve the underlying discreteness of the energies and the probability |CK(t)|2 would 

reveal a quasi-oscillatory behavior, with periods that depend on p.  

 We should note that for small g the range of dynamically accessible momentum states |PQ is much 

narrower than the coupling provided by (P), which we have graphed in Figure 4a.  It takes a maximum at 

around P  160 a.u.  In Figure 4b we graph the actual final momentum distribution of the created positrons, 

given by the numerically obtained |CP(t)|2, together with its approximate but analytical prediction from Eq. 

(5.2d) and given by |CP(t→)|2 = (P)2/[2 + (BW)2].  For small values of g the actual momentum 

distribution |CP(t)|2 is centered around P  62.52 a.u., close to Pbare as expected in this limit.  The agreement 

between the exact and the analytical estimate is very good.  As we increase g, the estimated distribution 

widens significantly but remains centered close to Pbare.  While the true distribution |CP(t)|2 has a qualitatively 

similar shape, its maximum has shifted to smaller momenta, reflecting higher-order corrections that are 

neglected by the solutions of Eq. (5.2d). 
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Figure 4   (a) The effective coupling function (P)2 for g = 2 c5/2 and p = 2/4.  (b) The final momentum 

distribution of the created bare electron/positron pairs given by |CP(t)|2 = |PQ|(t)|2 at time t = 0.078 a.u. for g = 

2 c5/2 and at time t = 0.0154 a.u. for g = 3 c5/2.  For comparison, we also include by the circles the (normalized) 

Lorentz-like distribution 2/[E2+(BW/2)2] according to Eq. (5.2d).  These distributions were shifted to smaller 

momenta by 1.2 (7.4) for g = 2 c5/2 (3 c5/2) to match the exact data.  We chose p=2/64 with 2400 momentum 

states.  [The other parameters are fermion mass M=1 a.u., boson mass m=0.1 a.u., K1=150, K2=– K1] 

  

 Finally, we should remark that the narrowing of the distribution (P)2/[2 + (BW)2] with 

decreasing g is not so unexpected in view of the different scaling behavior of the energy difference  and 

BW with g.  In the limit of extremely small g, we obtain |CP(t→)|2 = (P)2/2, which is even singular at 

the resonance, permitting us to restrict the dynamically relevant final states to only two very narrow bands 

centered around the momentum Pbare.  While the dynamics of |CK(t)|2 remains an exponential decay in this 

limit with a decay rate BW, i.e. |CK(t)|2  1 – 2 (E) 2/p t the model based on only a single discrete final 

state (see Section 4.2.2 above) predicted a different short-time decay, given by |CK(t)|2 = 1 – 2 t2.  
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5.4  Discussion of the Breit-Wheeler decay rate 

 The decay rate BW of the initial two-photon state |K1,K2 to a set of final electron-positron states |P,Q 

was derived above as BW  2 [(Pres,1) (Pres,1)2 +(Pres,2) (Pres,2)2 ]/p.  We note that this number 

depends solely on K1, K2, g and p.  As the total momentum Ptot = K1+K2 is conserved, we can also write the 

decay rate as BW = BW(K1,Ptot,g,p).  As BW was obtained perturbatively it depends on the fourth power of 

the coupling constant g.  However, its dependence on K1 and K2 is non-trivial and needs to be studied 

numerically.  In order to examine if there is an incoming photon momentum for which the electron-positron 

conversion rate is largest, we have graphed in Figure 5 the scaled Breit-Wheeler rate g–4 BW as a function of 

K1 for several total momenta Ptot.  

 Note that the threshold value for a photon with momentum K1 to trigger a pair of electron (with 

momentum p) and positron (with momentum Ptot – p) seems to satisfy the (bare) energy conservation 

condition √(m2c4+ K12c2) + √[m2c4+ (Ptot–K1)2c2)] = √(M2c4+ p2c2) +√[(M2c4+ (Ptot–p)2c2)].  The threshold 

values K1± are obtained when electron and positron have the same momentum, i.e., when p = Ptot/2.  The 

thresholds are given by K1± = Ptot/2 ± √[ (M2–m2)(Ptot2 + 4M2c2) ] /(2M).  Only photons with momentum 

K1<K1– or K1 > K1+ are able to produce electron-positron pairs.  According to these conditions, we can 

calculate: K1±(Ptot=0) = ±136.35, K1–(Ptot=300) = –52.15, K1+(Ptot=300) = 352.15, K1–(Ptot=600) = –28.16, 

and K1+(Ptot=600) = 628.16, with K1+ + K1– = Ptot.  These estimated K1± values are in excellent agreement 

with the actual threshold values found in the numerical computations displayed in Figure 5.   

 The important maxima of the Breit-Wheeler rate g–4 BW for Ptot=0 in Figure 5 can be read off the 

graphs.  For Ptot=0 we used Pres = ± [(m2–M2) c2 + K12)]1/2 in Eq. (5.3) and found for the optimum momentum 

for pair-creation K1,0 = ±167.  For Ptot≠0, the expressions for Pres are more involved, with Pres = Ptot/2 ± 

1/(m)√{2c2m2 (m2–M2) + 2(m2–M2)√(K12+c2m2) √[(K1–Ptot)2+c2m2] + 2K12(m2+M2) –2K1(m2+M2)Ptot + 

m2Ptot2}.  For Ptot = 300, the optimum momenta are read off at K1,300 = –74 and 374 and for Ptot = 600, the 

peaks are found at K1,600 = –43 and 643.  As discussed more below, the values for K1,300 or K1,600 can also be 

derived from the optimum value in the cm-frame K1,0 via a Lorentz transformation.  
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Figure 5   The Breit-Wheeler decay rate BW as a function of the momentum of the incoming photon K1 and L=16 for 

the four different total momenta.  The circles represent the approximate prediction from Eq. (5.5) based on the Lorentz 

transformation.  

 

 Alternatively, we can also obtain a very similar expression if we assume that the adiabatic elimination of 

the intermediate states did not violate the Lorentz invariance.  Here we can derive the decay rates for Ptot 0 

from the special case of the center-of mass (cm) system, where the total momentum vanishes, i.e.,   

BW(K1,Ptot=0, g, p).  In order to construct this, we can find the corresponding Lorentz velocity V, that 

transforms our system with K1 and K2 into the cm system with Ptot = 0.  This leads to the velocity of the 

moving frame given by V(K1, K2) = c2 (K1+K2)/[((K1) + (K2)].  The resulting momentum of the first 

photon in this frame can be calculated via the usual Lorentz transformation, K'1 = [1–(V/c)2]–1/2 [K1 – V 

(K1)/c2].  As the mode spacing p = 2p/L also needs to be Lorentz transformed p = 2/L → 2/L', where L' 

= L [1–(V/c)2]1/2.  We finally obtain,  
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   BW(K1, Ptot, g, p)    [1 – (V/c)2]1/2  BW(K'1,Ptot=0, g', p')  (5.5) 

 

Here the inverse of the Lorentz time dilation pre-factor was included based on the (questionable) assumption 

that we can describe a process at a single location at space.  As the coupling constant was defined as a function 

of p as g   p1/2 c5/2, with the original coupling , we have g' = [1 – (V/c)2]–1/4 g.  As a result, the 

right-hand side of Eq. (5.5) simplifies to [1 – (V/c)2]1/2  BW(K'1,Ptot=0, [1 – (V/c)2]–1/4 g, p[1 – (V/c)2]–1/2).  

Due to the quartic scaling of BW with g (or equivalently ), the Lorentz gamma factor on the front cancels out 

with those associated with g' and p'.   

 We should mention that in order to obtain the qualitative match between BW(K1, Ptot, g, p) and 

[1–(V/c)2]1/2  BW(K'1,Ptot=0, g', p'), we had to assume that the rate was inversely proportional to the mode 

spacing p, but the coupling constant g had to be changed as well in the moving frame.  As we had mentioned 

in Sec. 2, this constant g was introduced solely for notational convenience from the original coupling constant 

 as g   p1/2 c5/2, which would suggest that  should not be scaled with p.  BW(K1, Ptot, , p)  

[1–(V/c)2]1/2  BW(K'1,Ptot=0, , p'). 

 In Figure 5 we have included the predictions for BW(K1, Ptot, g, p) based on the assumption of the 

validity of the Lorentz transform.  The circles from Eq. (5.5) match the exact data well, which qualitatively 

confirms the conjecture that the approximation based on the adiabatic elimination of the intermediaries seems 

not to violate the invariance. 

 While the graphical representation of the data seems to suggest a qualitative confirmation of Eq. (5.5), a 

closer examination reveals a peculiar feature that is presently not fully understood.  We will demonstrate this 

for a concrete numerical example.  For g = 2 c5/2, p = 2/16 and K1 = –K2 = 150, the bare energy resonance 

condition leads to Pres,1 = 62.5213832 and BW = 77.6007215.  If we transform into a moving frame with 

velocity V = 10 a.u., (corresponding to the gamma factor [1–(V/c)2]–1/2 = 1.00267325), the Lorentz 

transformed momenta are K1' = 139.379992 and K2' = –161.421983, leading to Pres,1 = 51.6675226 and Pres,2 

= – 73.7095143.  For these four numerical values of the momentum, we obtain BW' = 77.597283, which 

differs by only about 0.004 % from the original value.  We also note that the two resonant fermion momenta 

P'res,i obtained from the resonance condition in the moving frame, i.e. (K1') + (K1') = E(P'res) + E(K1' + 

K2'–P'res), differ from the simple Lorentz transformed momenta, i.e. [1–(V/c)2]–1/2 (Pres,i – V E(Pres,i)/c2]. 

 However, if we transform into a more rapidly moving frame with V=130 (corresponding to a gamma 
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factor 3.16145388, K1' =22.4748929, K2' = – 925.961272, Pres,1 = –254.08472 and Pres,2 = –649.401659) we 

obtain BW = 72.2236286, which differs now by almost 7% from the original rate in the cm frame.  We are not 

sure if this discrepancy is related to the similar conclusions of several independent other works [36-39], where 

the accuracy of the usual Lorentz time dilation formula to describe the internal dynamics of fully interacting 

systems in a moving frame was questioned.  But in our present understanding, the real reason for the observed 

discrepancy for our rate BW remains an open question.  Here we should remind the reader again that we used 

the Lorentz time dilation pre-factor, that might be strictly valid only for computing the time delay within two 

identical spatial locations, whereas our Breit-Wheeler rate characterizes the decay of a spatially extended 

two-photon state. 

 Alternatively, the loss of the straight forward Lorentz invariance could also be related to the energy-like 

renormalization that we did in the prior section, when we removed the infinite energy shifts 1 and (also 2) 

from the equations.  Similar violations are known from other renormalization schemes.  For example, if the 

momentum cut-off is being used to regularize the uv singularity, the corresponding perturbative expansion is 

known to violate the Lorentz invariance of decay rates as well.  This is in contrast to the dimensional 

regularization [40], where the invariance of each perturbative term after renormalization is maintained. 

 We also note that the perturbation theory used in this work is not the same as the Lagrangian-based 

method used traditionally in high energy physics, where each Feynman diagram manifestly conserves 

momentum, energy and Lorentz invariance.  Our approach, on the other hand, uses the Hamiltonian 

formalism, which focuses on the generator of the temporal evolution and therefore treats the space-time 

symmetry in a less transparent way.   

 As a last point, we should point out the (formal) non-relativistic limit of the Breit-Wheeler rate.  This can 

be obtained if we perform an expansion in inverse powers of the speed of light 1/c.  After a lengthy algebra, we 

obtain the result 

 

   BW  =  4 |P – Q| M–1 m–2 (m–2M)–2 L–1  (5.6)  

 

which depends only on the difference of the two final fermion momenta and is therefore Galilean invariant.  

We note that the mass denominator (m–2M) vanishes at the same time, when the energy and momentum 

conservation laws for the simple vertex reaction (photon decays into a positron-electron pair) can be satisfied 

simultaneously, i.e.  K1 = P'+Q' and 1 = EP' + EQ'.  However, as for most particles the fermionic masses often 

exceed the bosonic masses, the corresponding four-momentum conservation is typically violated for this 
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vertex reaction, at least in quantum electrodynamics.  The amplification of the rate BW in the limit (m–2M) 

→ 0 is therefore expected, as the intermediate states (that we adiabatically eliminated) would become 

resonant.  In the center of mass system, where K1+K2 = 0, such that |P–Q| = (M/m)1/2 |K1|, the rate BW 

increases linearly with incoming photon momentum.  Finally, we should remark that one should not physically 

over-interpret the formal mathematical limit of BW in Eq. (5.6).  For example, for Ptot = 0, the required bare 

energy resonance condition 1 = EPres illustrates the intrinsic relativistic nature of the Breit-Wheeler process.  

The limit mc2 = Mc2 can only be satisfied for a finite K1 if m=M, otherwise K1 →  is required, which is in 

contradiction with the limit c →  used to derive Eq. (5.6).  

 

6.  Photon-photon scattering with space-time resolution 

6.1  Equations of motion for the amplitudes C(K1,K2,t) and C(P,Q,t) 

 In the discussion of Sec. 5, the corresponding spatial distribution of the two photons was infinitely 

extended for L→.  As a result, the reaction rate decreased linearly with the box size L, i.e. BW = v(,K) L–1.  

Unlike in a real transient scattering situation, these two particles interacted immediately and constantly with 

each other, resulting in the exponential decay of the population from a single initial state |K1K2 into the set of 

final states |PQ.  In order to simulate more closely the transient nature of the collision of the two photons, we 

have to choose and initial state where the two particles are spatially localized an initially separated from each 

other.  In contrast to the prior system, where the creation of the electron-positron pairs started instantly, in the 

transient scattering situation we expect the interaction to occur only during those time intervals, when the two 

photons overlap, which depend on their initial separation.   

 The initial spatial localization of each photon can be achieved by a suitable superposition of the states.  

To be consistent with our normalization of the prior sections, i.e. | = 1, we assume here that the photonic 

momenta are similarly discretized as those of the fermions in a finite box of length L.  For example, the single 

photon state | = K G1(K) |K, with the unitless amplitude G1(K)  (2 K2)–1/4 Exp[–i K x1] 

Exp[–(K–K0)2/(4 K2)] p1/2 and K |G1(K)|2 = 1 (for p→0) guarantees that the corresponding spatial 

distribution is Gaussian, centered at x = x1, with an average momentum K0 and spatial width x = 1/(2k).  

From now on we assume that p is sufficiently small such that for analytical purposes, we can approximate the 

discrete summation K by the integral p–1dK.  We also assume that any spatially localized wave function is 

negligibly close to the boundary of the finite box.  
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 The spatial properties of | can be examined if we compute the photons’ spatial density (x) from the 

expectation value of the position-operators, (x)  | ax†ax |.  Here the spatial annihilation operators are 

defined by the Fourier transform ax  (2)–1/2 p1/2 k ak Exp[i k x].  Using (2)–1/2 p K G1(K) Exp[i K x] = 

21/4 –1/4  K1/2 Exp[i K0 (x–x1)] Exp[ –(x–x1)2  K2], for the Gaussian amplitude G1(K), we obtain 

consistently (x) =  (2x2)–1/2 Exp[ –(x–x1)2 (x2)].   

 Similarly, in order to examine two spatially localized photons, we use for the initial state 

 

  |(t=0) = K1 K2 G1(K1) G2(K2) |K1K2    (6.1) 

 

with the two Gaussian momentum amplitudes 

 

   G1(K1)  (2  K2)–1/4 Exp[–i K1 x1] Exp[–(K1–K0)2/(4 K2)] p1/2  (6.2a)  

   G2(K2)  (2  K2)–1/4 Exp[–i K2 x2] Exp[–(K2+K0)2/(4 K2)] p1/2  (6.2b) 

 

This particular choice for the momentum amplitudes guarantees that the first (second) photon is located 

around x=x1 (x=x2) with an average momentum K1 = K0 (K2 = – K0) and with initial spatial width x 

=1/(2K).  In order to avoid any initial spatial overlap, we will choose the separation between both particles to 

exceed the spatial width of each packet, i.e., |x2– x1|  >> x0. 

 We note that in contrast to |(t=0) = |K1K2, this particular initial state does not have a sharp total 

momentum anymore.  By introducing the Kronecker function K1+K2,Ptot under the twofold sum K1 K2 … 

one could achieve a desired sharp total momentum for the two-wave packet combination.  However, this 

would induce (in our opinion rather unnatural) correlations between the two incoming photons, which should 

actually be independent of each other. 

 As the total momentum is still conserved, the dynamics can be decomposed into independent subspaces, 

each for a different Ptot.  It is therefore sufficient to label the two-particle states by the momentum of one 

particle and the total momentum, i.e., |K;Ptot (= |K1K2) and |P;Ptot (= |PQ).  According to Eq. (6.1), the 

initial state then is given by |(t=0) = Ptot  G1(K) G2(Ptot–K) |K;Ptot.  Using this notation, the 

time-evolved scattering state can be expressed as 
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  |(t)  = Ptot {  CK(t; Ptot) |K;Ptot + P CP(t; Ptot) |P;Ptot }   (6.3) 

 

The photonic and fermionic amplitudes CK(t; Ptot) and CP(t; Ptot) have to fulfill the normalization condition 

Ptot  |CK(t; Ptot)|2 + Ptot P |CP(t; Ptot)|2 = 1.  The time-evolution is predicted by the equations 

 

         i d CK(t;Ptot)/dt  =  (1 + 2) CK(t;Ptot)  +  P (P,K;Ptot) CP(t;Ptot)   (6.4a) 

         i d CP(t;Ptot)/dt  =  (EP + EQ) CP(t;Ptot)  +  K (P,K;Ptot) CK(t;Ptot)   (6.4b) 

 

If we compare the structure of these equations with those of a single initial state CK(t=0;Ptot) = K,K1 

Ptot-K1–K2 as discussed in Eqs. (5.1), where we introduced for better clarity the total momentum explicitly, we 

see that the only difference is the additional summation over the amplitudes CP, i.e., (P) CK in Eq. (5.1b) 

versus K (P,K;Ptot) CK(Ptot) in Eq. (6.4b).  This additional summation has some very serious implications 

for the time-dependence of CK.  In Eqs. (5.1), the initial probability |CK|2 = 1 for a single initial state decays 

immediately, whereas the decay of many states in Eqs. (6.4) from their initial values G1(K) G2(Ptot-K) is 

delayed.  The amount of this time-delay depends crucially on the other initial amplitudes CK.  This is due to the 

fact that all (initially non-vanishing) amplitudes CK for the states |K;Ptot with different values of K are 

coupled directly to the identical set of electron-positron states |P;Ptot.  Mathematically, this is reflected by the 

fact that the source-term for the amplitude CP in Eq. (6.4b) is given by the coherent sum K (P,K;Ptot) 

CK(t;Ptot), which due to the different (K-dependent) complex phases of the amplitudes CK(t=0) is initially very 

close to zero.  The vanishing source term leads to the fact that at early times, CP(t;Ptot) cannot grow and, as a 

result, CK cannot decay as its coupling term is identical to zero, as CP(t=0;Ptot)=0.  As we see below, the 

amount of this resulting delay can be easily interpreted by examining the underlying dynamics from a spatially 

resolved perspective.  We will see that this delay time corresponds precisely to the minimum time both photon 

wave packets require to overlap spatially. 

 

6.2  Time-dependence of the amplitudes CK(t;Ptot) and CP(t;Ptot)  

 To be consistent with the restriction to include only processes up to order O(4), we can construct the 
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perturbative solution to Eqs. (6.4).  As the source term P (P,K;Ptot) CP(t;Ptot) vanishes initially in Eq.(6.4a) 

we obtain the interaction free time evolution  CK(0)(t; Ptot) = Exp[–i (1 + 2) t] G1(K) G2(Ptot–K).  Here we 

have used the initial amplitudes CK(0)(t=0; Ptot) = G1(K) G2(Ptot–K), which are given by Eq. (6.2) and describe 

the initial spatial locations x1 and x2, the initial momentum width k and their initial velocities k0 and –k0 of 

the two Gaussian photon wave packets.  If we insert the zeroth order solution CK(0)(t; Ptot) into Eq. (6.4b), the 

last term on the right hand side does not depend on CP(t;Ptot) and has a given time-dependence.  It therefore 

acts as a source term (inhomogeneity).  Using the usual Green's function technique [with a vanishing 

homogeneous solution as CP(t=0;Ptot)= 0], we obtain the perturbative solution 

 

                   CP(1)(t;Ptot) =  –i 0t d Exp[–i (EP + EPtot-P) (t–)] K (P,K;Ptot) CK(0)(;Ptot)   (6.5)   

 

Due to the simple exponential time-dependence of CK(0)(;Ptot), we can perform the time integral leading to  

 

       0t d Exp[–i (EP + EPtot-P) (t–)] Exp[–i (1 + 2) ] 

           = i [Exp[–i (EP + EPtot-P) t] – Exp[–i (1 + 2) t] ] / [(EP + EPtot-P) – (1 + 2)] 

             F[t,P,K;Ptot]      (6.6) 

 

which for the energy resonant case (EP + EQ) = (1 + 2) reduces according to L'Hopital's rule to the simpler 

form F[t,P,K;Ptot] = t Exp[–i (1 + 2) t].  This means that the solution of Eq. (6.5) can be simplified to a single 

momentum summation  

 

                  CP(1)(t;Ptot) =  –i K F[t,P,K;Ptot] (P,K;Ptot) G1(K) G2(Ptot–K)    (6.7) 

 

 Likewise, if we want to find the time-evolution of the amplitudes of the two-photon state, we can insert 

CP(1)(t;Ptot) back into Eq. (6.4a), which also can be solved analytically as 

 

       CK(0)(t;Ptot) + CK(2)(t;Ptot) = Exp[–i (1 + 2) t] G1(K) G2(Ptot–K) – 

                                                     –i 0t d Exp[–i (1 + 2) (t–)] P (P,K;Ptot) CP(1)(;Ptot)      (6.8) 
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Once again, due to the simple exponential time-dependence of CP(1)(;Ptot), we can perform the time integral 

leading to  

 

     F12(t)  0t d Exp[–i (1 + 2) (t-)] F[,P,K';Ptot] 

               = 0t d Exp[–i (1 + 2) (t-)] i [Exp[–i (EP + EQ) ] – Exp[–i (1' + 2') ] ] /  

               [(EP + EQ) – (1' + 2')] 

               = F1(t) / [(EP + EQ) – (1' + 2')] + F2(t)/[(EP + EQ) – (1' + 2')]    (6.9) 

where  

         F1(t)  –[Exp[–i (EP + EQ)t]–Exp[–i (1 + 2)t]]/[(EP + EQ) – (1 + 2)]    (6.10a) 

         F2(t)  [Exp[–i (1' + 2')t] – Exp[–i (1 + 2)t]]/[(1'+ 2') – (1 + 2)]    (6.10b) 

 

This simplifies the final solution to 

 

       CK(0)(t;Ptot) + CK(2)(t;Ptot) = Exp[–i (1 + 2) t] G1(K) G2(Ptot–K)  

                                                  – P (P,K;Ptot) K' F12(t) (P,K';Ptot) G1(K') G2(Ptot–K')   (6.11)   

 

 Before we discuss the spatial densities of the transient scattering process, we can use the obtained 

time-dependence of the amplitudes CP(1)(t;Ptot) to analyze the temporal growth of the total number of the 

created electron-positron pairs, defined as  

 

          Ne-p(t)   Ptot P |PPtot | (t)|2  

                      = Ptot P |CP(1)(t,Ptot)|2 

                      = Ptot P | K F[t,P,K;Ptot] (P,K;Ptot) G1(K) G2(Ptot–K)|2   (6.12) 

 

In contrast to the linear-time growth of Ne-p(t) = BW t characteristic for a monochromatic two-photon initial 

state, i.e. CK(t=0;Ptot) = K,k0Ptot–K,–k0, the temporal growth for two initially spatially localized photon wave 

packets depends rather nontrivially on the initial separation  x2 – x1, on the initial spatial width 1/(2K) as well 

as on the relative speed of the two Gaussian photon wave packets.   
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 This transient growth can only occur during the time the two wave packets spatially overlap, reflecting 

the local nature of the original interaction potential.  In Figure 6 we present a numerical example. 

 

 

Figure 6   The growth of the electron-positron pair creation probability Ptot P |PPtot|(t)|2 as a function 

of time due to the collision of two photon wave packets.  For comparison, the open circles are the predictions 

according to the simple model of Eq. (6.13) based on the Breit-Wheeler rate obtained in Eq. (5.3).  [ = 1, 

fermion mass M = 1 a.u., boson mass m = 0.1 a.u., momentum width k = 3 a.u. and initial central locations 

x1 = –x2 = –1.5 a.u.]  

 

 We see that for our relativistic parameters the probability growth is indeed maximal at time t = (x2 – 

x1)/(2c), when the two centers of the wave packets have their maximum overlap.  For K0 > 145, the 

corresponding speed is nearly c.  In contrast to the immediate decay for the monochromatic limit, the 

beginning of the growth of Ptot P |PPtot|(t)|2 is delayed depending on the scattering parameters (x2 – x1), 

k0 and x.  Depending on the center momentum K0, the spatial width x and the threshold momentum for pair 

creation [(Kmin) = Mc2], there are two dynamical scattering regimes of interest.   
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 For the monochromatic limit, where the variation of (P,K;Ptot) for  –K+K0 < K < K0+ K is negligible 

and Kmin < –K+K0, we can construct an illustrative but approximate analytical model for the 

time-dependence of Ne-p(t) based on the main expression (5.3) from the spatially independent analysis for a 

single momentum, i.e., BW = v(,K) L–1.  For simplicity, we assume that the right traveling photon wave 

packet has a simple rectangular probability distribution (x,t) = 1/(x){(w/2+ x + x1 – ct) (w/2 – x + x1 + 

ct) –1]}.  The left traveling photon corresponds to a x2 = –x1 and a reversed speed c in the same expression.  

The L–1 dependence of the BW was a result of the delocalization of the two monochromatic waves across the 

entire numerical box of length L, i.e. (x) ~ L–1.  This needs to be multiplied with the factor L2/w2 to correct 

for the probability density 1/w for the spatially localized photon, If we divide the resulting total rate BW = 

v(,K) L/(x)2 by L, we obtain the reaction rate per unit length for the two crossing photons as v(,K) 1/w2.  

Finally, to obtain Ne-p(t), we multiply this reaction rate with the time-dependent overlap length Lover(t) of both 

packets, given by the triangularly shaped time-dependence centered at t = c/x2, with height w and width w/c.  

We obtain  

 

    Ne-p(t) = v(,K) 1/w2 –T d Lover()  (6.13a) 

 

Using – d Lover() = w2/(2c), the asymptotic value after the collision follows as Ne-p() = v(,k)/(2c).  

Interestingly, this final value after the collision is independent of the spatial width w, as a result of the perfect 

cancellation of two competing mechanisms.  An increase of the width w has two opposite effects, on the one 

hand it increases the overlap time, however, it also decreases the probability.  More specifically, Eq. (6.13a) 

can be solved analytically and the time-dependent growth regime of Ne-p(t) is characterized by two regimes.  It 

first increases quadratically in time, which is then followed by the rising portion of an inverted parabola: 

 

 Ne-p(t) = 0              for   t–tdel <  

 Ne-p(t) = v(,K) w2 c [t–tdel]2  for    < t–tdel < x0/(2c) 

 Ne-p(t) = v(,K) w2 c [1 – 2 c2/w2 (t––tdel–w/c)2] for   w/(2c) < t–tdel < w/c 

 Ne-p(t) = v(,K) (c)  for   w/c < t–tdel (6.13b) 
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with the arrival delay time given by tdel  c/x2.  In order to match the photonic Gaussian distribution with the 

simple rectangular distribution, we have used as a width w = 121/2 x0, which guarantees that the Gaussian and 

its rectangular approximation have the same spatial variance.  The open circles in Figure 6 represent Ne-p(t) 

according to the remarkable simple Eq. (6.13b) and the quantitative agreement is quite impressive. 
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Figure 7   The optimal photon momentum Kopt that maximizes the final number of created 

electron-positron pairs after the scattering process as a function of the spatial width x of the photon 

wave packet. [coupling strength =1, fermion mass M=1 a.u., boson mass m=0.1 a.u.] 

 

 The opposite (non-monochromatic) scattering limit of strongly localized photons is interesting, as it 

predicts a "blue shift" of the optimal photon momentum Kopt with regard to the spatial width of the photon 

wave packet x.  In this regime, the momentum spectrum G1(K) can contain momenta, that are below the 
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threshold value Kmin, i.e., –1/(2x) + K0 < Kmin, and are therefore immune to pair creation.  The resulting blue 

shift is illustrated in Figure 7, where we have graphed the optimal photon momentum Kopt that maximizes the 

final number of created electron-positron pairs Ne-p(t=) after the scattering process as a function of x.  For 

small widths, i.e., x < 0.5(K0 – Kmin)–1, we see that the value for the optimum momentum Kopt begins to 

increase with decreasing x in order to compensate for the lack of above-threshold momentum contributions. 

 In Figure 8 we display also a novel coherence effect characteristic of the strong localization of the two 

wave packets.  The simultaneous presence of different momenta associated with a large momentum width 

[K=1/(2x)] leads to interesting quasi-oscillatory structures that are superimposed on the expected 

monotonic growth for Ne-p(t) during the collision.  For a rough qualtiative comparison with an entirely 

incoherent description, we have simply added up the solutions from Eq. (6.13b) Ne-p(t) for different 

momentum pairs with Gaussian weights according to the distribution of the momenta, i.e.  

Ne-p(t) = K |G1(K)|2 Ne-p(t,K).  While this prediction agrees very roughly with the overall observed growth 

pattern of the particle yield, it cannot reproduce the coherent oscillatory pattern. 
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Figure 8   The growth of the electron-positron pair creation probability Ptot P |PPtot|(t)|2 as a function 

of time due to the collision of two photon wave packets that are spatially very narrow, corresponding to two 

localized photons.  For comparison, the dashed line is the predictions according to very crude model based 

on the incoherent superposition of the solutions of Eq. (6.13b) with Gaussian weights.  [ = 1, M = 1 a.u., m 

= 0.1 a.u., k = 50 a.u., K0=140 a.u., x1 = –x2 = –1.5 a.u.]  

 

 

6.3  Spatial densities for the photon and created electron-positron pairs  

 Finally, in order to examine also the spatial density with regard to the photons, we have to compute 

(x,t) =  (t)| a(x)†a(x) | (t).  After straightforward algebra, we obtain 

 

                         (x,t) = 1/(2) K2 | K1 C(K1,K2,t) Exp(i K1 x] |2  

                                          + 1/(2) K1 | K2 C(K1,K2,t) Exp(i K2 x] |2   (6.14) 

 

At the initial time, we can use the normalization K |Gi(K)|2 =1 for i=1,2.  This reduces the initial density to 

(x,t=0) = (2x 1/2)–1{Exp (–(x–x1)2/(2x02)] + Exp (–(x–x2)2/(2x2)]} as expected 
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Figure 9   The time-evolution of the spatial distribution (x,t) of the two colliding photons [ = 1, 

M=1 a.u., m=0.1 a.u., K0=150 a.u., k = 15 a.u., x1 = –x2 = –0.5 a.u.]  

 

 In the absence of any coupling, i.e. CK(t) = Exp[–i(2+1) t], the structure of Eq. (6.14) shows that the 

two wave packets just propagate through each other without any interference when they overlap.  We note that 

the absence or occurrence of interferences in colliding photon wave packets was discussed in a prior work 

[25].  For the coupled situation (0) we have to numerically evaluate Eq. (6.14).  

 In Figure 9 we show the temporal snapshots of the two colliding photon packets.  The first two snapshots 

at t=0 and t=0.002 show the two packets moving towards each other nearly shape invariant.  At around 

t=0.004, the two photon packets start to pass through each other while interacting.   During the same time 

interval electron-positron pairs are created.  The frames taken at t=0.006, 0.008, and 0.010 show the two 

photon packets move away from the interaction zone.  The peak of the packets is reduced by a small amount.  

This height reduction [from (x=0.5,t=0) =11.97 to (x=0.86,t=0.01) =11.47] reflects the photon 

annihilation associated with the creation of the electron-positron pair.  The total area under both densities has 
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decreased from dx (x,t=0) = 2 to dx (x,t=0.01) = 1.93, meaning that 3.5% of the probability of each 

photon was annihilated.  As the packets move basically with the speed of light and the interaction time is short, 

a further reduction of the peak height due to quantum mechanical spreading is negligible here. 

 Very similarly, we can also define the spatial probability density of the created electrons and positrons 

as e(x) =  (t)|b(x)†b(x)|(t) and p(x) =  (t)|d(x)†d(x)|(t), where the corresponding spatial operators 

b(x) and d(x) are again derived from the corresponding momentum operators by Fourier transformation.  

Using the solution for (6.4) we obtain 

 

           e(x,t) = p(x,t) = 1/(2) Q | P CP(t;Ptot) Exp (i P x) |2  (6.15) 
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Figure 10   The time-evolution of the spatial distribution e(x,t) of the created electrons during the two 

colliding photons.  [ = 1, M=1 a.u., m=0.1 a.u., K0 = 150 a.u., k = 15 a.u., x1 = –x2 = –0.5 a.u.] 
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 We graph the electron’s spatial density in Figure 10 for several moments in time ranging from t = 0 to 

0.010 a.u.  For reasons of symmetry, the corresponding positronic density is identical to that of the electron.  

Consistent with the data in Fig. 9, the electron density for the early time frames is nearly zero, as photon 

packets have not yet achieved their spatial overlap.  Once the two photons collide, we observe the expected 

growth close to t =0.004 a.u. After the photon packets have separated and move away from each other, no new 

electrons (or positrons) are created.  But the electron’s probability density created at around t = 0.004 splits 

into two parts and start to move away from the very location where they were created.  As the momentum 

distribution of the outgoing electron wave packets is rather wide, the spatial density spreads.  Because we 

assumed that the electron's mass M was ten times larger than that of the photon, the spatial spreading is 

significantly larger for the electron than that for the photon.  This is obvious from a direct comparison of 

(x,t) (Fig. 9) and e(x,t) (Fig 10) for the same moments in time.  While the peak of the photon packet moves 

with nearly the speed of light in Fig. 9, the electron propagates out at a lesser speed close to only 67 a.u.  This 

central speed is fully consistent with resonant momentum Pres discussed in the prior sections for the given 

central photon momentum.  

 

7. Summary and open questions 

 In this work we employed an interacting quantum field theory to analyze the famous Breit-Wheeler 

process.  The present work differs from prior works mainly in two respects.  First, it included the back-reaction 

of the created electron-positron pairs on the colliding photons.  Second, the dynamics was examined from a 

spatially resolved perspective.  In order to study the back-reaction we had to go beyond the external field 

approximation, where the two colliding photons are usually represented in the Dirac equation by an 

electromagnetic radiation field with a prescribed space-time dependence.  In addition to laying out a possible 

theoretical framework for such an approach, the space-time resolved studies also led to new predictions.  For 

spatially localized photon wave packets we observed an interesting blue shift with regard to the optimum 

photon momentum that can lead to the largest amount of pair creation.  The simultaneous presence of many 

energy contributions required to have spatially localized photon states also led to novel coherent oscillations in 

the electron-positron yield during the collision.  

 However, to make the present approach numerically feasible, we also had to employ several 

approximations.  The most serious of which is likely the restriction to only 1+1 dimensions, which does not 

permit us to examine angularly resolved scattering properties as well as implications of various spins.  We also 

point out that we presently do not fully understand how the energy shifts associated with the adiabatic 
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elimination of the off-resonant intermediate states can be compensated with an appropriate charge and mass 

renormalization.  To make analytical predictions, we have employed several simple model approximations, 

whose range of validity was established with a direct comparison with the quantum field theoretical data. 

 We should also comment on some energetic aspects of the dynamics.  While the momenta of each of the 

two photons (and therefore the total momentum of the system) were well-defined, the total energy was not.  As 

the Hamiltonian was time-independent, the expectation value of the energy was independent of time.  But as 

the initial two-photon state |K1K2 as well as the set of final states |PQ were not energy eigenstates, the energy 

uncertainty E  was non-zero.  This means that the usual textbook discussions of cross-sections and decay 

rates that are usually based on the assumption of a sharp total four-momentum, such as 1+2 = EP+EQ, would 

need to be re-evaluated for our approach.   

 The space-time approach employed here allows us to probe the interaction zone.  Such an intuitive 

approach should be viewed as being complementary to the more traditional S-matrix approach normally used 

to calculate the long-time total reaction cross-section.  For the S-matrix, the initial two-photon state and the 

final electron-positron state are required to be fully energy degenerate, but not orthogonal to each other.  This 

is entirely different compared to the spatially resolved approach where neither the initial nor the final state 

have a well-defined energy and they are mutually orthogonal.  It might be interesting to examine the spatial 

properties of the true (dressed) energy eigenstates in this degenerate sub-space and to relate them to the 

scattering states examined in this work. 

 While we focused our attention on a restricted dimensional model, three-dimensional calculations may 

be required to adequately account for all spatial features of the dynamics of the incoming photons. 

Nevertheless, we believe the main conclusions from this work will stay valid for the more general 

Breit-Wheeler process.  For example, while this work is theoretical and serves mainly as a first proof of 

concept, we believe that for example the predicted blue shift and the coherent oscillation features might also 

be relevant to future experimental investigations.  Obviously for detailed comparison with a future 

experiment, more sophisticated studies with realistic parameters have to be considered.  
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Appendix A 

 We briefly review here the derivation of the Hamiltonian for our model system and summarize the 

resulting functional dependence of the eight coupling functions on the momenta of the electrons, positrons and 

photons.  We also give its discretized form that is being used for the numerical calculations.  For our numerical 

applications we use atomic units, for which =1 and c=137.036 a.u. 

 The usual second-quantization scheme for the fermions is based on the wave function solution (r,t) to 

the Dirac equation [41], i d(r,t)/dt = (c  p + mc2 ) (r,t), which can be expressed as a superposition of 

eigenstates with positive and negative eigenvalues.  If we restrict the spatial dimension to 1 (the z-axis) and 

permit only states that have a sharp spin Sz = 1/2, then the expansion of the fermionic field operator is given 

at time t=0 by  

 

 (z) = dp (2)–1/2 b(p) exp(i p z) Up + dq (2)–1/2 d(–q)† exp(i q z) Dq   (A.1a) 

 

where the four-component spinors are given by Up  Np{1,0,pc/(Mc2+Ep),0} and Dq  

Nq{1,0,qc/(Mc2–Eq),0}, where the two normalization factors Nu,p  [1+p2c2/(Mc2+Ep)2]–1/2 and Nd,q  

[1+q2c2/(Mc2–Eq)2]–1/2 guarantee the normalization Up†Up = Dq†Dq =1.  We note that we have formally 

renamed the annihilation operator b(p) for negative energy states as d(–q)†.   

 As we discuss the spatial probability distributions in this article, we should mention that the field 

operator (z) can be used to recover the corresponding single-electron wave function  from the 

field-theoretical state b(p)†vac via  vac (z) b(p)†vac = (2)-1/2exp(i p z) Up.  Similarly, the wave 

function associated with the state d(q)†vac, requires the charge conjugated field operator c, defined by the 

anti-unitary operation c  C [†]T.  Here T denotes the transposed spinors, and C is an anti-symmetric 44 

matrix that fulfills C = – C–1= –C† = – CT.  Based on the usual 44 gamma matrices it can be represented by C 

 i 2 0.  It can transform the gamma matrices as C i C–1 = – iT.  The charge conjugated field takes the form 

[42] 

 

 c(z) =  dp (2)-1/2 b(p)† exp(-i p z) C Up +  dq (2)-1/2 d(–q) exp(–i q z) C Dq  (A.1b) 

 

If we include the time-dependence, then c(z) satisfies the Dirac equation for a positron.  The positronic wave 
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function associated with d(q)†vac can be obtained as vacc d(q)†vac = (2)-1/2 exp(i q z) C D–q, which is 

consistent with a positive-energy eigenstate with spin Sz = –1/2, as we have C D–q = 

Nu,q{0,1,0,qc/(Mc2+Eq)}.  This shows that the choice for the original electron-positron field operator (z) in 

Eq. (A.1a) describes electrons and positrons with opposite spins along the propagation direction.  Due to the 

restriction of the spin parallel to the propagation direction and the confinement to only one spatial dimension, 

which we call the x-axis from now on, we can omit the two vanishing spinor components and introduce an 

effective Dirac Hamiltonian by a simple 22 operator c p 1 + M c2 3, that is based on the Pauli matrices and 

acts on the two-component spinors of the fermionic operator.  The corresponding reduced form of the matrix 

3, required for the calculation of the current density operator, reduces here to 3. 

 Let us now examine the interaction with the model photon field.  In general, the interaction energy 

operator takes the form Vtot ~ d3r (0)† A , where  denote the usual 44 matrices.  However, as a 

consequence of our particular fermionic spin choices, in the temporal gauge (A0=0), only the z-component of 

the vector potential contributes to the energy.  This corresponds to a vanishing photon spin along the 

propagation direction.  We rename the one-dimensional position as x and (arbitrarily) chose the interaction 

energy operator in this model to be of the form Vtot =   c3/2 dx † 3 A , where the bosonic field operator 

is given in terms of the momentum mode decomposition by  

 

              A(x) =  dk c (4k)-1/2 [a(k) exp(i k x) + a(k)† exp(–i k x)]     (A.2) 

 

If we insert the two fields  and A into the expression for interaction energy Vtot and multiply the products of 

the sums, we obtain eight terms as †,  as well as A are given by two sums each.  Momentum conservation 

follows for each vertex reaction from the spatial integration.  The momentum dependence of the coupling 

strength is associated with the scalar products of the corresponding spinors, which we define as UU(p,p',k)  

Up† 3 Up' (4k)-1/2, UD(p,q,k)  Up† 3 Dq (4k)-1/2, and DD(q,q',k)  Dq† 3 Dq' (4k)-1/2.  Despite the 

variety of the eight different coupling mechanisms, in addition to the momentum exchange symmetries 

UD(q,p,k) = sign(pq) UD(p,q,k), and the symmetries DD(q,q',k) = – sign(qq') UU(q,q',k) and DU(q,p,k) = 

UD(p,q,k), all eight couplings can be expressed in terms of UU or DU that take the simplified form  

 

 UU(p,p',k)   [E(p)E(p') + M2c4 – pp'c2]1/2 [8(k) E(p) E(p')]–1/2    (A.3a) 
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 UD(p,q,k)    sign(p/q+1) [E(p)E(q) – M2c4 + pqc2]1/2 [8(k) E(p) E(q)]–1/2    (A.3b) 

 

where sign(x)  x/|x|. 

 To take a concrete example, one of the eight interaction terms is given by  

 

 V3 =  c5/2 dx (2)-1/2 {dp' (2)-1/2 b(p') Up exp(i p' x)† 3 dk c (2k)-1/2 a(k) exp(i k x)  

 (2)-1/2 dq (2)-1/2 d(-q)† Dq exp(i q x)}   (A.4) 

 

It is the result of multiplying the electronic part of † with the photonic annihilation part of A and the 

positronic part of .  Using the orthogonality of the plane waves, the spatial integration leads to non-vanishing 

terms only if –p' + k – q = 0.  We therefore only need to compute Up† 3 D–(k–p) (2k)-1/2, which is defined as 

the coupling function UD(p,p–k,k).  If we perform the same procedure for all eight terms, we obtain 

 

   V1 =  c5/2 dp dk UU(p,p–k,k)  b(p)† b(p–k) a(k)   (A.5a) 

   V2 =  c5/2 dp dk UU(p,p+k,k)  b(p)† b(p+k) a(k)†    (A.5b) 

   V3 =  c5/2 dp dk UD(p,p–k,k)  b(p)† d(–p+k)† a(k)   (A.5c) 

   V4 =  c5/2 dp dk UD(p,p+k,k)  b(p)† d(–p–k)† a(k)†   (A.5d) 

   V5 =  c5/2 dp dk DU(p+k,p,k)  d(–p–k) b(p) a(k)   (A.5e) 

   V6 =  c5/2 dp dk DU(p–k,p,k)  d(–p+k) b(p) a(k)†   (A.5f) 

   V7 =  c5/2 dp dk DD(–p,–p–k,k)  d(p) d(p+k)† a(k)   (A.5g) 

   V8 =  c5/2 dp dk DD(–p,–p+k,k)  d(p) d(p–k)† a(k)†   (A.5h) 

 

where the coupling functions  are not independent of each other.   

 With regard to its computational implementation, we can discretize the momentum space with a mode 

spacing given by p=2/L, which is equivalent to having a physical system of finite spatial extension L.  This 

parameter permits us to compute finite size effects (such as in cavity QED) in quantum field theory [22] as 

well as predict the quantities for the special case of an infinitely extended system, L→. 

 This step introduces also the unitless (discretized) operators on the momentum grid as bp  b(p) p1/2.   

For simplicity, we use the same grid also for the photonic operators, i.e., p = k. This leads automatically to 
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the unitless (anti-)commutator relationships, for example, [bp,bp'†]+ = pp.  While the diagonal energy 

integrals in the Hamiltonian turn into simple sums over the momentum, i.e., dp Ep b(p)† b(p) = p  Ep bp† bp, 

the off-diagonal interaction terms, which contain products of three operators, pick up a scaling factor, for 

example, the first interaction energy of Eq. (A.5a) becomes  V1 =  p1/2 c5/2 p k UU(p,p–k,k) bp† bp–k ak, 

such that  p1/2 c5/2 could be interpreted as an effective L-dependent coupling constant for the discretized 

system.  However, as we will see in this work, the occurrence of p1/2 in the coupling energy does not lead to 

any unphysical results.  In fact, we will see that for a fixed value of , all scattering data will not depend on p 

in the continuum limit p → 0, corresponding to L → .  This universality was already demonstrated for the 

L-independent dressing of energies [43] as well as the scaling of bound-state energies in the strong coupling 

regime. [22] 

 We should also mention that in order to be consistent, the any basis state also need to be normalized 

based on the Kronecker delta function, for example p qp’ q’=pp’ qq’.  Using these basis states, the state can 

be expanded as 

 

   |(t) = C12(t) |K1K2+p Ce–e+(p,t) |p q+p CK1(p,t) |p q K1+p CK2(p,t) |p q K2     (A.6) 

 

where the corresponding value for the positron momentum q follows from momentum conservation.  This 

means q  K1+K2–p for |p q,  q  K2–p for |p q K1 and q  K1–p for |p q K2.  This state has to satisfy the 

equation i d |(t)/dt = H |(t).  If expansion (A.6) is inserted into this equation, and scalar multiplied with 

the corresponding basis state, we obtain the following set of equations of motion for the expansion amplitudes:  

 

           i dC1 2/dt  = (1 + 2) C12  +  p K1K2|V6|p q=K2–p K1 CK1(p)  

                                                                   + p K1K2|V6|p q=K1–p K2 CK2(p)   (A.7a) 

i dCK1(p)/dt  =  (Ep + Eq=K2–p + 1) CK1(p) +  p q=K2–p K1|V3|K1 K2 C12  

                                    +  p q=K2–p K1|V2|p+K1 q=K2–p Ce–e+(p+K1)  

                                    +  p q=K2–p K1|V8|p q=K1+K2–p Ce–e+(p)   (A.7b) 

i dCK2(p)/dt  =  (Ep + Eq=K1–p + 2) CK2(p) +  p q=K1–p K2|V3|K1 K2 C12  

                                    +  p q=K1–p K2|V2|p+K2 q=K1–p Ce–e+(p+K2)  
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                                    +  p q=K1–p K2|V8|p q=K1+K2–p  Ce–e+(p)   (A.7c) 

i dCe–e+(p)/dt  =  (Ep + Eq=K1+K2–p) Ce–e+(p) 

                                    +  p q=K1+K2–p|V7|p q=K2–p K1 CK1(p)  

                                    +  p q=K1+K2–p|V1|p–K1 q= K1+K2–p K1 CK1(p–K1)  

                                    +  p q=K1+K2–p|V7|p q= K1–p  K2 CK2(p) 

                                   +  p q=K1+K2–p|V1|p–K2 q= K1+K2–p K2 CK2(p–K2)   (A.7d) 

where the transition matrix elements based on V6, V3, V2, and V8 are related to each other via 

              K1K2|V6|p q=K2–p K1  = g  DU(p–K2,p,K2)    (p, K2)   (A.8a) 

              K1K2|V6|p q=K1–p K2  = g  DU(p–K1,p,K1)  =  (p, K1)    (A.8b) 

             p q=K2–p K1|V3|K1 K2  = g  UD(p,p–K2,K2)  =  (p, K2)    (A.8c) 

 p q=K2–p K1|V2|p+K1 q=K2–p = g  UU(p,p+K1,K1)    (p, K1)    (A.8d) 

Furthermore if we use DD(q,q',k) = – sign(qq') UU(q,q',k), we obtain 

 p q=K2–p K1|V8|p q=K1+K2–p = – g  DD(p–K1–K2,p–K2,K1) 

                                   =    sign[(p–K1–K2)(p–K2)]   UU(p–K1–K2,p–K2,K1) 

                                 =      sign[(p–K1–K2)(p–K2)]   (p–K1–K2, K1)    (A.8e) 

and similarly 

 p q=K1–p K2|V3|K1 K2 = g  UD(p,p–K1,K1)        (p, K1)    (A.8f) 

 p q=K1–p K2|V2|p+K2 q=K1–p = g  UU(p,p+K2,K2)  =  (p, K2)    (A.8g) 

 p q=K1–p K2|V8|p q=K1+K2–p  = – g  DD(p–K1–K2,p–K1,K2) 

                                                     = sign[(p–K1–K2)(p–K1)]   (p–K1–K2, K2)    (A.8h) 

 p q=K1+K2–p|V7|p q=K2–p K1 =  – g  DD(p–K2,p–K1–K2,K1) 

                                                      = sign[(p–K1–K2)(p-K2)]   (p–K1–K2, K1)    (A.8i) 

Based on the symmetry UU(p,p’,K) = UU (p,p’,–K) we simplify furthermore 

   p q=K1+K2–p|V1|p–K1 q= K1+K2–p K1 =  g  UU(p,p–K1,K1) =  (p, –K1)    (A.8j) 

   p q=K1+K2–p|V7|p q= K1–p  K2 = –g DD(p–K1,p–K1–K2,K2) 

                                                                       = sign[(p–K1–K2)(p-K1)]  (p–K1–K2, K2) 

   p q=K1+K2–p|V1|p–K2 q= K1+K2–p K2 =  g UU(p,p–K2,K2)  =  (p,–K2)    (A.8k) 
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The introduction of the couplings  and  simplifies the compact notation used in Eqs. (3.2). 

 Before closing this appendix, we note a fundamental and non-trivial issue.  The model is based on two 

major restrictions, the first one is to consider only electrons and positrons that are created along the z-direction 

making all predictions only qualitative with regard to real collisions.  The second and most consequential 

approximation is that the Hilbert space of the fermions is restricted to electrons with spin Sz = +1/2 and to 

positrons with spin Sz = –1/2.  We have omitted the states e–[Sz =–1/2] and e+[Sz =+1/2].  As a consequence, 

[in the temporal gauge A(0) = 0] only the fourth component Az(z) of the four vector plays an active role in the 

dynamics, as the interaction energy integral does not depend on the two transverse components Ax and Ay.   

 The impact (and also possible steps towards improvements) to the restriction of the fermionic subspace 

of states can be most directly analyzed if we consider the required conservation of the total spin Sz along the 

propagation direction.  Due to the omission of the states e–[–1/2] and e+[+1/2], the only possible two-photon 

annihilation process is [0] + [0]  → e–[+1/2] + e+[–1/2], based on scalar photons  with spin Sz = 0.  In 

contrast, the more physical process (based on vector photons with helicity Sz = 1)  [+1] + [–1]  → e–[+1/2] 

+ e+[–1/2], requires as an intermediate step the vertex reaction  [+1] → e–[+1/2] + e+[+1/2] or  [–1] → 

e–[–1/2] + e+[–1/2].  Our model would therefore only permit us to examine the more physical process as well 

if we had included electrons with spin Sz = –1/2 and positrons with spin Sz = +1/2 to the Hilbert space of states.  

 The key question is therefore how the predictions of our model for the two processes [0] +  [0]  → 

e–[+1/2] + e+[–1/2] and (II)  [+1] +  [–1]  → e–[+1/2] + e+[–1/2] would differ.  The formal procedural steps 

discussed in this work involving the adiabatic elimination of the intermediate e–-e+- states, the possibility of a 

Fermi-Golden Rule analysis and the perturbative treatment can be performed also in a similar fashion for 

process (II).  For example, the key equations (3.2), (4.5), (5.1), (6.4) would be qualitatively the same.  The 

only quantitative difference between (I) and (II) would be that the corresponding coupling matrix elements  

would take possibly different numerical values.   

 

Appendix B 

 In this Appendix, we summarize the derivation of the analytical, but approximate solution to the coupled 

set of equations (4.5) for the amplitude CK(t) of the state |K1K2 as well as the amplitudes CP(t) associated with 

the set of states |PQ.  This set 
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         i dCK/dt  =  (1+2) CK + P (P) CP    (B.1a) 

   i dCP/dt  =  (P) CK + [EP+EQ] CP   (B.1b) 

 

[under the neglect of the general energy shifts 1 and 2(P)] can be solved analytically using the 

dominant-pole approximation.  We first transform the amplitudes to Laplace space [44] incorporating the 

initial values CK(t=0) = 1 and CP(t=0) = 0, leading to 

 

         i s CK(s) – i      =  (1+2) CK(s) +  P (P) CP(s)    (B.2a) 

   i s CP(s)           =  (P) CK + [EP+EQ] CP(s)   (B.2b) 

 

The second algebraic equation can be solved leading to CP(s) = (P) /[i s – (EP+EQ)] CK, which we can insert 

into the RHS of Eq. (B.2a).  If we solve this equation for CK(s) we obtain  

 

             CK(s) = i [i s – (1+2) – P (P)2 /[i s – (EP+EQ)] ]–1   (B.3) 

 

In order to simplify the required inverse Laplace transform, we can apply the dominant pole approximation, 

where the Laplace variable s in the denominator of the momentum integral is replaced by the "dominant" pole 

s = – i (1+2).   

 Next we invoke the continuum approximation to evaluate this summation P → (p)–1 dP.  We 

introduce the energy density of states, defined as the number of states per energy, (EP+EQ) = 

(d(EP+EQ)/dp)–1 =c–2 {p/EP – Q/EQ}–1.  We therefore obtain d(P)2 /[(1+2) – (EP+EQ)] = de (e) 

(P(e))2/[(1+2 – e].  Furthermore, as the denominator in our integrand f(x) in our case is analytic in the 

upper complex half-plane and vanishes fast enough that the integral can be constructed by an infinite 

semicircular contour, we can apply lim →0 dx f(x)/(x–x0+i) = – i  f(x0) + Pdx f(x)/(x-x0), where P denotes 

the principal value of the integral defined as P  lim R→ –RR.  As a result, the simplified integral can be 

separated into the residue and the principal part 

 

          de (e) (P)2/[1+2 – e] = i  (EPres,1) (Pres,1)2 + i  (EPres,2) (Pres,2)2  +    (B.4) 
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where  denotes the principal part of the integral.  The most important parameter of this derivation, BW  2 

[(EPres,1) (Pres,1)2 + (EPres,2) (Pres,2)2] (p)–1 is the Breit-Wheeler decay rate of the two-photon state.  

The two resonant momenta are obtained as the solutions of the equation [(1+2) – (EP+EQ)] = 0.  If we apply 

the inverse Laplace transform to Eq. (B3) we obtain the final solution 

 

   CK(t)  =   Exp[– i (1+2)t] Exp[ –BW t/2 ]   (B.5) 

 

To obtain the time-evolution for the other set of amplitudes CP(t), Eq. (B.1b) can be solved using the Green's 

function, i.e.,  CP(P) = – i (P)  t d Exp[ – i(EP+EQ)(t–)] CK().  If we insert the solution for CK() from Eq. 

(B.4) we obtain 

 

 CP(t) = –i (P) Exp[ – i(EP+EQ)t]  t d Exp[ i  ] Exp[– BW    () 

 

where we have defined the energy difference  = (EP+EQ)–(1+2).  If we perform the integration over time 

from =0 to t, we obtain 

 

      CP(t) =  – (P) Exp[ – i(EP+EQ)t] [Exp[ i ( + i BW) t] – 1]/( + i BW)   (B.7) 
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Appendix C      Using Fermi's Golden rule to approximate the Breit-Wheeler rate BW 

 The "coupling to a single final state approximation" can also be used to construct the Breit-Wheeler rate 

alternatively via the traditional Fermi-Golden rule approach [35].  The solutions (4.7) describe the transfer of 

the initial state |K1K2 to a set of states |PQ for all times.  If the set of states |PQ is discrete, we saw in Section 

4.2 that this would predict an oscillatory feedback between this set and |K1K2, characterized by discrete 

eigen-energies.  However, if the amplitude for |K1K2 is coupled to a continuum of states, it can decay 

irreversibly due to the destructive interference between the oscillating frequencies for each member of the 

continuum.  In this case the usual Golden Rule might become applicable permitting us to determine a 

characteristic exponential decay rate for |K1K2, which is identical to the electron-positron pair creation rate 

for this Breit-Wheeler process.  To determine this rate, we can follow the usual approach that has been used 

several decades ago to analyze the ionization problem [45].  In order to obtain a transition probability, we have 

to sum this particular probability density |CP(t)|2 over all possible final states with different momenta P.  Using 

the continuum approximation to evaluate this summation, we introduce the energy density of states, defined as 

the number of states per energy, (E) = dP/dE.  As we saw above in Section 4.2.2, if we consider only a single 

final state Prob (|K1K2 → |PQ), then we have in the perturbative limit (  E)  

 

   |CP(t)|2  = 4 2 Sin2(t/2)/ 2   4 2 Sin2(E t/2)/E2     (C.1) 

 

If we sum this result over all final states, we could define a probability to excite any final state as Proball = P 

|CP(t)|2.  If we use the continuum approximation [P → (p)–1dP] to evaluate this discrete summation and 

change the integration variable to the energy, we obtain Proball  (p)–1 dE (E) 4 2 Sin2(E t/2)/E2.  As 

the simultaneous presence of an infinite set of final states leads to a different time evolution of |C1(t)|2 than 

obtained in Eq. (4.7c), this expression for Proball is only a short-time approximation.  If we assume that the 

time t is nevertheless sufficiently long and the energy density (E) ( dp/dE) and (P) varies slowly with E 

around the two resonant energies, we can factor out these two terms from the integral.  They are evaluated for 

the momenta where E vanishes, (E) → res,i and (E) → res,I with i=1,2.  The remaining integral is of the 

form dx Sin(x t/2)2/x2 =  t/2.  As a result, we obtain Proball = 2 [res,1 res,12 +res,2 res,22] (p)–1 t, such 

that we would interpret the prefactor as the pair-creation rate BW.  We discuss the dependence of this 

Breit-Wheeler decay rate BW on the initial photon momentum and the fermionic and bosonic masses for our 
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model in more detail in Section 5.  If we neglect the -dependence of the resonant momentum Pres, then BW 

scales quartically in , as expected. 
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