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In this work, we prove a new family of Lieb-Robinson bounds for discrete spin systems with long-
range interactions. Our results apply for arbitrary k-body interactions, so long as they decay with
a power-law greater than kd, where d is the dimension of the system. More precisely, we require
that the sum of the norm of terms with diameter greater than or equal to R, acting on any one site,
decays as a power-law 1/Rα, with α > d. These new bounds allow us to prove that, at any fixed
time, the spatial decay of a time evolved operator follows arbitrarily closely to 1/rα. Moreover,
we define a new light-cone for power-law interacting quantum systems, which captures the region
of the system where changing the Hamiltonian can affect the evolution of a local operator. In
short-range interacting systems, this light-cone agrees with the conventional definition. However, in
long-range interacting systems, our definition yields a stricter light-cone, which is more relevant in
most physical contexts.

In a relativistic quantum field theory, informa-
tion can never travel faster than the speed of light.
A Lieb-Robinson bound [1–7] establishes a similar
“light-cone” for the spread of quantum informa-
tion in a non-relativistic discrete system. However,
the information spread outside the light-cone is not
strictly vanishing but, instead, has non-zero tails.
Such constraints on the spread of information, in
addition to being physically important in their own
right, have also been used as ingredients in the rig-
orous mathematical proof of key results about non-
relativistic discrete quantum systems [2–4, 8–17], in-
cluding the exponential decay of correlations in the
ground states of gapped Hamiltonians [2, 3] and the
stability of topological order [4, 13, 14, 16].

More recently, numerical and analytical works
have investigated the existence of analogous Lieb-
Robinson bounds in discrete spin systems where in-
teractions do not have a finite range, but rather
fall off as a power of the spin separation [3, 18–28].
Such long-range interactions arise in a wide variety
of experimental platforms, ranging from solid-state
spin defects [29–31] to quantum optical systems of
trapped ions [32], polar molecules [33], and Rydberg
atoms [34]. While the majority of previous studies
have focused on few-body physics, recent advances
have enabled a number of these platforms to begin
probing the many-body dynamics and information
propagation of strongly interacting, long-range sys-
tems [20, 35, 36].

Motivated by the development of these physical
platforms, in this work, we improve Lieb-Robinson

bounds for generic power-law interactions. Specifi-
cally, let us consider a system of spins on a set of
sites Λ governed by a Hamiltonian H, which can
be written as a sum H =

∑
Z HZ of terms acting

on subsets of sites Z ⊆ Λ in d-dimensional space.
Moreover, we assume (among other conditions de-
scribed in Section I A) that there exists a constant
J such that

sup
z∈Λ

∑
Z3z:diam(Z)≥R

||HZ || ≤
J

Rα
, (1)

where diam(Z) is the greatest distance between any
two points in Z. A familiar example [37, 38] is the
long-range Ising interaction,

H = Hshort-range + J̃
∑
i 6=j

1

|ri − rj |d+α
σzi σ

z
j . (2)

An early result on Lieb-Robinson bounds in
power-law interacting systems was proved in Ref. [3],
which demonstrated the existence of a light-cone
whose size grows exponentially in time for any α > 0.
More recently, this result was improved in Refs. [21]
and [24], where it was shown that a power-law light-
cone emerges for α > d, where d is the spatial di-
mension.

However, each of these results has certain limi-
tations (Table I). On the one hand, Ref. [21] as-
sumes a two-body Hamiltonian, where each term
acts on at most two spins [39]. This assumption
limits the usage of this result in analyzing multi-
body effective Hamiltonians of broad interest in con-
densed matter physics. Such Hamiltonians can arise



Reference
Multi-body

Hamiltonians
Asymptotic

Spatial Decay
LC1 LC2

Ref. [21] 7 r−(α+d) α > d α > d

Ref. [24] 3 r−(α−d)/(η+1) α > d α > 2d
Our work 3 r−α α > d α > d

TABLE I. Summary of power-law Lieb-Robinson bounds
for α > d. Note that the LC1 and LC2 columns describe
the power-law regime where these light-cones exist and
are power-law.

in a number of different contexts: for example, ring-
exchange interactions may be important in solid 3He
[40] and are known to stabilize certain topological
phases [41, 42]; multi-body Hamiltonians arise in ex-
plicit constructions of various results in mathemati-
cal physics [9, 13, 14, 17]; and higher-body interac-
tions naturally emerge in the effective description of
periodically-driven two-body Hamiltonians [17, 43].

On the other hand, while Ref. [24] overcomes
this two-body assumption, it proves a significantly
weaker result regarding the power-law decay of in-
formation outside the light-cone (Table I) [44]. In
particular, for α >∼ d, the bounds of Ref. [24] ensure
only a relatively slow decay outside the light-cone;
which can limit its applicability to some important
results, e.g. bounding the difference in operators
time evolved under slightly different Hamiltonians.

In this paper, we prove a Lieb-Robinson bound
that addresses both of the above concerns. We
demonstrate that for multi-body interactions with
α > d, the spatial decay of a time evolved operator,
outside the light-cone, scales arbitrarily closely to
∼ 1/rα (Table I). While this bound is not as strong
as the ∼ 1/rα+d decay obtained in Ref. [21], our
combination of an improved scaling (over Ref. [24])
and applicability to arbitrary multi-body Hamiltoni-
ans, enables the usage of this Lieb-Robinson bound
to prove new results in mathematical physics [45].

An important comment is in order. Unlike ei-
ther short-range or exponentially decaying interac-
tions, power-law interactions are characterized by
Lieb-Robinson bounds with power-law tails which
lack a natural notion of a length scale. This implies
that one must be particularly careful when defining
an associated light-cone for such long-range interact-
ing systems. One possible definition of a light-cone
(used in Refs. [21, 24]) is the following: at late times,
the propagation of a local operator to any one point
outside the light-cone is small. From here on, we
will refer to this as light-cone 1 (LC1). For short-
range interacting systems, LC1 is the only length-
scale associated with time evolution. For power-law

interacting systems, one can already get a sense of
the insufficiency of LC1 by noting the following: de-
spite the differences between the asymptotic spatial
decays obtained in Refs. [21], [24] and this work (Ta-
ble I), they all yield the same LC1 (Table II).

To this end, we introduce a second light-cone,
LC2, which properly captures these differences. In
particular, LC2 ensures that at late times, the evo-
lution of a local operator is not affected by changes
to the Hamiltonian outside of LC2. For short-range
interacting systems, LC1 and LC2 coincide, but for
long-range interacting systems, they can be quite
different. More specifically, Ref. [21] exhibits a fi-
nite, power-law LC2 for α > d, while Ref. [24] only
has a finite LC2 for α > 2d, despite both having the
same power-law LC1. Intuitively, the lack of an LC2
for α > d in Ref. [24] stems from the aforementioned
slow asymptotic spatial decay of quantum informa-
tion. This highlights the importance of our improved
decay; it enables us to prove our second main result,
which is the existence of a power-law LC2 for α > d
for arbitrary multi-body Hamiltonians (Table I) [46].

This paper is divided into two main sections. In
Section I, we present an improved Lieb-Robinson
bound for multi-body long-range interacting sys-
tems. In Section I A, we introduce the necessary
notation and assumptions used in its derivation. We
state the final bound in Section I B, and present its
detailed proof in Section I C. In Section II, we in-
troduce the definition of a new light cone (LC2),
discussing its differences from the light-cone usu-
ally considered in the literature (LC1), as well as
its physical motivation and how it relates to previ-
ous work. We conclude with a brief summary and
discussion in Section III.

I. IMPROVED LIEB-ROBINSON BOUND

A. Assumptions and notation

Our notation will be similar to that of Ref. [24].
We consider a set of sites Λ with a metric d(x, y) for
x, y ∈ Λ, and a Hamiltonian H written as a sum of
terms H =

∑
Z HZ , where HZ is supported on the

set Z ⊆ Λ. We extend the notation of the metric
to sets, denoting d(X,Y ) as the minimum distance
between any two elements of the sets X,Y ⊆ Λ, as
well as between sets and sites, denoting d(X, y) =
d(X, {y}). We define a function f(R) that captures
the power-law decay of interactions:

f(R) := sup
z∈Λ

∑
Z3z:diam(Z)≥R

‖HZ‖ , (3)
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where

diam(Z) = sup
x,y∈Z

d(x, y) , (4)

and we assume there are constants J and α > d
(the dimensionality of the system) such that f(R) ≤
JR−α. We also require that the sum of the operator
norms of all of the terms involving any site be finite:

C0 := sup
x∈Λ

∑
y∈Λ

∑
Z3x,y

‖HZ‖ <∞ . (5)

Finally, we assume certain conditions on the set
of sites Λ and its metric. Specifically, we assume
that Λ can be embedded in Euclidean space Rd, so
that for each z ∈ Λ there is a corresponding rz ∈
Rd, such that d(x, y) = |rx − ry|. Moreover, we
assume there is a smallest separation a such that
d(x, y) ≥ a for any x, y ∈ Λ unless x = y. We
choose to work in units such that a = 1. Despite
an emphasis on this class of physically motivated
sets of sites and metrics, the strategy and arguments
developed in this work should extend to more general
Λ and d(x, y), as in Ref. [24]

Let us also define τHt (O) as the operator O time-
evolved according to the Heisenberg representation

τHt (O) = eitH O e−itH . (6)

Throughout the paper we will use “C” to refer to
any constants that depends only on σ (the parameter
introduced in the statement of the theorem in the
next section) and Λ. It will not necessarily be the
same constant each time it appears.

B. Statement of main result

Theorem 1. Given the assumptions stated in Sec-
tion I A, let observables A and B be supported on sets
X and Y respectively. Then for any (d+1)/(α+1) <
σ < 1:

‖[τHt (A), B]‖ ≤ ‖A‖‖B‖
{

2|X|evt−r
1−σ

+ C1
G(vt)

rσα

}
,

(7)
where r = d(X,Y ) and v = C2 max(J, C0). More-
over, there exists a constant C3 such that:

G(τ) ≤ C3(τ + τ1+d/(1−σ))|X|n
∗+2, (8)

where

n∗ =

⌈
σd

σα− d

⌉
(9)

Here, all Ci are constants only dependent on σ and
Λ.

By choosing σ arbitrarily close to 1 we obtain a
decay of the Lieb-Robinson bound that approaches
∼ r−α for large r.

C. Proof

1. Iteration Procedure

The main challenge in understanding the spread
of a local operator in long-range interacting systems
is being able to differentiate the contribution from
strong “short” range terms and the weak “long”
range terms in a problem with no natural length
scale. As a result, there is no single separation be-
tween “short” and “long” range terms of the Hamil-
tonian that yields a strict bound. To this end, we
develop a construction that iteratively introduces a
new short scale [21, 24], enabling us to better ac-
count for the spatial decay of interactions in the
Hamiltonian and obtain an improved Lieb-Robinson
bound.

As a starting point, we consider a truncated ver-
sion of our long-range Hamiltionian with a cutoff R,
H≤R:

H≤R =
∑

Z:diam(Z)≤R

HZ . (10)

At the end of our construction we can make R→∞,
recovering the full Hamiltonian. Because H≤R has
finite range R, a Lieb-Robinson bound for short-
ranged Hamiltonians can be applied. However, this
is clearly not the optimal bound, as it assumes all
interactions of range up to R are equally strong, ig-
noring their decay with range. Nevertheless, this
provides the starting point for our iterative process.

An outline of this procedure is as follows. At each
iteration step, the Hamiltonian H≤R is split into a
short and a long-range piece using a new cutoff R′:

H≤R = H≤R
′
+HR′;R (11)

where HR′;R =
∑

Z:R′<diam(Z)≤R

HZ . (12)

Then, following the strategy of Refs. [21] and [24],
the time-evolution of an operator A is separated into
a contribution from the short-range part H≤R

′
and

the long-range part HR′;R. The role of these two
terms can be intuited by considering the long-range
part as a weak perturbation on top of the short-range
part: under evolution via H≤R

′
alone, the operator

spreads with a linear light-cone as per short-range
Lieb-Robinson bounds, Fig. 1(a); the weak HR′;R

3



part then leads to a faster spreading by directly con-
necting this growing operator with the outside of its
light-cone, Fig. 1(b).

This picture is made precise in Lemma 3.1 in
Ref. [24], where the total spread of the operator is
bounded as a contribution from the short-range part
H≤R

′
, as well as an additional contribution due to

the long-range part HR′;R:

‖[τH
≤R

t (A), B]‖ ≤ ‖[τH
≤R′

t (A), B]‖+

+ 2‖B‖
∫ t

0

‖[τH
≤R′

t−s (A), HR′;R]‖ ds (13)

This procedure enables us to better distinguish the
contribution of the strong short-range terms and the
weak long-range terms of the evolution, improving
upon the initial naive bound. Once this iteration
step is concluded and an improvement is obtained,
one can perform the procedure again further reduc-
ing the contribution from the long-range piece of
Eq. (13) and improving the spatial decay of the Lieb-
Robinson bound. We note this iterative process re-
covers the argument of Ref. [24] after one iteration;
by iterating multiple times we can improve on their
results. We make this iterative construction more
precise with the following Lemma:

Lemma 1. Fix a set X ⊆ Λ and a time t. Suppose
that we have a function λ(R)(r) such that for all 0 ≤
s ≤ t, Y ⊆ Λ and observables A and B supported on
sets X and Y respectively, the bound

‖[τH
≤R

s (A), B]‖ ≤ λ(R)(d(X,Y ))‖A‖‖B‖ (14)

is satisfied. We assume that λ(R)(r) is monotoni-
cally increasing in R and decreasing in r. Then, for
any R′ > 0, Eq. (14) is also satisfied with λ replaced

by λ̃, defined according to

λ̃(R)(r) = λ(R′)(r)+CΘ(R−R′) |X| t f(R′) I[λ(R′)],
(15)

where f(R) is given in Eq. (3); C is a constant in-
dependent of R,R′, |X| and t; Θ(x) is the Heaviside
theta function and:

I[λ] = λ(0) +

∫ ∞
1/2

ρd−1λ(ρ) dρ. (16)

Proof. For R′ ≥ R, the result follows directly from
the monotonicity with respect to R. On the other

hand, for R′ < R we have, from Eq. (13):

‖[τH
≤R

t (A), B]‖

≤ ‖[τH
≤R′

t (A), B]‖+

+ 2‖B‖
∫ t

0

‖[τH
≤R′

t−s (A), HR′;R]‖ ds

≤ ‖[τH
≤R′

t (A), B]‖+

+ 2‖B‖
∫ t

0

∑
Z:R′<diam(Z)≤R

‖
[
τH
≤R′

s (A), HZ

]
‖ ds

≤ λ(R′)(d(X,Y ))‖A‖‖B‖+

+ 2t‖B‖
∑

Z:R′<diam(Z)≤R

λ(R′)(d(X,Z))‖HZ‖‖A‖

≤ λ(R′)(d(X,Y ))‖A‖‖B‖+

+ 2t‖A‖‖B‖
∑
z∈Λ

∑
Z3z:R′<diam(Z)≤R

λ(R′)(d(X, z))‖HZ‖

≤ λ(R′)(d(X,Y ))‖A‖‖B‖+

2t‖A‖‖B‖f(R′)
∑
z∈Λ

λ(R′)(d(X, z))

≤ ‖A‖‖B‖λ(R′)(d(X,Y ))+

+ 2‖A‖‖B‖tf(R′)|X| sup
x∈X

∑
z∈Λ

λ(R′)(d(x, z))

≤ ‖A‖‖B‖λ(R′)(d(X,Y ))+

+ 2‖A‖‖B‖tf(R′)|X|I[λ(R′)] . (17)

In going from the second to the third inequality, it is
helpful to recall that λ(R′)(d(X,Y )) is independent
of s (but dependent on t). In going from the fourth
to the fifth inequality, we used:∑

z∈Λ

∑
Z3z,R′<diam(Z)<R

λ(R′)(d(X, z))‖HZ‖ (18)

=
∑
z∈Λ

λ(R′)(d(X, z))
∑

Z3z,R′<diam(Z)<R

‖HZ‖ (19)

≤f(R′)
∑
z∈Λ

λ(R′)(d(X, z)). (20)

To obtain the final result, we have used Lemma 2 in
Appendix A to replace the sum by an integral in the
last inequality of Eq. (17).

Finally, let us emphasize that the simplest bound
for λ(R′)(d(X,Y )) corresponds to the short-range
Lieb-Robinson bound where the interactions have at
most range R′, and, thus, can always be used as the
first term of Eq. (13).

We now iteratively apply Lemma 1. Eq. (15) says
that a Lieb-Robinson bound λ(R) for an interaction
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with maximum range R can be rewritten as the sum
of two contributions: a Lieb-Robinson bound λ(R′)

for an interaction of maximum range R′, which can
be interpreted as the short-range part of the evo-
lution; and an additional contribution due to long-
range hops, which have range between R′ and R and
maximum strength f(R′). However, these “long-
range hops” need not originate in the support of the
original A itself but, rather, in the support of the
time-evolved A under the short-range part of the in-
teraction. This additional effect, depicted in Fig. 1,
is captured by the I[λ(R′)] term.

At each iteration we replace the short-range con-
tribution by the short-range Lieb-Robinson bound.
We make use of the bound proven in Theorem A.1
of Ref. [24] which state that, for observables A and
B supported on sets X and Y , respectively:

‖[τH
≤R′

t (A), B]‖ ≤ 2|X| exp[vt−d(X,Y )/R′]‖A‖‖B‖ .
(21)

Finally, we are free to choose R′ in Eq. (15). In
particular, we choose it to be a function of r; specif-
ically, at the n-th iteration we take R′ = rσn , with
d/α < σn < 1. The resulting bound no longer de-
pends on any cut-off R′ and when used again in
Eq. (15), leads to a faster decaying I[λ] and an im-
proved bound.

Therefore, at the n-th iteration we obtain the
bound:

‖[τH
≤R

s (A), B]‖ ≤ λ(R)
n (d(X,Y ))‖A‖‖B‖, (22)

where the iteration equation is:

λ(R)
n (r) = ∆r

(
2|X| exp

[
vt− r1−σn

]
+ CΘ(R− rσn)|X|t f(rσn)I[λ

(rσn )
n−1 ]

)
, (23)

where

∆r(u) =

{
2 r < 1 or u > 2

u otherwise
(24)

This choice of ∆r ensures that we always use the
trivial bound on the commutator when r = 0 or
when it is the most stringent bound. Now, it only
remains to carry out the iteration.

2. Analyzing the iteration

To begin the iterative process we can invoke the
generic Lieb-Robinson bound for finite-range Hamil-
tonians, as described in Eq. (21). Taking into ac-
count the trivial case,

‖[τH
≤R

t (A), B]‖ ≤ 2‖A‖‖B‖, (25)

we begin the iteration with the initial bound:

λ
(R)
0 (r) = ∆r(2|X|evt−r/R). (26)

We then find (calculation in Appendix B 1):

I[λ
(R′)
0 ] ≤ C|X|

[
1 + (vtR′)d

]
(27)

Taking Eq. (23) and setting R′ = rσ1 , we have:

λ
(R)
1 (r) ≤ ∆r

(
2|X|evt−r

1−σ1
+

+ CΘ
(
R− rσ1

)
|X|2Jtr−σ1α[1 + rσ1d(vt)d]

)
(28)

which recovers the results in Ref. [24] with an ap-
propriate choice of σ1. From this point, we proceed
by induction. Indeed, suppose at the n-th iteration
we have:

λ(R)
n (r) ≤ ∆r

(
2|X|evt−r

1−σn
+

+ CΘ(R− rσn)

2∑
i=1

F
(n)
i (vt) rµ

(n)
i

)
. (29)

Note that, according to Eq. (28), this is satisfied for
n = 1 if we take

µ
(1)
1 = σ1(−α+ d) (30)

µ
(1)
2 = −σ1α (31)

F
(1)
1 (τ) = Cτd+1|X|2 (32)

F
(1)
2 (τ) = Cτ |X|2 (33)

(Here we used the fact that J/v ≤ C given the
definitions of these quantities.) Then, so long as

µ
(n)
1 + d > 0 and µ

(n)
2 + d < 0 we have (computed in

Appendix B 2):

I[λ(R′)
n ] ≤ C

[
|X|(1 + (vt)d/(1−σn))+

+ F
(n)
2 (vt) (vt)(d+µ

(n)
2 )/(1−σn)+

+ F
(n)
1 (vt) (R′)(µ

(n)
1 +d)/σn

]
(34)

and therefore, using Eq. (23) and setting R′ = rσn+1 :

λ
(R)
n+1(r) ≤ ∆r

(
2|X|evt−r

1−σn+1
+

+ CΘ(R− rσn+1)|X|Jtr−σn+1

(
α−µ

(n)
1 +d

σn

)
F

(n)
1 (vt)+

+ CΘ(R− rσn+1)|X|Jtr−σn+1α×

×
{
|X|(1 + (vt)d/(1−σn))+

+ F
(n)
2 (vt) (vt)(d+µ

(n)
2 )/(1−σn)

})
. (35)
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FIG. 1. The Lieb-Robinson bound captures the spread of quantum information during evolution by bounding the
commutator of a time evolved local operator A, with another operator B a distance r away. The spread the operator
A can be apportioned into the spread due to interactions of range shorter than R′ (left column) and long-range
hops due to interactions of range larger than R′ (center column). The long-range hops connect the short-range time
evolved operator A with strength at most f(R′) but they can originate from any location that A has spread to, so the
total contribution of these long-range hops is weighted by the integral I[λ] (see Lemma 1). At the first iterative step,
which yields λ1, the short-range interactions can always be characterized by an exponentially decaying bound with
a sharp light-cone with slope (vR′)−1, Eq. (21). This corresponds exactly to the short-range contribution to λ1 (a).
The long-range contribution arises from the long-range hops that connect the inside of the light-cone to the support
of B (b). By choosing the cut-off R′ as a function of the operator distance, R′ = rσ1 , the resulting bound becomes
the sum of exponential and power-law decaying terms, Eq. (28), the latter of which dominate the long distance decay
of the bound (c). This choice of R′ leads to the light-cone slope of (vrσ1)−1 of panel (a). At the n-th iteration step,

which yields λn, we choose a new cut-off R̃′. As before, we obtain a short-range contribution that yields a linear
light-cone with slope (vR̃′)−1 (d). More importantly, the long-range hops will now be weighted by the power-law
decay of the previous bound λn−1, illustrated by the dark shading (e). It is the combination of these two power-law
decays that enables our iterative procedure to improve the asymptotic decay of the bound λn after specifying the
cut-off as R̃′ = rσn (f) (see Section III.B). This choice of R̃′ leads to the light-cone slope of (vrσn)−1 of panel (d).

By choosing σn+1 ≤ σn we ensure that the spatial
decay of the exponential term does not increase in
performing the iterative procedure.

So at the next iteration we have

µ
(n+1)
1 = σn+1

(
−α+ (µ

(n)
1 + d)/σn

)
(36)

µ
(n+1)
2 = −σn+1α (37)

F
(n+1)
1 (τ) = Cτ |X| F(n)

1 (τ) (38)

F
(n+1)
2 (τ) = Cτ |X|

{
|X|[1 + τd/(1−σn)]

+ F
(n)
2 (τ) τ (d+µ

(n)
2 )/(1−σn)

}
(39)

Iteratively applying Eq. (36) to the initial condi-

tion of Eq. (30) yields:

µ
(n)
1 =

(
1 +

1

σ1
+

1

σ2
+ . . .

1

σn−1

)
σnd − nσnα.

(40)

At each iteration, µ
(n)
1 is made smaller (i.e. more

negative) at the cost of increasing the leading power

of τ in F
(n)
1 (τ), so long as µ

(n)
1 > −d. By choos-

ing appropriate σj , we eventually reach an iteration

step n = n∗ such that µ
(n∗)
1 + d < 0 and Eq. (34)

no longer holds (and neither will the iteration equa-

tions Eqs. (36) - (39)). For n > n∗, I[λR
′

n ] becomes
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independent of R′:

I[λR
′

n≥n∗ ] ≤ C
[
|X|(1 + (vt)d/(1−σn))+

+ F
(n)
1 (vt) (vt)(d+µ

(n)
1 )/(1−σn)+

+ F
(n)
2 (vt) (vt)(d+µ

(n)
2 )/(1−σn)

]
(41)

which leads to new iterative steps where the spatial
decay of both polynomial terms is the same:

µ
(n+1)
1 = µ

(n+1)
2 = −σn+1α (42)

F
(n+1)
1 (τ) = τ1+(d+µ

(n)
1 )/(1−σn)|X| F(n)

1 (τ) (43)

F
(n+1)
2 (τ) = τ |X|

{
|X|[1 + τd/(1−σn)]+

+ F
(n)
2 (τ)τ (d+µ

(n)
2 )/(1−σn)

}
. (44)

At this point in the iterative procedure, further
iterations do not improve on the power-law decay
of the Lieb-Robinson bound since they are set by
−σnα.

With regards to the time dependence of the
bound, at each iteration step n, one can choose
σn > (1−σn−1+d)/α, reducing the time dependence

of F
(n)
i (vt) in Eqs. (39), (43) and (44). For such

choices of σn and enough iterations steps, the lead-
ing temporal dependence arises from the τ1+d/(1−σn)

term introduced each iteration step in Eq. (44). As a
result, there is some iteration number m > n∗ above
which the most meaningful terms of the bound do

not change. At this point, the bound λ
(R)
m (r) is given

by:

λ(R)
m ≤ ∆r

(
2|X|evt−r

1−σm
+ CΘ(R− rσm)×

× r−σmα
{
|X|2(vt)1+d/(1−σm) + . . .

})
, (45)

where . . . are terms with lower power in vt, but
higher power in |X|.

We can make the previous considerations more
concrete by analyzing the case where σj are all made
equal, σj = σ > (d + 1)/(α + 1). This inequal-
ity ensures the reduction of the time dependence of

F
(n)
i (vt).
For this choice of {σj}, Eq. (40) simplifies to:

µ
(n)
1 = (n− 1 + σ)d− nσα (46)

further leading to n∗ = dσd/(σα− d)e.
For n > n∗, the time dependence is encoded in:

F
(n)
1 (τ) ∼ τ1+d/(1−σ)

[
τ [1+d−σ(1+α)]/[1−σ]

]n−1

+ . . .

(47)

F
(n)
2 (τ) ∼ τ1+d/(1−σ) + . . . (48)

where . . . correspond to lower power of τ . Then,
F2(τ) becomes the dominant term immediately for
iteration step n∗+1 as the term [ · ]n−1 reduces the

leading term of F
(n)
1 (τ) to be smaller than F

(n)
2 (τ).

Because different terms have different dependences
on |X|, to ensure all constants are independent of
|X|, we include the largest power of |X| emerging
from our construction in front of the time depen-
dence. Finally, taking R→∞ yields the final result
as expressed in Theorem 1.

II. POWER-LAW LIGHT-CONES

In short-range interacting systems, the length
scale associated with the exponential decay of the
Lieb-Robinson bound, Eq. (21), provides a natu-
ral definition for a light-cone. In contrast, Lieb-
Robinson bounds in long-range interacting systems
are characterized by power-law decays that lack a
natural length scale [47]. As a result, the precise no-
tion of a light-cone will depend on which properties
we wish to capture.

One way to define a light-cone is in terms of the
“spread of information”: that is, suppose we con-
sider the time evolution of two states |ψ〉 and O|ψ〉,
where O is a local operator that perturbs the ini-
tial state. The light-cone is the region of radius
RLC1(t) around the support of O, outside which,
both time-evolved states yield nearly identical local
observables. It is a direct measure of the spread of
the influence of the perturbation O across the system
as a function of time t. We refer to this light-cone
as LC1.

A different way to define a light-cone is in terms
of the region of the system that can affect the evo-
lution of local observables appreciably. More specif-
ically, consider the time evolution of an operator O
under two different Hamiltonians, H and H + ∆H.
Intuitively, if ∆H only acts very far away from O,
it will not have a significant impact on the evolu-
tion of O at short times. One can make this intu-
ition precise and guarantee that the evolution of O
does not change appreciably, until time t, if ∆H only
acts a distance RLC2(t) away from O. RLC2(t) then
characterizes the “zone of influence” of the evolution
of operator O. We refer to this light-cone as LC2.
Strictly speaking, LC2 is not a light-cone. However,
this “zone of influence” is intimately connected with
a modified notion of the past light-cone. Our usual
understanding of such a past light-cone consists of
all events (points in space-time) where acting with a
local operator can influence the current event. The
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Reference LC1 (d < α) LC2 (d < α ≤ 2d) LC2 (2d < α < αM ) LC2 (αM ≤ α)

Ref. [21] βLC1
FF =

α+ 1

α− d βLC2
FF =

α+ d

α

α+ 1

α− d +
1

α
βLC2
FF =

α+ d

α

α+ 1

α− d +
1

α
βLC2
FF =

α+ d

α

α+ 1

α− d +
1

α

Ref. [24] βLC1
M =

α+ 1

α− d 7 βLC2
M =

α+ 2

α− 2d
βLC2
M =

α+ 2

α− 2d

Present Work βLC1 =
α+ 1

α− d βLC2
FF < βLC2 = β̃ βLC2

FF < βLC2 = β̃ < βLC2
M βLC2 =

α+ 2

α− 2d

TABLE II. Summary of the power-law light-cone exponents of LC1 and LC2 for both previous literature and our
work. We use the subscript FF and M to refer to the light-cone exponents from the bounds of Refs. [21] and [24]

respectively. Here β̃ = 2
(α−d)2 ×

[
α− d+ αd(1 +

√
1 + 2/d− 2/α)

]
and αM = 3d

2

[
1 +

√
1 + 8

9d

]
. For a detailed

calculation see Appendix D.

modified past light-cone that is naturally associated
with LC2 corresponds to all events where a change in
the Hamiltonian can influence the current event. In
long-range systems, these two light-cones need not
be equal, as even a local change to the Hamiltonian
can affect the system non-locally.

In general, in power-law interacting systems, LC2
will be greater than LC1. Intuitively, as the oper-
ator O expands outwards, the number of terms of
∆H it can interact with increases dramatically. As
a result, it is not only necessary that the operator is
mostly localized to a particular region, but also that
the spatial profile of the operator spread decays fast
enough to counteract the increasing number of terms
that can modify its dynamics.

We now make these definitions more precise. In
order to simplify the notation in this section, we
write the Lieb-Robinson bound between two opera-
tors A and B, such that d(A,B) = r, and with at
least one of |A| or |B| bounded by a constant C, as:

‖[τHt (A), B]‖
‖A‖‖B‖

≤ C(r, t), (49)

This allows us to formally define LC1 as the light-
cone used in previous literature:

Definition 1. Let light-cone 1 (LC1) be defined
as a relation r = f(t) such that:

lim
t→∞

C(f(t), t) = 0. (50)

The meaning of LC1 is that the propagation of
an operator outside the light-cone is small and gets
smaller as t → ∞ [48]. Because we are interested
in the asymptotic behavior, we focus on power-law
light-cones, f(t) = tγ , which characterize the Lieb-
Robinson bounds considered here. The smallest

light-cone is characterized by the exponent βLC1, the
infimum of the γ which satisfy Eq. (50).

In contrast we wish to define LC2 as the region
outside which changing the Hamiltonian of the sys-
tem has no significant impact in the evolution of the
operator. To obtain a precise condition for LC2,
we consider how changing the Hamiltonian H to
H+∆H impacts the evolution of an operator. More
specifically, we consider modifying the Hamiltonian
only a distance rmin away from the operator of in-
terest O. In Appendix C, we show the difference in
the time evolved operators is bounded by:

‖eiHtOe−iHt − ei(H+∆H)tOe−i(H+∆H)t‖ ≤

≤ C∆J‖O‖t
∫ ∞
rmin

dr rd−1C(r, t) (51)

where ∆J quantifies the local norm of ∆H.
LC2 is then given by the relationship between

rmin and t that ensures that operator difference,
bound in Eq. (51), remains small and goes to zero
in the long time limit. This immediately motivates
the definition of LC2 as follows:

Definition 2. Let light-cone 2 (LC2) be defined
as a relation r = f(t) such that:

lim
t→∞

t

∫ ∞
f(t)

dr rd−1C(r, t) = 0, (52)

where d is the dimensionality of the system.

Again, we will focus on polynomial light-cones,
f(t) = tγ and define βLC2 as the infimum of the γ
which satisfy Eq. (52).

In short-ranged interacting systems, where
C(r, t) ∝ evt−r/R, the exponential suppression of
C(r, t) at large r is insensitive to the extra volume
term in the definition of LC2, Eq. (52), leading to
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the same linear light-cone for both LC1 and LC2.
This result is an immediate consequence of the nat-
ural length scale in C(r, t).

However, in long-range interacting systems, C(r, t)
has a power-law decay in space which is sensitive to
the extra volume term in LC2. For example, for
Eq. (52) to converge and ensure a power-law LC2,
the Lieb-Robinson bound must decay faster than
r−d; for LC1 there is no such requirement. As a re-
sult, for slowly-decaying Lieb-Robinson bounds one
may have a power-law LC1 but no LC2, i.e. there
is no power-law f(t) that satisfies Eq. (52). This is
the case for the bound in Matsuta et al. [24], where
LC2 does not exist for d < α < 2d, yet LC1 matches
that of Foss-Feig et al. [21]. LC2 is able to capture
the difference between these two results.

By comparison, our result supports both an LC1
and LC2 for α > d, extending the existence of
an LC2 in long-range multi-body Hamiltonians to
d < α < 2d. In this regime both our Lieb-Robinson
bound and that of Ref. [21] lead to a finite LC2, al-
beit our bound exhibits a larger light-cone exponent.
Much like the difference in decay profile, this might
be inherent to our treatment of the more general
case of arbitrary multi-body interactions.

In Table II and Fig. 2, we compare the different
light-cone exponents obtained from both our work
and previous literature for different values of α. In
Fig. 2, we plot the exponent of LC2 of the differ-
ent works as a function of α for dimension d = 1.
More details on the calculation, and the general for-
mulae for all space dimensions d, can be found in
Appendix D.

III. DISCUSSION

In this paper, we have proven an improved Lieb-
Robinson bound for generic multi-body long-range
interactions, characterized by a faster asymptotic
spatial decay. The importance of this improvement
is captured by the notion of LC2, a definition of
light-cone that provides a stricter definition of local-
ity for the growth of operators, in particular, that
their evolution is not affected by the outside region
for large t. Our work extends the existence of an LC2
light-cone for generic multi-body interacting systems
for d < α < 2d.

This improvement has important implications
for understanding prethermalization and Floquet
phases of matter in periodically-driven systems.
In such systems (especially in the high frequency
regime), one can capture the evolution under a

1 2 3 4
α

100

101

102

103

β
L

C
2

Linear Light Cone

d 2d αM

Ref. 21
Ref. 24
Our Work

FIG. 2. Power-law LC2 exponent for the present paper
and Refs. [21] and [24] for d = 1 as a function of α.
While Ref. [24] has a finite power-law LC2 for α > 2d,
Ref. [21] and our work have a power-law LC2 for all
α > d. For α < αM our work leads to a better LC2 than
Ref. [24], while matching it for α ≥ αM . The horizontal
dashed line corresponds to a linear light-cone. More de-
tails about the calculation can be found in Appendix D.

time-dependent Hamiltonian H(t) using a time-
independent approximation. Even when the orig-
inal H(t) has strictly two-body terms, the time-
independent approximation will naturally exhibit
multi-body terms. The results which establish the
accuracy and limitations of such approximations re-
quire Lieb-Robinson bounds for multi-body power-
law interactions with a rapid decay outside the light-
cone [45].

During the preparation of this manuscript, the au-
thors became aware of a new Lieb-Robinson bound
[49] that improves upon Ref. [21]. The bound in
Ref. [49] has an LC1 exponent of α/(α − d) un-
der similar assumptions as Ref. [21], namely, two-
body interactions. However, their result (phrased in
terms of commutators) does not yield a finite LC2
for d < α < 2d. Nevertheless, the structure of their
arguments is intriguing and understanding how to
generalize their results to multi-body interactions is
a promising direction for future study.
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Appendix A: Some technical results

Lemma 2. Let f(r) be a monotonically decreasing
function of r, and fix an x ∈ Λ. Then∑

z∈Λ:
a≤d(z,x)≤R

f(d(z, x)) ≤ C

ad

∫ R

a/2

f(r)rd−1 dr, (A1)

where a is the minimum separation between sites.

Proof. Around each site z, consider a ball Bz of ra-
dius a/2. Given our assumption that a is the small-
est separation between sites, these balls are pairwise
disjoint (up to sets of measure zero). Now, for any
r in Bz, we have that f(|r− rx| − a/2) ≥ f(d(z, x)).
Therefore,

V f(d(z, x)) ≤
∫
Bz

f(|r− rx| − a/2) ddr, (A2)

where V is the volume of the ball Bz. In the case
that d(x, z) < 3a/2, we will use the tighter bound

V f(d(z, x)) ≤
∫
Bz :|r−rx|<a

f(|r− rx|) ddr+

+

∫
Bz :|r−rx|>a

f(|r− rx| − a/2) ddr, (A3)

Now using the fact that ∪Bz ⊆ Rd, we find that∑
z∈Λ:

a≤d(z,x)≤R

f(d(z, x)) ≤ C

ad

(∫ a

a/2

rd−1f(r) dr+

+

∫ R+a/2

a

rd−1f(r − a/2) dr

)
. (A4)

We can bound the second integral by∫ R+a/2

a

rd−1f(r − a/2) dr (A5)

=

∫ R

a/2

(u+ a/2)d−1f(u) du (A6)

≤ C ′
∫ R

a/2

ud−1f(u) du. (A7)

This immediately proves the Lemma.

Lemma 3. For any µ and ν and positive ρ then the
following inequality holds for a constant C indepen-
dent of ρ:∫ ∞

ρ

e−x
ν

xµ dx ≤ Ce−ρ
ν (

1 + ρµ−ν+1
)

(A8)

Proof. It sufficient to consider the case of ν = 1,
since we can reduce to this case by a change of vari-
ables. Let us first consider µ < 0, then:∫ ∞

ρ

e−xxµ dx ≤ ρµ
∫ ∞
ρ

e−x dx = ρµe−ρ (A9)

We are now left with the case µ > 0. In that case,
if ρ ≤ 1 then we can certainly bound the left-hand
side of Eq. (A8) by:∫ ∞

ρ

e−xxµ dx ≤ e1−ρ
[∫ ∞

0

e−xxµ
]

= C1e
−ρ.

(A10)
On the other hand, for ρ ≥ 1, we have∫ ∞

ρ

e−xxµ dx (A11)

= e−ρρµ
∫ ∞
ρ

e−(x−ρ)(x/ρ)µ dx (A12)

= e−ρρµ
∫ ∞

0

e−u(u/ρ+ 1)µ du (A13)

≤ e−ρρµ
∫ ∞

0

(u+ 1)µe−u du (A14)

= C2e
−ρρµ ≤ C2e

−ρρµ+ε, (A15)

for any ε > 0. Adding both bounds with C =
max(C1, C2) ensures it holds for all values of ρ.

Appendix B: Calculation of I[λ]

In this section we perform the calculation of

I[λ
(R′)
n ], defined in Eq. (16) of the main text. We

divide this calculation into two cases, n = 0 and

n > 0, where λ
(R′)
n takes different functional forms.

1. n = 0 case

In the initial bound, given in Eq. (26) of the main
text, one can define a “light-cone” inside which the
trivial bound is best, described by:

|X|evt−r/R
′

= 1 ⇒ r = R′(ln |X|+ vt) . (B1)
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As a result, one can bound I[λ
(R′)
0 ] by the less

stringent “light-cone” r = R′vt as follows:

I[λ
(R′)
0 ] = λ

(R′)
0 (0) +

∫ ∞
1/2

ρd−1λ
(R′)
0 (ρ) dρ (B2)

≤ 2 + 2

∫ R′vt

1/2

ρd−1 dρ+

+ 2|X|
∫ ∞
R′vt

ρd−1evt−ρ/R
′
dρ (B3)

≤ 2
[
1 +

1

d
(R′vt)d+

+ |X|evte−vtC(1 + (R′vt)d−1)
]

(B4)

≤ C
[
|X|+ |X|(R′vt)d−1 + (R′vt)d

]
(B5)

where we made use of Lemma 3 to bound the second
integral.

This bound can be made less stringent as follows:

I[λ
(R′)
0 ] ≤ C|X|

[
1 + (R′vt)d

]
. (B6)

This simplification leads to one less polynomial
term in our iterative analysis but does not affect
the spatial or temporal asymptotic behavior of the
bound. In contrast, it increases F1 by a factor of |X|
in our construction.

2. n ≥ 1 case

For n ≥ 1, the bound λ
(R′)
n (r) is composed of an

exponential term and two polynomial terms, as de-
scribed in Eq. (29) of the main text.

Similar to the calculation for n = 0, there exists a
“light-cone” inside of which the trivial bound is best.
Such “light-cone”, in principle, will depend on the
polynomial terms of the bound, however, it must be
at least as big as the length scale of the exponential
term of the bound given by:

vt− r1−σn = 0⇒ r = (vt)1/(1−σn) (B7)

One can then bound I[λ
(R′)
n ] as:

I[λ(R′)
n ] = λ(R′)

n (0) +

∫ ∞
1/2

ρd−1λ(R′)
n (ρ) dρ (B8)

≤ 2 + 2

∫ (vt)1/(1−σn)

1/2

ρd−1 dρ+

+

∫ ∞
(vt)1/(1−σn)

ρd−1

[
2|X|evt−ρ

1−σn
+

+ CΘ(R′ − ρσn)

2∑
i=1

F
(n)
i (vt)ρµ

(n)
i

]
dρ (B9)

≤ 2 + 2

∫ (vt)1/(1−σn)

1/2

ρd−1 dρ+

+ 2|X|
∫ ∞

(vt)1/(1−σn)

ρd−1evt−ρ
1−σn

dρ

+

2∑
i=1

C

∫ R′1/σn

(vt)1/(1−σn)

ρd−1F
(n)
i (vt)ρµ

(n)
i dρ (B10)

≤ 2 +
2

d
(vt)d/(1−σn)+

+ 2|X|C
[
1 + (vt)(d)/(1−σn)−1

]
+

+ C

2∑
i=1

F
(n)
i (vt)

ρd+µ
(n)
i

d+ µ
(n)
i

∣∣∣∣∣
(R′)1/σn

(vt)1/(1−σn)

(B11)

The sign of d + µ
(n)
i becomes important in bound-

ing the polynomial terms [50] : if d + µ
(n)
i > 0, we

can bound the term solely by the upper limit of in-

tegration, if d + µ
(n)
i < 0, then we can bound using

the lower limit. The final bound on I[λ
(R′)
n ] then

becomes:

I[λ(R′)
n ] ≤ C

(
|X|+ |X|(vt)d/(1−σn)−1 + (vt)d/(1−σn)

)
+

+ C

2∑
i=1

F
(n)
i (vt)×

{
(R′)(d+µ

(n)
i )/σn d+ µ

(n)
i > 0

(vt)(d+µ
(n)
i )/(1−σn) d+ µ

(n)
i < 0

(B12)

This bound can be slightly simplified at the
expense of a higher dependence on |X| on the
(vt)d/(1−σn) term. Nevertheless, this simplification
does not change the asymptotic spatial or temporal
decay of our results:

I[λ(R′)
n ] ≤ C|X|

(
1 + (vt)d/(1−σn)

)
+

+ C

2∑
i=1

F
(n)
i (vt)×

{
(R′)(d+µ

(n)
i )/σn d+ µ

(n)
i > 0

(vt)(d+µ
(n)
i )/(1−σn) d+ µ

(n)
i < 0

(B13)
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Appendix C: Bounding the operator difference
under two different Hamiltonians

Consider a local operator O, which is time evolved
under two different Hamiltonians H1 and H2. Let us
consider ∆H = H1 − H2 such that it is only non-
zero at sites outside some radius rmin around O and
quantify its difference in terms of the largest local
difference:

sup
x∈Λ

∑
Z:x∈Z

‖(H1)Z − (H2)Z‖ = (C1)

= sup
x∈Λ

∑
Z:x∈Z

‖∆HZ‖ < ∆J , (C2)

where Λ is the set of sites of the system and ‖ · ‖
corresponds to the norm of the HZ term.

The goal of this section is to bound how much
O will differ when evolved under the two different
Hamiltonians. More particular, we consider the fol-
lowing norm:∥∥∥U†1OU1 − U†2OU2

∥∥∥ =
∥∥∥O − U1U

†
2OU2U

†
1

∥∥∥ (C3)

where Un = e−iHnt

where the time dependence of Un is implicit to sim-
plify the notation. Let us also note the similarities to
results in Loschmidt echoes, where one evolves the
system forwards with one Hamiltonian H1 and then
backwards with a slightly different Hamiltonian H2

[51, 52].

We begin by noting the following property:

f(t) = O − U1(t)U†2 (t)OU2(t)U†1 (t) (C4)

d

dt
f(t) = −iU1(t)

[
U2(t)OU†2 (t),∆H

]
U†1 (t) (C5)

where we used the fact that [Un, Hn] = 0. One can
now bound the difference as:

‖f(t)‖ =

∥∥∥∥∫ t

0

ds iU1(s)
[
U2(s)OU†2 (s),∆H

]
U†1 (s)

∥∥∥∥
≤
∫ t

0

ds
∥∥∥[U2(s)OU†2 (s),∆H

]∥∥∥
≤
∫ t

0

ds
∑
Z

∥∥∥[U2(s)OU†2 (s),∆HZ

]∥∥∥ (C6)

We now focus our attention to the inner sum. Be-
cause ∆H is only non-zero on sites at rmin away

from the operator O we can bound:∑
Z

∥∥∥[U2(s)OU†2 (s),∆HZ ]
∥∥∥ ≤ (C7)

≤
∑

z:d(z,O)≥rmin

∑
Z:z∈Z,

d(Z,O)=d(z,O)

∥∥∥[U2(s)OU†2 (s),∆HZ

]∥∥∥ (C8)

≤
∑

z:d(z,O)≥rmin

‖O‖
∑
Z:z∈Z

d(Z,O)=d(z,O)

‖∆HZ‖ C(d(O, z), s) (C9)

= ‖O‖
∑

z:d(z,O)≥rmin

C(d(O, z), s)
∑
Z:z∈Z

d(Z,O)=d(z,O)

‖∆HZ‖ (C10)

≤ ‖O‖
∑

z:d(z,O)≥rmin

C(d(O, z), s)∆J (C11)

≤ C‖O‖∆J
∫ ∞
rmin

dr rd−1C(r, s) , (C12)

where we used Lemma 3 to turn the sum into an
integral.

Using the fact that C(r, s) is an increasing function
in s we can obtain the final bound:∥∥∥U†1OU1 − U†2OU2

∥∥∥ ≤
≤ C‖O‖∆Jt

∫ ∞
rmin

dr rd−1C(r, t) (C13)

Appendix D: Calculation of Light-cones

Our task in this section is to determine the LC1
and LC2 light-cones for Refs. [21],[24] and our work.
In order to simplify the notation, let us write the
Lieb-Robinson bounds in terms of C(r, t) as defined
in Eq. (49) of the main text. For the different re-
sults, C(r, t) contains a combination of exponential
and power-law terms which need to be considered in
determining LC1 and LC2.

Let us note that the iterative construction that
leads to the bound in Theorem 1 of the main text
depends on two parameters: σ, the scaling of the
inner cutoff in the iterative procedure, and n, the
number of iterations performed. While the fastest
spatial decay occurs for σ → 1, this does not nec-
essarily lead to the smallest light-cone, as the spa-
tial decrease occurs at the expense of an increased
growth in the temporal dependency. The same is
true for the number of iterations n. As a result, one
has to optimize both σ and n to find the smallest
light-cone.
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1. Light-Cone 1 (LC1) for power-law
interactions

a. Foss-Feig et al. Ref. [21] and Matsuta et al.
Ref. [24]

The computation of LC1 for Refs. [21] and [24]
is performed in their work, leading to a matching
light-cone power-law:

βLC1
FF = βLC1

M =
α+ 1

α− d
, (D1)

where the subscript FF and M refer to Refs. [21] and
[24] respectively.

b. Our work

As described in the main text, our proposed iter-
ative construction matches the result of Ref. [24] for
n = 1. As a result, for n = 1 we have βLC1 = βLC1

M .
We now can show that performing further iter-

ative steps does not change the value of the LC1
exponent. In the iterative construction of our Lieb-
Robinson bound, for n > 1 and σj = σ for all j, we
have:

C(r, t) ≤ C
{
evt−r

1−σ
+F

(n)
1 (vt)rµ

(n)
1 +

+ F
(n)
2 (vt)rµ

(n)
2

}
, (D2)

where we have absorbed any |X| dependence into
the constant C as it does not affect the light-cone
calculation; and:

F
(n)
i (τ) = τγ

(n)
i + . . . (D3)

where . . . refers to lower power of τ . Because we
are interested in the late time asymptotic form of
the light-cone we only need to focus on the largest

power of τ . This exponent γ
(n)
i is given by:

γ
(n)
1 =

d+ n n ≤ n∗
σα+ n(1 + d− σ(1 + α))

1− σ
n > n∗

(D4)

γ
(n)
2 = 1 +

d

1− σ
+

+ max

[
0 ,

n− 2

1− σ
{1 + d− σ(1 + α)}

]
(D5)

An important remark is that if σ > (d+ 1)/(α+ 1)
then 1 + d−σα

1−σ < 0. In this regime, increasing n

reduces γ
(n)
1 for n > n∗ and does not change γ2.

The spatial decay is then given by:

µ
(n)
1 =

{
−nσα+ d(σ + n− 1) n ≤ n∗

−σα n > n∗
(D6)

µ
(n)
2 = −σα (D7)

Each of the three terms (the exponential and the
two polynomials) will lead to a LC1 exponent. The
final exponent is the largest of the three for some n
and σ. Optimizing over these two parameters yields
the best βLC1.

βLC1
n;exp =

1

1− σ
(D8)

βLC1
n;poly1 =

γ
(n)
1

−µ(n)
1

(D9)

βLC1
n;poly2 =

γ
(n)
2

−µ(n)
2

(D10)

Immediately, one can see that βLC1
n;exp is an increas-

ing function of σ. At the same time βLC1
n;poly1 is a

decreasing function of σ for any fixed n, as shown
below. The intersection of the two curves provides
the best LC1 exponent from the exponential and first
polynomial term alone. This intersection occurs at
σ = σ1;exp. If βLC1

n;poly2(σ1;exp) is less or equal than
the other two curves at this point, it corresponds to
the correct LC1 exponent.

We begin by showing that βLC1
n;poly1 is a decreasing

function. If n ≤ n∗:

βLC1
n;poly1 =

d+ n

σ(nα− d)− (n− 1)d
(D11)

which is a decreasing function of σ.
We now focus on the case n > n∗:

βLC1
n;poly1 =

σα+ n(1 + d− σ(1 + α))

(1− σ)σα
(D12)

First, let us note that n∗ is a decreasing function of
σ. Moreover, for this calculation to be meaningful
we need:

n > n∗(σ = 1)⇒ n ≥ n∗(σ = 1) + 1 (D13)

=

⌈
d

α− d

⌉
+ 1 =

⌈
α

α− d

⌉
≥ α

α− d
(D14)

We can now compute the derivative of βLC1
n;poly1 with

respect to σ:

d

dσ
βLC1
n;poly1 =

ασ2 − n[(1 + d)(1− 2σ) + σ2(1 + α)]

ασ2(1− σ)2
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Parameterizing α = d + ε and n = α/(α − d) + δ =
(d+ ε)/ε+ δ, with ε > 0 and δ ≥ 0, we obtain:

d

dσ
βLC1
n;poly1 = −1

ε

1 + d

σ2
− δ (1 + d)(1− σ)2 + σ2ε

(d+ ε)σ2(1− σ)2

which is always negative. Since the function is con-
tinuous, and in both cases it is decreasing, it is al-
ways decreasing.

The intersection of the two curves then occurs at:

• If n ≤ n∗:

d+ n

σ(nα− d)− (n− 1)d
=

1

1− σ

⇒ σ1;exp =
d+ 1

α+ 1
(D15)

• If n > n∗:

σα+ n(1 + d− σ(1 + α))

σα(1− σ)
=

1

1− σ

⇒ σ1;exp =
d+ 1

α+ 1
(D16)

which regardless of the regime occurs at the same
value of σ, leading to:

βLC1
exp;poly1 =

α+ 1

α− d
. (D17)

At the same time:

βLC1
n;poly2(σ = σ1;exp) =

α+ 1

α− d
= βLC1

exp;poly1 = βLC1

(D18)

which corresponds to the best LC1 light-cone for this
bound (equal for any number of iterations), in agree-
ment with the previous works [21, 24].

2. Light-Cone 2 (LC2) for power-law
interactions

a. Foss-Feig et al. Ref. [21]

We can summarize the bound obtained in Ref. [21]
as[53]:

CFF(r, t) = exp
[
vt− r

tγ

]
+
t(α+d)(1+γ)

rα+d
(D19)

where γ =
1 + d

α− d

One can immediately extract the light-cone asso-
ciated with LC2 for the two terms:

βLC2
FF;exp =

α+ 1

α− d
(D20)

βLC2
FF;poly =

α+ d

α

α+ 1

α− d
+

1

α
(D21)

Since the latter is larger, it sets βLC2
FF , which is valid

for α > d.
Let us note that because the Lieb-Robinson bound

in Ref. [21] holds only for two body interactions, the
calculation of LC2 also only holds for such Hamil-
tonians H1. Moreover, because the bound is only
valid for operators A and B which lie at a single
site, the derivation in Sec. C needs to consider the
size of each term Hz. More specifically, in going from
line Eq. (C8) to Eq. (C9), one should multiply each
term by the size Z, the support of HZ . This does
not affect the asymptotic behavior of the light-cone
as long as:

sup
x∈Λ

∑
Z:x∈Z

|Z| ‖Hz‖ <∞ (D22)

b. Matsuta et al. Ref. [24]

In analyzing Ref. [24], we can make use of the
results obtained in our iterative procedure after a
single iteration. Using Eq. (28) of the main text, we
can immediately compute the exponent of the LC2
power-law light-cone arising from each term of the
bound:

βLC2
n=1;exp(σ) =

1

1− σ
(D23)

βLC2
n=1;poly1(σ) =

d+ 2

σ(α− d)− d
(D24)

βLC2
n=1;poly2(σ) =

2

σα− d
. (D25)

for d/(α − d) < σ < 1. This condition immediately
requires α > 2d for there to exist a power-law LC2.
Having the exponents as a function of σ, βLC2

M is
given by the optimized exponent with respect to σ:

βLC2
M = inf

d/(α−d)<σ<1

[
max

(
βLC2
n=1;exp(σ),

βLC2
n=1;poly1(σ), βLC2

n=1;poly2(σ)
)]
. (D26)

For all σ, βLC2
n=1;poly1(σ) > βLC2

n=1;poly2(σ) and both

are decreasing functions, while βLC2
exp is an increas-

ing function. As a result, the minima occurs at the
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intersection between βLC2
n=1;poly1 and βLC2

exp , which oc-

curs at σ = (2d+2)/(α+2), leading to the light-cone
exponent:

βLC2
n=1 =

α+ 2

α− 2d
= βLC2

M , (D27)

for α > 2d.

c. Our work

Since we have considered the case of n = 1 in
Sec. D.2.b, we now restrict our attention to n > 1.
We will begin our calculation by focusing on the con-
tribution from βLC2

n;exp and βLC2
n;poly2 first and then con-

firming the other polynomial term will not change
the obtained exponent.

Based on the exponential term and the polynomial
exponents in Eqs. (D5) and (D7) we obtain:

βLC2
n;poly2 =

1 + γ
(n)
2

−µ(n)
2 − d

(D28)

=


−d+ 2σα+ n(1 + d− σ(1 + α))

(1− σ)(σα− d)
σ <

d+ 1

α+ 1
2(1− σ) + d

(1− σ)(σα− d)
σ ≥ d+ 1

α+ 1
(D29)

βLC2
n;exp =

1

1− σ
(D30)

Because βLC2
n;poly2 is a convex function, the correct

LC2 exponent βLC2 will occur in one of two regimes:
at the minimum of βLC2

n;poly2, or at the intersection of

βLC2
n;poly2 and βLC2

n;exp (i.e. at the first intersection of

βLC2
n;poly2 and βLC2

n;exp; the second intersection is occurs

as σ → 1, where both exponents become infinite).
The location of the minimum occurs at:

σ2;min = 1 +
d

2
− d

2

√
1 +

2

d
− 2

α
(D31)

⇒ βLC2
n;poly2(σ2;min)

= 2
α− d+ dα

[
1 +

√
1 + 2/d− 2/α

]
(α− d)2

(D32)

The intersection on the other hand occurs at:

σ2;exp =
2d+ 2

α+ 2

⇒ βLC2
n;poly2(σ = σ2;exp) =

α+ 2

α− 2d
(D33)

which requires, for consistency, α > 2d. This expo-
nent matches that of n = 1 and Ref. [24].

Because σ2;min, σ2;exp > (d+ 1)/(α+ 1), only the
second branch of Eq. (D29) is relevant for this min-
imization procedure. This branch is independent of
the number of iterations performed, the above re-
sults are valid for all n > 1.

If we now consider βLC2
n;poly1 it can never improve

on this minimization, only worsen it. Moreover, by
choosing σ > (d + 1)/(α + 1) and n ≥ n∗ + 1 iter-

ations, one ensures that F
(n∗+1)
2 contains the domi-

nant asymptotic time dependence of the polynomial
terms, ensuring that βLC2

n;poly2 ≥ βLC2
n;poly1. As a result,

considering βLC2
n;poly1 does not change our analysis of

the LC2 exponent, only imposes that n ≥ n∗ + 1.
Then, by choosing n ≥ n∗+1, we can immediately

compute the LC2 exponent βLC2 by just considering
βLC2
n;poly2 and βLC2

n;exp. In this regime, the exponents
are independent of n, as shown above. There are
two regimes that can determine βLC2:

• βLC2 occurs for at the intersection of the
curves βLC2

n;poly2(σ) and βLC2
n;exp which occurs at

σ = σ2;exp. This requires that σ2;exp ≤ σ2;min,
which gives us a condition for α:

α ≥ αM ≡
3d

2

(
1 +

√
1 +

8

9d

)
. (D34)

which is consistent with the requirement 2d <
αM for the intersection solution to be mean-
ingful.

• βLC2 occurs at the minimum of βLC2
n;poly2 which

occurs for α < αM .

Thus, we can summarize our result as:

• If d < α < αM :

βLC2 =
2

(α− d)2
×

×
{
α− d+ dα

[
1 +

√
1 + 2/d− 2/α

]}
(D35)

• If αM < α:

βLC2 =
α+ 2

α− 2d
(D36)

Then, for α > αM , our LC2 light-cone matches
that of Matsuta et al. [24]. While for α < αM ,
our iterative procedure ensures a better LC2 under
similar assumptions. In fact, for α < 2d, our LC2
is well-defined while the LC2 of Matsuta et al. [24]
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diverges. However, our LC2 is bigger than that of a
purely two-body power-law interacting system [21].
This situation is summarized in Table II of the main

text and the α dependencies of βLC2 are plotted for
the Lieb-Robinson bounds of the present paper and
Refs. [21, 24] for d = 1 in Fig. 2 of the main text.
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