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The evaluation of expectation values Tr [ρO] for some pure state ρ and Hermitian operator O

is of central importance in a variety of quantum algorithms. Near optimal techniques have been
developed in the past and require a number of measurements N approaching the Heisenberg limit
N = O (1/ǫ) as a function of target accuracy ǫ. The use of Quantum Phase Estimation requires
however long circuit depths C = O (1/ǫ) making its implementation difficult on near term noisy
devices. The more direct strategy of Operator Averaging is usually preferred as it can be performed
using N = O

(

1/ǫ2
)

measurements and no additional gates besides those needed for the state
preparation. In this work we use a simple but realistic model to describe the bound state of a
neutron and a proton (the deuteron) to show that the latter strategy can require an overly large
number of measurement in order to achieve a prefixed relative target accuracy ǫr. We propose to
overcome this problem using a single step of QPE and classical post-processing. This approach leads
to a circuit depth C = O (ǫµ) (with µ ≥ 0) and to a number of measurements N = O

(

1/ǫ2+ν
)

for
0 < ν ≤ 1 and a much smaller prefactor. We provide detailed descriptions of two implementations
of our strategy for ν = 1 and ν ≈ 0.5 and derive appropriate conditions that a particular problem
instance has to satisfy in order for our method to provide an advantage.

As we are approaching the era of noisy intermediate
scale quantum devices (NISQ [1]) the growing interest in
practical applications of quantum computing techniques
has led to an increased focus on algorithms that are ro-
bust against errors and require a limited number of quan-
tum resources (qubits and gates). A central component
of many quantum computing algorithms, in particular for
applications to quantum simulation [2, 3], is the estima-
tion with error ǫ of the expectation value of an hermitian
operator O on some quantum state described by the den-
sity matrix ρ of a system of n qubits:

〈O〉 = Tr [Oρ] = 〈Ψ|O|Ψ〉 , (1)

where here and in the following we assume the qubits to
be in a pure state described by ρ = |Ψ〉〈Ψ|. Note that
even though this task might not be the origin of a quan-
tum speeed up (but there are cases where it is, see eg. [4]),
it is nevertheless an important routine needed in more
complicated algorithms achieving a quantum speed up
trough other means. A common example is the calcula-
tion of the expectation value of the Hamiltonian (the en-
ergy) of a many-body system which can be used, together
with the variational principle, to guide the preparation of
low energy states in algorithms such as the Variational
Quantum Eigensolver (VQE) [5–8]. For unitary oper-
ators we can evaluate the expectation value in Eq. (1)
by simply measuring the state of the device in the ap-
propriate basis. If the change of basis is expensive one
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can employ the Hadamard Test algorithm from [9] which
only requires a single application of O conditional on an
ancilla prepared in a superposition state.
In general however we are interested in evaluating 〈O〉

for hermitian operators O (such as an Hamiltonian) and
thus alternative strategies have to be devised. Optimal
quantum algorithms have been discovered in the past
(see eg. [10]), with efficiencies approaching the Heisen-
berg limit N = O(1/ǫ) for the number of times the ex-
periment needs to be repeated in order to achieve some
target additive error ǫ. This remarkable result is achieved
by making effective use of both the Quantum Phase Es-
timation [11, 12] and Amplitude Amplification [13] algo-
rithms, along with the observation that we can estimate
Eq. (1) from the linear part of

Tr
[
eiτOρ

]
= 〈cos (τO)〉+ i〈sin (τO)〉
= 1 + iτ〈O〉 + · · ·

(2)

up to additive errors that vanish in the limit τ → 0.
The scheme requires O(1/ǫ) applications of a con-

trolled version of the unitary operator Uτ = eiτO and
it’s inverse (for the QPE part) and O(1/ǫ) application of
the state preparation unitary W (ie. W |0〉 = |Ψ〉). Near
term quantum devices will be characterized by a substan-
tial level of noise [1] and this will in general prevent us
from employing these algorithms even in situations where
performing Uτ is simple (eg. for operators O diagonal in
the computational basis) as the need to applyW multiple
times will lead to an excessively large gate count.
In general, schemes that are robust to noise are there-

fore preferable for early applications and this has led to a
proliferation of hybrid quantum-classical algorithms [14]
for a variety of purposes ranging from quantum simula-
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tion [15], to approximate optimization [16] and quantum
compiling [17]. Our work follows the same philosophy in
that we will delegate a substantial computational effort
to classical computing resources while at the same time
leveraging the available capabilities of current quantum
hardware.
In order to simplify the exposition of our work, we

anticipate here some of the crucial results obtained in
the sections below:

• the sample complexity of the standard Operator
Averaging [18] method is in general

NOA ∼ 1

ǫ2r

1

ρ2
(3)

where ǫr is the target relative error and the ratio
ρ = |〈O〉|/‖O‖ quantifies the magnitude of the ex-
pectation value compared to the norm of the oper-
ator (cf. Eq. (15) and Eq. (16) for a tighter bound).

• using the approach based on a polynomial expan-
sion of Eq. (2) up to order K that will be presented
in detail in Sec II we can estimate the expectation
value, in the special case when |Ψ〉 is an eigenvec-
tor, with sample complexity independent of ρ:

NK ∼ f(K)

ǫ
2+1/K
r

(4)

where f(K) is a quickly decaying function of the
polynomial order K (cf. Eq. (28) and Eq. (33) for
more details). Using these results our new strategy
can prove advantageous for large enough target er-
ror resolution

ǫr ≥ ρ2Kf(K)K . (5)

Due to the fast decay of the function f(K) we show
in Sec. II (in particular in Fig. 1) that even using
a low polynomial order K = 2 our strategy can be
advantageous down to very small errors ǫr ≈ 10−9

• we discuss also the more general case when |Ψ〉 is
not an eigenvector and provide rigorous bounds on
ρ for our scheme to be more efficient than Operator
Averaging (see Eq. (31) and Eq. (32) and Sec. VA
for more details).

The paper is organized as follows. In Sec. I we review
the standard method commonly used to evaluate expec-
tation values of Hermitian operators known as Operator
Averaging [18] and in Sec. II we present a detailed dis-
cussion of our proposed method based on a single step
of phase estimation for performing this task. We then
proceed in Sec. III to apply our approach to a simple but
challenging nuclear physics problem: the calculation of
the deuteron binding energy with a realistic interaction.
We have devoted Sec. IV to a more thorough exploration
of the effect of noise on both methods and discuss more in

depth why an ancilla-based scheme could provide poten-
tial benefits on near term noisy devices. As our method
is not expected to be competitive in the asymptotically
small error limit, in Sec. V we describe how to overcome
some of the major implementation challenges in assessing
if our scheme could prove advantageous for a particular
problem instance and discuss the cost of implementing
the necessary time evolution. Finally in Sec. VI we sum-
marize the results and possible future directions of the
present work.

I. OPERATOR AVERAGING

We discuss here the standard method commonly used
in the literature to evaluate expectation values of Her-
mitian operators [5, 6] and start setting up the notation
used throughout this work. As a first step, and with-
out loss of generality, let us separate out the traceless
component OT from the observable

O = OI +OT OI ≡ α01 Tr[OT ] = 0 (6)

for some α0 ∈ R. The idea behind the Operator Averag-
ing (OA) approach, first proposed in [5], is to exploit a
decomposition of OT of the following form

OT =
L∑

k=1

αkUk =
L∑

k=1

αk

[
eiθkPk

]
, ak > 0 ∀k (7)

where Pk ∈ {1, X, Y, Z}⊗n are tensor products of Pauli
matrices and the angles θk are introduced in order to
keep the coefficient αk positive. The expectation value
of each of the terms in the expansion can be estimated
with O(1) circuit depth by directly measuring the corre-
sponding Pauli operator on the quantum hardware to get

the finite sample estimators P̂k (here and in the following
we will use a wide hat to indicate sample estimators) and
combine them to form

ÔA = α0 +

L∑

k=1

αkÛk = α0 +

L∑

k=1

αke
iθk P̂k , (8)

which converges to 〈O〉 in the infinite measurement limit.
In particular, if we performM measurement for every one
of the L terms in Eq. (8), the variance of this estimator
is given simply by

V ar[ÔA] =

L∑

k=1

α2
kV ar[P̂k] =

L∑

k=1

α2
k

1− P̂k

2

M
, (9)

due to the independence of the separate measurements.

Note that this implies that in general V ar[ÔA] 6= V ar[O]
and in fact Eq. (9) may be large even for eigenstates of
O. Using Eq. (9) we can estimate the total number of

measurement Ntot = LM required to evaluate ÔA with
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precision ǫ to be

Ntot =
L

ǫ2

L∑

k=1

α2
k

[
1− P̂k

2]
≤ L‖OT‖22

ǫ2
, (10)

where we defined

‖OT ‖q ≡
(

L∑

k=1

αq
k

)1/q

for q ≥ 1 . (11)

Different strategies have been proposed in the literature
to reduce the scaling of operator averaging shown in
Eq. (10). For instance, in situations like quantum chem-
istry where a large number of coefficients αk have possi-
bly a small magnitude, one can use efficient truncation
schemes [6, 18] to improve the performance considerably.
A complementary approach is to group the L terms into
G groups of operators which can be measured together
in a single experiment [6, 7, 19], if the newly introduced
correlations are not too large this approach can allow
again a great reduction in the number of measurements.
In general however we still expect the number of groups
G to scale with system size (for quantum chemistry ap-
plications see eg. [18]). We could also choose the number
of measurements to be performed for the k-th term to
depend on the magnitude of the expansion coefficients
αk as proposed in [20]:

Mk ∝ αk

‖OT ‖1
, (12)

this leads in turn to the estimate

N ′
tot =

‖OT‖1
ǫ2

L∑

k=1

αk

[
1− P̂k

2]
(13)

and in this way obtaining a better bound for Ntot by a
factor ‖OT ‖21/(L‖OT‖22) ≤ 1. For our nuclear physics
problem this strategy produced actually a small increase
in the cost since the magnitude of the variance of the
k-th term does not necessarily correlate with the magni-
tude of the coefficient αk. By also using the asymptotic
improvement from this adaptive variant, we will consider

NA(ǫ) =
‖OT ‖21

ǫ2
.

L‖OT ‖22
ǫ2

(14)

as an estimate for the number of repetitions needed to
obtain a precision ǫ with operator averaging.
As expected we find that the estimator of Eq. (8) shows

in all cases the usual shot noise behavior for small errors
Ntot = O(1/ǫ2) but its explicit dependence on the oper-
ator norm of OT (which is a lower bound of ‖OT‖1) can
be unfavorable when the expectation value 〈O〉 becomes
too small. Introducing the ratio

RO =
|〈O〉|
‖OT ‖1

≤ ‖O‖1
‖OT‖1

≡ Rmax
O , (15)

we can express the number of shots Ntot in terms of the
relative error ǫr = ǫ/|〈O〉| as

NA(ǫr) =
1

ǫ2rR
2
O

≥ 1

ǫ2r

(
λmax − α0

|〈O〉|

)2

, (16)

which makes explicit the quadratic dependence of the
classical effort (the number of repetitions) with the ratio
between the largest eigenvalue λmax of the target opera-
tor O and its expectation value in the state |Ψ〉.
The scheme we propose in the next section can be ad-

vantageous whenever the ratio RO becomes excessively
small by providing a scheme with Ntot independent of
RO in the special case of eigenvalue estimation and pos-
sibly well performing in general (see condition Eq. (31)).
This could be important in a large system when ‖OT ‖
grows with the number of qubits (indeed for applications
in quantum simulation we expect ‖OT ‖ = O (poly(n)),
see e.g. [18])) or simply because the expectation value we
are after is much smaller than the largest eigenvalue of
OT like for the ground state of the deuteron with hard-
core potentials [21] studied in Sec. III.

II. EXPECTATION VALUES FROM SINGLE

STEP PHASE ESTIMATION

The widespread use of the direct algorithm described
in the previous section comes from its appealing prop-
erty of being able to minimize quantum resources since
no additional quantum operation is required. This is es-
pecially important for NISQ era devices where coherence
time and noise will limit the attainable circuit depth [1].
As mentioned in the introduction, algorithms based on
full fledged quantum phase estimation, like the one de-
scribed in [10], will possibly allow to approach Heisenberg
limited scaling ǫ = O(1/N) as a function of the number
of measurements N . The price to pay for this is having
a circuit depth C that scales as O(1/ǫ) making its actual
implementation challenging on noisy devices (character-
ized by a circuit depth C . 100 [1]). In this section we
show how to effectively use a single step of time evolution
to obtain a significant reduction in the total number of
measurements respect to the operator averaging method,
while enjoying short circuit depths CsQPE = O(ǫα) with
α ≥ 0. Similarly to the approach used in Ref. [10], we
will use the small time expansion of the imaginary part
of the expectation value of the unitary time evolution
Uτ = eiτO on the state |Ψ〉 (cf. Eq. (2))

〈sin (τO)〉 = τ〈O〉 − τ3

6
〈O3〉+O

(
τ5‖O‖51

)
, (17)

to extract 〈O〉. In particular for any Hermitian operator
O we consider the following standard circuit (cf. [9, 11]):

|0〉 H • S H

|Ψ〉 eiτO

(18)
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The imaginary part of Tr
[
eiτOρ

]
can be extracted by

measuring the ancilla along the z axis

〈Za〉(τ) = p0(τ) − p1(τ)

= −〈Ψ|sin (τO) |Ψ〉 , (19)

where p0 (p1) are the probabilities of measuring the an-
cilla in the |0〉 (|1〉) state. In practice we need to esti-
mate the expectation value in Eq. (19) by performing N
independent measurements and computing their average

Ẑa(τ). For ease of use, from here on we will call the pro-
cess of extracting 〈O〉 from a polynomial fit of a set of
estimates of Eq. (19) for different times τ as sQPE (i.e.
single step quantum phase estimation).

It is important to note now that, due to the presence
of a bias for finite values of τ (coming from the necessity
to truncate the series expansion in Eq. (17)), sQPE has
a worse asymptotic scaling, given by N = O

(
ǫ−(2+κ)

)

with κ > 0, compared to the direct method. Despite this
loss of efficiency in the asymptotic limit ǫ → 0, we will
show in the next subsections that the constant factors
can be very small when the ratio RO ≪ 1, provided cer-
tain conditions are met (see Eq. (31) and Sec. VA). For
instance, in the situation when we prepare an eigenstate
of O and we want to estimate it’s eigenvalue λΨ, a bound
RO ≤ 1% is sufficient to guarantee an advantage for the
simplest possible version of sQPE (see Sec. II B) up to a
respectably small relative error ǫr = O(10−5).

We next describe the general high-order sQPE in an
idealized setting and in the following two subsection we
propose practical implementations for the two lowest or-
der sQPE algorithms where the truncation of Eq. (17)
occurs at either the linear (Sec. II B) or the cubic term
(Sec. II C). First we will focus our attention on the clas-
sical resources (the number of measurements that needs
to be performed) and then (Sec. VB) we will discuss
the cost associated with the implementation of the (con-
trolled) unitary time evolution Uτ = eiτO in Eq. (18).
We can already anticipate that the gate count will be
low since the total evolution time τ has to be kept small
enough to minimize the effect of the bias coming from
neglecting higher-order terms in the expansion Eq. (17).

A. General scaling

Let’s start by considering the idealized case where we
know the coefficients mk = 〈O2k+1〉 for k = 1, . . . ,K
(in practice the need of estimating these will lead to a
sub-optimal algorithm). We can now use the Taylor ex-
pansion in τ of Eq. (19) to construct the following biased
estimator for the expectation value

OK(τ) = − 1

τ

(
〈Z〉a(τ) +

K−1∑

k=1

τ2k+1 (−1)kmk

(2k + 1)!

)
. (20)

Here the bias comes from neglecting higher order terms
with k ≥ K in the expansion and can be written as

BK(τ) = OK(τ) − 〈O〉 = −
∞∑

k=K

τ2k
(−1)kmk

(2k + 1)!
, (21)

while its magnitude can be bounded from above using
Lagranges Remainder theorem

|BK(τ)| ≤ τ2K
|mK |

(2K + 1)!
. (22)

Due to the presence of this bias for any finite value of τ
we choose to characterize the deviations of our estimator
to the exact expectation value using the Mean Squared
Error (MSE) defined as

ǫ2M (τ,K) = V ar
[
ÔK(τ)

]
+BK(τ)2 , (23)

where, as before, we denote with ÔK(τ) a finite popu-
lation estimator of Eq. (20). The expected total num-
ber of measurements required to achieve a final precision
(meaning MSE) target ǫ can then be estimated as shown
in Sec. I. In particular, for any ǫ > BK(τ) we have

Ntot =
1

τ2
1− Ẑa(τ)

2

ǫ2 −BK(τ)2
, (24)

where we used V ar[ÔK(τ)] = (1−Ẑa(τ)
2)/(Nτ2) withN

the size of the population used to estimate Ẑa(τ). This
estimate is minimized with the choice τ = τopt with

τopt =

(
(2K + 1)!√
2K + 1

ǫ

|mK |

) 1
2K

, (25)

which leads to the following estimate for the total number
of measurements needed for sQPE at order K

NsQPE(K, ǫ) =
|mK |1/K
ǫ2+1/K

f(K) , (26)

where we have defined

f(K) =
2K + 1

2K

(√
2K + 1

(2K + 1)!

) 1
K

, (27)

and as promised the shot noise regime NsQPE ∼ O(1/ǫ2)
is recovered only asymptotically for large values ofK. As
anticipated before, for a sufficiently small error we expect
the Operator Averaging method of Sec. I to outperform
the scheme presented here. The advantage of sQPE is in
the possibility of having a much weaker dependence of
the expectation value to norm ratio RO. To see this let
us first rewrite Eq. (26) using the relative error

NsQPE(K, ǫr) =
f(K)

ǫ
2+1/K
r

|〈O2K+1〉|1/K
|〈O〉|2+1/K

, (28)
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where we simply used the definition of mk. Consider
now the special case of eigenvalue estimation where |Ψ〉
is an eigenvector of O with eigenvalue λΨ that we want
to compute. In this limit the ratio of expectation values
on the right-hand side of Eq. (28) is just 1 and the total
number of measurement required by sQPE is completely
independent of the system considered. In the more gen-
eral case where |Ψ〉 is not a single eigenvector we will
need an additional ingredient to assess the performance
of sQPE: a tight upper bound on the bias in Eq. (22)
or equivalently on the moment mK . For this purpose let
us first introduce ΓK as an upperbound of the following
ratio

|mK |
‖O‖2K+1

1

=
|〈O2K+1〉|
‖O‖2K+1

1

≤ ΓK ≤ 1 , (29)

where we remind that ‖O‖1 = |α0|+‖OT ‖1. We can now
use ΓK to bound the number of measurements as

NsQPE(K, ǫr) ≤
f(K)

ǫ
2+1/K
r

Γ
1/K
K

R
2+1/K
O

( ‖O‖1
‖OT ‖1

)2+1/K

,

(30)
and this could be smaller than Eq. (16) when ΓK ≪ 1.
To be more quantitative, the sQPE estimator Eq. (20)
will become efficient whenNsQPE(K, ǫr) ≤ NA(ǫr) at the
desired relative accuracy ǫr. Using Eq. (16) and Eq. (28),
this condition can be written equivalently as

RO ≥ f(K)K

ǫr

|〈O2K+1〉|
‖OT ‖2K+1

1

, (31)

which can be turned in the following sufficient condition

RO ≥ f(K)K

ǫr
ΓK

(
1 +

|α0|
‖OT ‖1

)2K+1

, (32)

where we reintroduced the upperbound ΓK described
above and wrote explicitly the dependence of the coef-
ficient α0 from Eq. (6). We will discuss in detail how to
check if the condition in Eq. (31) is satisfied in practical
application in Sec. VA, while for now we focus on the
simpler application of eigenvalue estimation mentioned
above. In this case the right hand side of Eq. (31) takes
a simple form and the full inequality can be written as

|λΨ|
‖OT ‖1

≤ ǫ
1

2K
r√
f(K)

. (33)

We now need only a reasonably tight upperbound λu of
|λΨ| to judge when the condition in Eq. (33) is satisfied.
This requirement is rather loose in practice since the left-
hand side is bounded from above by λmax/(λmax−α0) ≈
O(1) and the right hand side grows quickly as a function
of K. In order to visualize this effect, we plot in Fig. 1
the minimum relative error ǫr that can be achieved for a
fixed value of the eigenvalue ratio RO using the condition
from Eq. (33). As this will depend on the chosen order
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FIG. 1. The solid black curves indicate the set of points where
Eq. (33) is satisfied with the equality for different choices of
the sQPE order K with an ordering from top left to bottom
right: the first solid line refers to K = 1 while the second
is for K = 2 and the shaded region in between indicates the
region where the linear method is no longer sufficient and we
need to employ sQPE with K > 1. The innermost (darkest)
region is bordered by the K = 8 line. With the inset we are
zooming in the top-right corner of the main plot.

K, in the figure we report the boundaries starting from
K = 1 in the top left corner up to K = 8 in the bottom
right. In particular this means that to achieve lower error
rates than the first solid curve we will need to use sQPE
withK > 1 in order to ensure the condition in Eq. (33) to
be satisfied (i.e. that sQPE could provide an advantage
over the Operator Averaging method). Conversely the
darkest and innermost region in Fig. 1 is accessible only
for K > 8.

We can deduce a number of interesting conclusions
from this figure. For instance, we can see that if we
can place an upperbound on RO smaller than ≈ 10−2,
then sQPE with K = 2 will be more efficient than Op-
erator Averaging down to extremely small relative errors
ǫr ≈ 10−9. This is a major improvement from the limit
ǫr ≈ 10−4 achievable with the linear method of Sec. II B.
Furthermore, as we can clearly see in the inset, for tar-
get relative error at the 1% level, the linear method can
be used effectively up to RO ≈ 0.1 while by increasing
the order to cubic (i.e. K = 2) we can push this up
to RO ≈ 0.8. Given these observations and the increas-
ing difficulty in implementing sQPE efficiently for large
K, it’s likely that for many practical situations sQPE
with K = 1, 2 will be sufficient to achieve a substan-
tial speedup in terms of the number of measurements
required to estimate the eigenvalue λΨ. We will provide
a similar scaling analysis for the more general problem of
expectation value estimation in Sec. VA (see Fig. 11).

It is now time to come back to the problem of perform-
ing the polynomial fit needed in Eq. (20) in the realistic
case where we do not know the higher-order coefficients
mk. For the last coefficient with k = K we can eas-
ily use a reasonably tight upperbound ΓK to manage the
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influence of the bias in Eq. (22) as we did before. This al-
lows for a complete algorithm in the simplest case K = 1
achieving the scaling reported in Eq. (30). In higher order
algorithms we need to estimate the higher order contri-
butions for k < K by collecting data at different values
of the time-step τ and performing a non-linear fit. If no
other information is available, we will need at least K
values of τ to properly perform the reconstruction (e.g.
using the expansion proposed in [10]).
In the following sections we describe an implementa-

tion of the simple K = 1 (linear) algorithm and a more
efficient scheme that adaptively finds the optimal pair
(τa, τb) of time parameters for the K = 2 (cubic) case.

B. Linear Algorithm

The simplest case is where we neglect the cubic terms
in the expansion of the sin so that our estimator in
Eq. (20) becomes

O1(τ) =
1

τ
〈Ψ|sin (τH) |Ψ〉 = − 1

τ
〈Z〉a(δ) . (34)

In the linear case the optimal time-step of Eq. (25) is

τopt =

√
6√
3

ǫ

|〈O3〉| , (35)

and using the result from Eq. (28), we can estimate the
number of measurements needed as

NsQPE(1, ǫr) =
1

ǫ3r

√
3

4

∣∣∣∣
〈O3〉
〈O〉3

∣∣∣∣ −→
1

ǫ3r

√
3

4
, (36)

where the limit on the right hand side holds when we
prepare |Ψ〉 in any eigenvector of O. Note that in this
limit the resources required for a given target relative
accuracy ǫr are completely independent on the chosen
operator O or even eigenvector |Ψ〉. For instance at the
1% level we have

NsQPE(1, ǫr = 0.01) =

√
3

4
× 106 ≈ 4.3× 105 . (37)

However, in order to get an advantage with sQPE for this
situation, the inequality of Eq. (33) has to be satisfied,
and therefore the advantage might still depend on the
details of the system.
The problem now is that in general situations we will

not be able to calculate τopt without at least an approxi-
mate estimate for the wanted expectation value 〈O〉 since
a good bound ΓK on the bias is in fact not sufficient.
Even in the simpler case of eigenvalue estimation we can
only use an upperbound λu for the absolute value of the
eigenvalue to compute the approximation

τ̃opt =

√
6√
3

ǫr
λ2
u

≤ τopt , (38)
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FIG. 2. Results of numerical simulations of the linear algo-
rithm explained in the text together with the operator aver-
aging method of Sec. I. The grey band indicates the expected
variation caused by different choices for the time step τ in
the linear algorithm. The horizontal orange line indicates an
indicative ǫr = 1% target error threshold.

and this will cause the total number of measurement re-
quired to increase as

ÑT (1, ǫr) =

(
λu

|λΨ|

)3/2

NsQPE(1, ǫr) . (39)

This is somewhat acceptable in the eigenvalue estimation
case as an upperbound for the eigenvalue is used initially
to check if sQPE is at all convenient using the condition in

Eq. (33). The relatively strong dependence of ÑT (1, ǫr)
on the value of λu and the difficulty to obtain the optimal
time-step in the general case are the two main problems
of the linear algorithm described here and are both strong
motivations for developing the self-consistent algorithm
described in the next section.

Before moving to the cubic algorithm, we want to fur-
ther illustrate the sensitivity of the linear method to the
particular choice of time step τ and we do so anticipat-
ing some results of the calculation of the deuteron bind-
ing energy presented in Sec. III. We plot in Fig. 2 the
relative error for the estimation of the deuteron ground
state energy as a function of the total number of mea-
surements. In particular we show with a black solid line
the analytical estimate (cf. Eq. (10)) for the error scaling
of the operator averaging method of Sec. I

ǫ =

√√√√ L

Ntot

L∑

k=1

α2
k

[
1− P̂k

2]
, (40)

as a function of the total number of measurements Ntot.
As mentioned in Sec. I the simple adaptive scheme of
Eq. (13) produces a slightly worse performance (≈ 10%
larger constant factor, not shown) than the naive opera-
tor averaging method.

For sQPE with K = 1 (or linear method) we show
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instead the mean squared error

ǫM (τ, 1) =

√
1− 〈Za〉(τ)2

τ2N
+ τ4

|〈O3〉|2
36

, (41)

achievable with different time-steps. The green dotted
line corresponds to sQPE with K = 1 using the optimal
choice for the time step Eq. (35) while the red dashed
curve shows the detrimental effect of using a worse upper-
bound λu = 2|λΨ| resulting in τ = τopt/2. In both cases
sQPE provides an important speedup over operator aver-
aging but this advantage is very fragile. The purple dot-
dashed curve shows results obtained using the smallest
time-step which could reasonably provide an advantage:
the time step for which the variance in Eq. (23) equals
an upperbound of the variance of the operator averaging
estimator: 1/τ = ‖OT ‖1. The performance of operator
averaging can be no worse than that, and indeed we see
in Fig. 2 that linear sQPE with this time-step requires
≈ 3 times more measurements than the original scheme.
The grey band spans the whole region covered by linear
order algorithms with varying time-steps, in particular
the upperbound (shown as dot-dot-dashed black line in
Fig. 2) corresponds to the worse possible choice for the
eigenvalue upperbound λu = λmax.
The linear algorithm is simple to implement and can

provide already important efficiency gains over Operator
Averaging whenever we have the ability to make a good
choice for the time-step parameter τ . We will now show
how we propose to tackle this issue by using the next
order sQPE algorithm corresponding to K = 2.

C. Cubic algorithm

In order to use the general estimator of Eq. (20) for
K = 2 we need to be able to estimatem1 = |〈O3〉|. In our
implementation we achieve this by computing 〈Z〉a(τ) for
two different values of the time step and use these to ex-
tract both 〈O〉 and m1 using a cubic fit. Given a pair of
time steps (τa, τb) the outcome of M independent mea-
surements over of the projector Πa =|0〉〈0| is described
by a pair of binomial random variables Xa ∼ B(M,Pa)
and Xb ∼ B(M,Pb) with probabilities given by

Pa/b =
1− 〈Ψ|sin(τa/bO)|Ψ〉

2

=
1− τa/b〈Ψ|O|Ψ〉+ τ3

a/b

6 〈Ψ|O3|Ψ〉
2

+O
(
τ5a/b

)
.

(42)

For small values of the time steps we can approximate
these distributions with the 2-parameter family

P̃a/b(µ, η) =
1− τa/b µ+

τa/b

6 η

2
, (43)

obtained from above by dropping the higher order terms.
Estimators for the two parameters µ and η can be ob-
tained by extremizing the likelihood L(Xa, Xb|µ, η, τa, τb)

to observe a particular realization (XA, XB) given the
distribution parameters (µ, η, τa, τb):

L(Xa, Xb|µ, η, τa, τb) ∝ P̃Xa
a (µ, η)

(
1− P̃a(µ, η)

)M−Xa

× P̃Xb

b (µ, η)
(
1− P̃b(µ, η)

)M−Xb

. (44)

The resulting maximum likelihood estimators are

µmle = cµab

[
τ2a
τb

(
1− 2

Xb

M

)
− τ2b

τa

(
1− 2

Xa

M

)]
, (45)

ηmle = cηab

[
τa

(
1− 2

Xb

M

)
− τb

(
1− 2

Xa

M

)]
, (46)

where the time-step dependent coefficients are

cµab =
1

τ2a − τ2b
and cηab =

6

τaτb(τ2a − τ2b )
. (47)

We can estimate the variance of these estimators by
computing the inverse of the Fisher information matrix

I(µ, η)i,j = −E

[
∂2log (L(Xa, Xb|µ, η, τa, τb))

∂i∂j

]
, (48)

where the derivatives are taken over {i, j} = {µ, η} and
the parametric dependence of I(µ, η) on the two time-
steps τa/b has been suppressed for clarity. The results
are

V ar [µmle] =
4

M

τ6aPb (1− Pb) + τ6b Pa (1− Pa)

τ2a τ
2
b (τ2a − τ2b )

2 , (49)

V ar [ηmle] =
144

M

τ2aPb (1− Pb) + τ2b Pa (1− Pa)

τ2a τ
2
b (τ2a − τ2b )

2 , (50)

where the probabilities Pa/b will have to be estimated
using a finite sample. In this work we use the Bayesian
estimators

P̂a =
Xa + 1

M + 2
P̂b =

Xb + 1

M + 2
, (51)

obtained using a slightly informative Beta prior with α =
β = 1, but in general one can employ any accurate sample

estimator P̂a/b of the true probabilities Pa/b.
Note that estimators of the variance obtained in this

way are in principle accurate only in the limit of large
statistics M ≫ 1, but in practice we found their use to
be reasonable for the application studied in this work.
Since the adaptive algorithm we describe below relies on
their quality, further work on the construction of better
(ie. more robust to noise or more rapidly converging) es-
timators of the fluctuations of µ and η may prove useful.
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In addition to these statistical sources of error we also
have a bias coming from the approximation Pa/b → P̃a/b.
This can be estimated to be

Bµ(τa, τb) = E [µmle − µ]

= cµab

[
τ2a
τb

〈sin(τbO)〉 − τ2b
τa

〈sin(τaO)〉
]
− µ .

(52)

A useful upperbound can be obtained by noticing that
Bµ(τa, τb) is obtained from the remainder of the Taylor
expansion in Eq. (42) as

Bµ(τa, τb) = 〈Ψ|R5|Ψ〉 , (53)

where the remainder operator R5 is defined as

R5 =
cµabO5

24

∫ 1

0

dt(1− t)4
[
τ2a τ

4
b cos(tτbO)

− τ2b τ
4
a cos(tτaO)

]
, (54)

as follows directly from the integral representation of the
remainder of a Taylor series. We can now bound the bias
in the cubic algorithm using for instance

|Bµ(τa, τb)| ≤
|〈Ψ|O5|Ψ〉|

120
τ2a τ

2
b

τ2a + τ2b
|τ2a − τ2b |

. (55)

Achieving a tight bound for the bias is generally impor-
tant as it controls the final efficiency of the method. As
for the linear method above, for now we will focus on the
special case of eigenvalue estimation while leaving the dis-
cussion on how to obtain practical upperbounds in more
general situations in Sec. VA. In the calculations per-
formed in our work we found a weak dependence of the
computational effort with the particular choice of estima-
tor for the bias (see Fig. 7) and will discuss the different
options we used in Sec. III.
In the next subsection we present our strategy to de-

termine the time steps for the cubic algorithm.

1. Optimal determination of the times steps

As was pointed out at the end of Sec. II B one of
the major drawbacks of the linear algorithm is its sen-
sitivity to the choice of the time-step τ . For the cubic
algorithm we solve this issue by using ideas from Op-
timal Design (OD) [22, 23]. OD techniques have been
used in a variety of applications to quantum computing
ranging from quantum tomography [24–26], to param-
eter estimation [27, 28], to quantum-gate synthesis [29].
The general underlying idea in OD for parameter estima-
tion is to try to optimize some, possibly unconstrained,
hyper-parameters of an experiment (eg. the pair of time
steps (τa, τb) to be used in the cubic sQPE) in order to
minimize an estimator for the error in the parameter we
want to estimate. In many situations this minimization

procedure is translated into the maximization of some
measure of the “size” of the Fisher information matrix
I(µ, η|τa, τb) of Eq. (48) (these can be eg. one of its
norms or its determinant). This procedure can be seen
effectively to be a minimization of the Cramer-Rao bound
for an unbiased estimator of the target parameter.
Since in our application the maximum likelihood esti-

mator in Eq. (45) has a bias, we will minimize the mean
squared error of µmle instead

ǫM (µ|τa, τb) = V ar[µmle] +B2
µ(τa, τb) . (56)

One possible adaptive algorithm works by choosing, for
any given iteration i, a new pair of time steps (τ i+1

a , τ i+1
b )

for the next rounds of M measurements by minimizing
Eq. (56) using the estimators µ̂mle and η̂mle available at
the current iteration i. The initial pair can be chosen ran-
domly provided both time steps are small, in the results
shown below we sample one of the two from a uniform
distribution U(0, 0.1)[30] while the second is chosen to
minimize the following upper bound for the variance

V ar [µmle] ≤
1

M

τ6a + τ6b

τ2a τ
2
b (τ2a − τ2b )

2 , (57)

keeping the first fixed. This procedure ensures that the
estimator for µ obtained from the new set of measure-
ments has the smallest MSE possible and is thus rather
efficient early on. As we collect more data and the vari-
ance of our estimator µ̂mle gets reduced we should how-
ever reduce the contribution of the bias by reducing in
magnitude the new pair of time steps. In order to incor-
porate this effect we should obtain a new set (τ i+1

a , τ i+1
b )

of time steps by minimizing the expected variance of µ̂mle

after the new block of data is collected

ǫiM (µ|τa, τb) = V ar[µmle] + (i+ 1)B2
µ(τa, τb) (58)

which has the correct shot-noise scaling coming from
V ar[µ̂] ≈ V ar[µ]/i as a function of the number of data
blocks i collected so far. In practice we cannot evaluate
the variance exactly and for the results presented in this
work we found sufficient to employ the approximation

Ṽ ar[µmle] =
4

M

τ6a P̃b

(
1− P̃b

)
+ τ6b P̃a

(
1− P̃a

)

τ2a τ
2
b (τ2a − τ2b )

2 (59)

where we have used

P̃a/b =
1

2

(
1− τa/bµ̂mle +

τ3a/b

6
η̂mle

)
, (60)

to estimate the two probabilities Pa/b (cf. Eq. (42)). In-
troducing an upperbound Bu

µ for the bias in Eq. (55),
the final cost function we use to find the new set of time
steps is therefore

∆i (µ|τa, τb) = Ṽ ar[µmle] + (i + 1)Bu
µ
2(τa, τb) . (61)
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The approximation of the variance in Eq. (59) is good
in the limit of small time steps τa/b but this is not a
problem since the presence of the bias term forces the
optimal solutions to be numerically small automatically.
In order to prevent numerical instabilities early on in
the optimization we use a cost function that becomes

extremely large whenever P̃a/b /∈ [0, 1].
Before moving to the results in the next section we

summarize the cubic algorithm in pseudo code as follows:

sample τa ∼ U(0, τmax)
compute τb as the minimum of Eq. (57)
for iteration number less than Niter do

perform M measurements each to obtain Xa, Xb

construct current MLE estimators Eq. (45,46)
evaluate running averages µ̂mle,η̂mle

use these estimators to define cost function Eq. (61)
new pair (τa, τb) are the minimizers of ∆i (µ|τa, τb)

end for

III. THE DEUTERON GROUND STATE

The deuteron is the simplest nucleus present in na-
ture. It is a bound state of a neutron and a proton in a
state having total isospin T = 0, spin S = 1 and angu-
lar momentum-parity Jπ = 1+. It has a small binding
energy of approximately 2.2 MeV. The ground state of
the deuteron has a non-zero quadrupole moment, origi-
nated by the mixing between S- and D-waves generated
by pion-exchanges (see eg. [31] for a pedagogical intro-
duction). A simple model for the deuteron is to consider
the 2-level system built from an S-wave orbital |φS〉 and
a D-wave orbital |φD〉:

H =

(
〈φS |H |φS〉 〈φS |H |φD〉
〈φD|H |φS〉 〈φD|H |φD〉

)
. (62)

Using the Argonne Av6’ potential [32] we obtain (ap-
proximately [33]) the following Hamiltonian matrix:

H =

(
5 −35

−35 170

)
= 87.51− 35X + 82.5Z . (63)

Large cancellations among different contributions pro-
duce a ground state energy orders of magnitude smaller
than the norm

Egs = −2.1174 ‖HT ‖1 = 117.5 RO ≈ 0.018 ,

where, in analogy to the previous sections, we defined
HT to be the traceless part of H while RO is the ratio
defined above in Eq. (15).
This large cancellation is a direct consequence of the

hard-core nuclear repulsion that we can see in the cen-
tral component of the interaction in Fig. 3. The strong
repulsion introduces states with very large energies in
the many-body Hilbert space, a notorious problem which
causes calculations on a finite basis to converge extremely
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FIG. 3. Central (black solid line) and tensor (green dashed
line) contributions to the nuclear potential Argonne V6’ used
to obtain the deuteron Hamiltonian Eq. (63). In the inset the
range of pion-exchange is also shown. The grey dotted line at
0 energy is simply a guide to the eye.

slowly. General strategies to alleviate this issue have been
developed in the past (eg. the Similarity Renormalization
Group approach [34, 35]) but they are usually accompa-
nied by an increase in the degree on nonlocality of the
Hamiltonian (see eg. [36]) which in general will require a
(possibly large) increase in the number of terms needed
in expansions of the form Eq. (7).
Note however that, even when the detrimental effects

of hard-core interactions are mitigated trough an effective
theory like the one mentioned above, the requirement of
ensuring basis-size convergence by performing multiple
calculations with progressively larger basis sets will still
lead to a potentially large mismatch between the ground
state energy and the Hamiltonian norm. In that case this
is due to fact that, as the basis size increases, the ground
state energy will decrease at a much slower rate than the
maximum eigenvalue (indeed Egs will reach a plateau for
large basis while the highest eigenvalue will grow indef-
initely). A general strategy to reduce the importance
of this problem (like the sQPE scheme presented in this
work) is thus welcome more generally.
Let’s now start to discuss the performance of the Op-

erator Averaging method of Sec. I on our model deuteron
problem Eq. (63). Using the estimate from Eq. (16) we
find that the number of measurement required for target
relative accuracy ǫr is given by

NA(ǫr) =
1

(ROǫr)
2 ≈ 3079.4

ǫ2r
→ 3.1× 107 , (64)

where the last limit holds for ǫr = 1%. Even tough this
estimate might not be very tight since we neglected the
variances in Eq. (10) in order to derive Eq. (16), the
fact that we are dealing with a simple one-qubit system
and that we haven’t considered yet the effect of errors,
makes this requirement already alarming. In order to
put this number in perspective, the IBM group [7] esti-
mated that NA ≈ 106 measurements would be sufficient
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FIG. 4. Results of numerical simulations of the algorithm
explained in the text. Results correspond to 5 independent
runs with different random number seeds. The blue dotted
line corresponds to the expected asymptotic behavior from
Eq. (40) while the red dot correspond to the upperbound from
Eq.(64). The inset shows the convergence of the VQE opti-
mization using low resolution expectation values with errors
≈ 5 MeV (these were obtained using Ntot = 103 measure-
ments per function evaluation). The horizontal line indicates
the value of the ground state energy Egs = −2.1174 MeV.

to reach chemical accuracy for a 6 qubit model of BeH2

with hundreds of Pauli terms in the Hamiltonian expan-
sion of Eq. (7).

In Fig. 4 we show results for an ideal implementation
(no noise apart from statistical fluctuations) of our one
qubit model. As we can see the upperbound of Eq. (64) is
only a factor of a few larger and we find that ≈ 9.3× 106

measurements are needed in this ideal noiseless case. Be-
fore moving on to discuss the results we have obtained
using sQPE, we want to point out that if our goal was

only to optimize a variational state
∣∣∣Φ(~θ)

〉
using the en-

ergy expectation value (ie. we want to run VQE [5])
then low accuracy results for the energy could be suf-

ficient to get close to the optimum ~θmin. To illustrate
this we show in the inset the deuteron energy expecta-
tion value obtained using Ntot = 103 as a function on
the iteration in the minimization procedure (for these
results we used a simple Nelder-Mead optimizer). Even
though the error in the energy is & 200% the angle θ con-
verges towards θmin to within a few percent error in only
a small number of iterations (note that for this simple
model a single angle is sufficient to prepare the ground
state). This striking difference is probably peculiar to
simple models like our one-qubit deuteron, since the lack
of excited states with low energy in the spectrum of the
Hamiltonian gives rise to large gradients in the the vari-
ational energy E(θ) = 〈Φ(θ)|H |Φ(θ)〉 and therefore to a
relatively easy optimization. Where sQPE could be most
useful in this case is for the final estimation of the energy,
but in general for more complex systems low order sQPE
could be advantageous also in the last stages of optimiza-
tion where large statistical fluctuations could prevent to
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FIG. 5. Final error in the estimator for the ground state en-
ergy of the deuteron obtained with the techniques discussed
in this work, from top to bottom they are: Operator Aver-
aging (black line), linear sQPE with optimal time-step (blue
line), linear sQPE with half of the optimal time-step (green
line) and the adaptive cubic sQPE algorithm (purple line) .
Dotted lines correspond to the analytical results presented in
Fig. 2. See text for the meaning of the marked points.

reach the minimum.
Let’s now turn to discuss the sQPE method starting

with the implementation of the controlled time evolution
from Eq. (18). In our simple two qubit situation the
circuit for the controlled unitary can be constructed using
only 2 CNOT gates (cf. [37]):

Φ(θ0) • •

RA RB RC

(65)

where Φ(α) = diag
(
1, eiα

)
is a phase gate and the

RA, RB, RC blocks are formed by appropriate single
qubit rotations (see Appendix A for more details).
In Fig. 5 we show the results obtained with both sQPE

and operator averaging: the solid curves correspond to
empirical results while the dotted lines correspond to the
analytical estimates discussed in Sec. II B. As for Fig. 2,
the red square marks the location of the upperbound NA

from Eq. (64). For the linear method, the optimal choice
Eq. (35) is shown in blue, while in green we present the re-
sults obtained using a more conservative value τ = τopt/2
(cf. Eq. (38) and the discussion following it). In both
cases we see that, in agreement with the results presented
in Fig. 2, the linear algorithm requires about an order of
magnitude less measurements than operator averaging.
In addition to this we see that the estimated number of
measurements NsQPE are in very good agreement with
the empirical results: the maroon diamond indicates the
upperbound NsQPE(1) for linear sQPE Eq. (37) while
the cyan circle corresponds to the worse bound obtained
trough Eq. (39).
As we discussed in Sec. II B the speedup offered by the

linear method is very sensitive to the particular choice of
time step used and by employing the adaptive strategy
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described in Sec. II C to find the time steps (τa, τb) the
cubic algorithm partially overcomes this problem. In or-
der to implement the algorithm we use the same circuit
described for the linear method: we just run it twice for
the two time steps separately. The results obtained from
6 different runs are presented in Fig. 5 as purple lines,
in all cases we update the time step pair every block of
M = 40 measurements. In addition, the blue triangle is
twice the expected number of measurements NsQPE(2)
obtained from the general expression Eq. (26)

NsQPE(2, ǫr) =
f(2)

ǫ5/2

√
|〈H5〉| ≈ 1.7× 104 , (66)

where the factor of 2 is introduced to account for the fact
that in our adaptive scheme we are actually estimating
two expectation values: 〈O〉 and m1. The optimal pair of
time steps (τa, τb) obtained during the execution of the
algorithm fluctuate around the value (0.15, 0.3) which is
not very far from the optimal time step τopt ≈ 0.4 found
from Eq. (25). The spread of results at large measure-
ment count is possibly a signature that the optimization
of Eq. (61) gets stuck in local minima, we plan to inves-
tigate this further in future work.
As explained in Sec. II C, the cubic algorithm needs

a good approximation of the bias term Bµ(τa, τb) in
Eq. (55) as this enters directly the cost function Eq. (61)
used to determine the optimal time steps. The re-
sults presented above where obtained using the following
ansatz

Bu
µ(τa, τb) =

|µ̂mleη̂mle|
120

τ2a τ
2
b

τ2a + τ2b
|τ2a − τ2b |

≡ BA1 , (67)

where µ̂mle and η̂mle are the current best estimators for
the distribution parameters (µ, η). This form reduces to
the correct one in the eigenvalue estimation limit relevant
here where |Ψ〉 is an eigenstate of O. We want now to
present results showing the weak sensitivity of the cubic
algorithm to the specific choice of the estimator for the
bias, in particular we will use two additional estimators:
the exact one from Eq. (52)

BE = E [µmle − µ] , (68)

which in practical situations we won’t have access to, and
a different variant of the estimator BA1 above defined as

BA2 =
|µ̂mleη̂mle|

120
τ2a τ

2
b

max
[
τ2a , τ

2
b

]

|τ2a − τ2b |
. (69)

This estimator is a tighter bound that can be obtained
from Eq. (54) using the additional condition

max
[
τ2a , τ

2
b

]
<

π

‖O‖1
. (70)

In Fig. 6 we show how these estimators evolve as the
algorithm proceeds in three different situations. The top
panel shows the ideal situation where the optimal pair
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FIG. 6. Different estimators of the energy bias for a cu-
bic sQPE calculation of the deuteron ground state energy,
from top to bottom (in all panels): A1 approximation BA1,
BA2 approximation BA2 and exact estimator BE (see text for
the definitions). The top panel shows results for an ideal-
ized case while panel (b) and (c) are obtained using approx-
imate optimizations employing the estimators BA1 and BA2

(cf. Eq. (67) and Eq. (69)).

(τa, τb) for the next step is obtained using the exact scaled
mean squared error from Eq. (58). Even though in practi-
cal situation we won’t be able to run the cubic algorithm
this way, these results provide a ceiling for the perfor-
mance of approximate algorithms while at the same time
show clearly the source of the advantage that is achieved
with sQPE: initially the time steps are raised to rela-
tively large values in order to reduce the shot noise lim-
ited variance term in the equation above at the expense of
a larger bias term. This allows to quickly reduce the er-
ror in the expectation value early on when the dominant
contribution are statistical fluctuations. As the accuracy
increases the importance of the bias term grows and the
adaptive algorithm starts to reduce the magnitude of the
time steps in order to keep Bµ under control. Further-
more we see that the three bias estimators follow each
other rather closely.
The other two panels instead correspond to results

obtained using the approximate cost function ∆i from
Eq. (61) with either the BA1 ansatz used also in Fig. 5
(central panel) or the BA2 ansatz described above (bot-
tom panel). In both situations we recover the same qual-
itative behavior seen in the ideal case: the bias gets ini-
tially increased and then reduced gradually as the accu-
racy improves. The main difference with the results of
the top panel is the lower efficiency obtained in the first
stage of this procedure where the actual exact bias re-
mains much smaller than it could have been for the first
few hundred measurements (note that as above we up-
date the time-steps everyM = 40 measurements) but the
discrepancy quickly vanishes later when the bias becomes
the limiting factor.
The see the impact of these approximations on the final

convergence of the expectation value we show in Fig. 7
the results obtained by using the exact pair of time steps
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FIG. 7. Different estimators for the final error in the deuteron
ground state energy form ideal runs where the time-steps are
optimized exactly using Eq. (58), from top to bottom: ap-
proximate A1 results, approximate A2 results and exact MSE
result . The cyan up triangle is the same as the blue triangle
in Fig. 5. The inset show results obtained using the approxi-
mate cost function Eq. (61).

τa/b obtained as before using Eq. (58) but different ap-
proximations to the final mean squared error. The reason
this is important is that we need to estimate the bias in
order to provide an estimate for the final error of our
estimated expectation value. The results in the main
panel show the apparent reduced efficiency that is a re-
sult of using a bigger bias than the exact one (in this case
we used BA1 and BA2 as above). The cyan up triangle
is the same as the blue triangle in Fig. 5 and indicates
an optimistic expectation on the efficiency of the cubic
algorithm. Somewhat not surprisingly we achieve that
estimate only in the ideal exact case shown as black lines
in the main panel of Fig. 7 while in the worst case (corre-
sponding to the red curves) we need to perform as much
as ≈ 50% more measurements. Interestingly when sta-
tistical fluctuations in the estimation of the variance are
included these differences mostly disappear and there is
no clear preference for different choices of the bias, we
can see this from the results shown in the inset of Fig. 7
where the time steps were estimated using the approxi-
mate cost function ∆i from Eq. (61).
These results are encouraging as they show that, even

if a tight upperbound for the bias is helpful for the algo-
rithm, an approximate expression can work very well at
least for the special case of eigenvalue estimation. Evalu-
ating upperbounds becomes more important in the gen-
eral case and we leave the discussion for Sec. VA while we
now turn to the problem of accounting for the presence
of noise in the quantum device.

IV. EFFECT OF NOISE

As we have mentioned in the introduction, noise will
be unavoidable for near term quantum devices and it

qubit Rotation err Readout err
0 0.0019 0.0865
1 0.0024 0.08
2 0.0024 0.0382
3 0.0027 0.3567
4 0.0036 0.2715

TABLE I. Rotation (U3) and readout errors for IBM’s 5-qubit
machine ’ibmqx4’ on May 8 2019. The error on the CNOT
gate on the pairs [qubit2, qubit1] and [qubit3, qubit2] is 4.88%
and 6.68% respectively.

is therefore critical for algorithms to provide robustness
against noise if we want to deploy them on a non fault-
tolerant quantum computer. Since the methodology we
propose goes against the popular trend in that we are
trading classical resources (the number of experimental
trials) with quantum ones (one more qubit for the ancilla
and more gates), we need to provide supporting evidence
that our method shows advantages even in the presence
of noise and is thus practical.

The importance of this assessment is critical as there
are known cases where the advantage of a quantum algo-
rithm can be drastically reduced by the presence of even
small sources of noise (see eg. [38–41]).

We start by showing how, in situations where the con-
dition in Eq. (31) is valid by a large margin (as in the
deuteron model discussed here), a substantial increase in
classical resources is required to minimize the effect of
measurement noise for the Operator Averaging method
of Sec. I while with sQPE this problem can be mitigated
substantially. In the last part we provide a more general
argument in support of our measurement strategy in sit-
uations where a clean ancilla is available in the spirit of
the D1QC model [42].

A. Measurement noise

Assignment errors in the measurement device used for
qubit read out are an important source of bias that needs
to be accounted for in order to properly obtain meaning-
ful results. We illustrate the problem showing in Fig. 8 re-
sults obtained executing the deuteron problem, described
in the previous section, on an emulated version of the
IBM 5-qubit machine ’ibmqx4’ using the Qiskit software
package [43] (see Tab. I for details).

Despite the fact that we are not correcting for any
source of errors in these results, the linear sQPE (with
optimal time τ) presented on the right seems to provide
considerably higher quality results despite the much in-
creased circuit depth. In the following we provide an
argument to explain the observed results.

Here we will use an extremely simplified model for
these errors that nevertheless captures their essential fea-
tures. We achieve this by replacing the projectors Π0, Π1
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FIG. 8. Results for the deuteron ground state energy ob-
tained using the emulated ’ibmqx4’ quantum computer with-
out error mitigation. The left panel shows results obtained
using Operator Averaging on each qubit while the right panel
shows the performance of the linear sQPE algorithm using
pairs [qubit2, qubit1] (green data points) and [qubit3, qubit2]
(blue data points) as ancilla and system qubit respectively.

on the states |0〉, |1〉 of a qubit with the following ones

Π̃0 = (1− p)Π0 + pΠ1

Π̃1 = (1− p)Π1 + pΠ0

(71)

where 0 < p < 1. This model can be justified in the
limit where assignment errors are both qubit independent
and symmetric with respect to the interchange |0〉 ↔ |1〉
and is sufficient for our purpose (see eg. Supplemental
Material of [7] for details on a more accurate model).
Using Eq. (71) we find that the noisy expectation value

of some one-qubit Pauli operator 〈P̃σ〉 is related to the
noise-free value by the relation

〈P̃σ〉 = (1− 2p) 〈Pσ〉 , (72)

which can be easily inverted to estimate 〈Pσ〉 from 〈P̃σ〉.
Despite its simplicity this model is sufficient to com-
pletely account for the error afflicting the OA results of
Fig. 8, as we can see from the error mitigated results pre-
sented in Fig. 9. Note that the linear sQPE energies in
the right panel are still biased due mostly to the noise
introduced by using the CNOT gates, the mitigation of
which is beyond the scope of our discussion here (note
however that mitigation techniques [44, 45] will be re-
quired also for OA for larger target systems).
Generalizations of Eq. (72) to expectation values of

multi-qubit Pauli operators can also be obtained, but we
will limit our discussion to the one-qubit case relevant to
our deuteron calculations and to sQPE more generally.
In fact, an important feature of sQPE is that the out-
put of the algorithm is obtained through measurements
on a single qubit thus avoiding the problem of the ex-
ponential reduction of signal to noise ratio as a function
of the number of qubits involved in the measurement of
individual terms in the expansion Eq. (7) (see eg. [7]).

For a generic one-qubit observable described by the
general expansion (cf. Eq. (7))

O = β0 +

3∑

i=1

βiPi
~P = (X,Y, Z) , (73)

we can use Eq. (72) to estimate the noise free expectation
value:

〈Ô〉 = β0 +

3∑

i=1

βi

1− 2p̂
〈P̃i〉 , (74)

where p̂ is a finite sample estimator✭✭
✭
✭✭estimator, with vari-

ance δp, of the error probability p. The variance of this
estimator can be approximated as

V ar[Ô] =
V ar[Õ]

(1− 2p̂)2
+ VR; , (75)

with

VR =
4δp2

(1 − 2p̂)2

3∑

i=1

|βi|2
(1− 2p̂)2

〈P̃i〉2 , (76)

where we used a linear expansion to propagate the er-
ror (ie. we used V ar[f(x)] ≈ f ′(x)2V ar[x]). The sec-
ond error term in Eq. (75) comes from the uncertainty
in the determination of the error parameter p and pro-
vides a noise floor that we need to minimize in order to
achieve good accuracies. Assuming the sample estimator
p̂ was obtained from NC calibration measurements, we
can bound the contribution of this background as

VR ≤ 4
‖OT ‖22

(1− 2p̂)4
δp2 = 4

‖OT‖22
(1− 2p̂)4

p̂ (1− p̂)

NC
. (77)

The case of the sQPE algorithm is simpler because we
have always to deal with a single qubit to be measured.
Using the same correction scheme employed above, as-
suming again that the higher order coefficients mk are
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FIG. 9. Same as in Fig. 8 but using the error mitigation
strategy described in the text for the measurement noise.
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known, we find

〈ÔK(τ)〉 = − 1

τ

〈Z̃a〉
1− 2p̂

−
K−1∑

k=1

τ2k
(−1)kmk

(2k + 1)!
, (78)

with variance

V ar[ÔK(τ)] =
V ar[ÕK(τ)]

(1− 2p̂)2
+ VRK , (79)

and

VRK =
4

τ2
δp2

(1− 2p̂)2
〈Z̃a〉2

(1− 2p̂)2

≤ 4

τ2
1

(1− 2p̂)4
p̂ (1− p̂)

NC
.

(80)

It is then clear that the sQPE algorithm will reduce the
importance of measurement noise in the same situations
where it provides an advantage in the noise free case,
namely whenever ‖OT ‖ ≫ 1

τ2 with τ the estimated opti-
mal time step for a particular problem.
In order to assess the practical impact of this error

term for the deuteron calculation of Sec. III we have nu-
merically minimized the total number of measurements
Ntot = 2M +NC needed to achieve ǫr = 1% (M for each
of the Pauli terms and NC to estimate p̂) as a function of
the error parameter p using directly Eq. (75). In Fig. 10
we show the results of this study: the full black line is the
minimal value of Ntot needed to reach a target relative
error ǫr = 1%, while the green dashed line corresponds to
the situation where we have performed a calibration us-
ing N0

C = 107 initial measurements to estimate the error
rate p of the machine.
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FIG. 10. Estimated number of measurements required to re-
produce the ground-state energy of the deuteron to ǫr = 1%
accuracy as a function of the read-out error rate. Continuous
lines show are the total number (Ntot = 2M + NC) while the
dashed lines show the fraction of the total measurements that
has to be dedicated to characterize the readout noise.

The inset shows the ratio of tuning measurements
needed to achieve the target accuracy as a function of

the error rate p in both situations. We see that reason-
ably small values of the error rate p . 5% can be dealt
with relative ease using data obtained from previous cal-
ibrations, while more substantial efforts are needed for
more noisy qubits. Using qubit3 with its large error
p & 35% would require two orders of magnitude more
measurements than in the noiseless case (shown as the
red square in Fig. 10) out of which more than ≈ 80%
would be needed for characterizing the noise. Fortunately
noise levels so high are not common on modern machines,
with typical values of a few percent in the superconduct-
ing circuit case, but the fact that this very simple source
of error is capable of completely swarming the results of
a simple single qubit calculation provides another moti-
vation to explore the use of the sQPE scheme on near
term architectures.

B. General advantage of ancilla-based schemes

The purpose of this section is to show that the ancilla-
based construction of sQPE (cf. Eq. (18)) can be advan-
tageous in general when we want to estimate the value
of an expectation value 〈O〉 in presence of depolarizing
noise (see eg. [46]) in the quantum device. For a realistic
advantage to be found we will assume we have either a
clean ancilla (meaning completely error free) or at least
a qubit subject to a well characterized noise channel and
with high measurement fidelity.
Let’s start by considering a slight generalization of the

sQPE circuit Eq. (18) where we leave unspecified the
state of the ancilla before we apply the controlled unitary

|φ〉 •
|Ψ〉 Uτ

= |0〉 W •

|Ψ〉 Uτ

, (81)

and in the second circuit we made explicit the presence
of a new rotation matrix W which prepares |φ〉 starting
from |0〉. The action of the time evolution unitary Uτ on
the target state |Ψ〉 can be conveniently expressed as

Uτ |Ψ〉 = κ|Ψ〉+ ν
∣∣Ψ⊥

〉
, (82)

where κ, ν ∈ C with

〈Ψ|Ψ⊥〉 = 0 and |κ|2 + |ν|2 = 1 . (83)

In other words, the total Hilbert space explored with cir-
cuits of type Eq. (81) is only 4-dimensional: we have C2

for the ancilla and the linear span of |Ψ〉 and
∣∣Ψ⊥

〉
for

the target system. At this point, a measurement of the
y-polarization of the ancilla after the circuit in Eq. (81)
will reveal the wanted quantity (cf. Sec. II)

〈Y 〉a = I [Uτ |Ψ〉〈Ψ|] = I [κ] ≡ κI , (84)

from which we can extract the expectation value as dis-
cussed above (in the expression above I denotes the
imaginary part).
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If we trace out the system qubits, the circuit in Eq. (81)
can be represented as a quantum channel Λτ acting on
the ancilla:

|φ〉 • ρf

|Ψ〉 Uτ

≡ ρi Λτ ρf , (85)

where the output state of the ancilla is indicated here
as a density matrix ρf . We want now to show how by
performing quantum process tomography [47–50] on the
ancilla we can extract κI .
We can represent the quantum channel Λτ using the

following Kraus decomposition (see eg. [46])

Λτ [ρ] = A0ρA
†
0 +A1ρA

†
1 (86)

with

A0 =

(
1 0
0 κ

)
A1 =

(
0 0
0 ν

)
, (87)

but this choice is not unique. A better parametrization
of the channels that overcomes this difficulty is to use the
Pauli Transfer Matrix [51] defined as

Rij =
1

2
Tr [PiΛτ [Pj ]] , (88)

where the Pi’s are the Pauli operators {1, X, Y, Z}. For
our quantum channel this matrix takes the form

RUτ =



1 0 0 0
0 κR −κI 0
0 κI κR 0
0 0 0 1


 , (89)

where κ = κR + iκI . This form makes it apparent that
the channel Λτ is a composition of a dephasing (or phase
damping [46]) channel

Rz =



1 0 0 0
0 1− pz 0 0
0 0 1− pz 0
0 0 0 1


 , (90)

with error probability pz = |ν|2 = 1 − |κ|2 and a ro-
tation around the z-axis with angle θ = tan−1 (κI/κR)
described by

Rθ =



1 0 0 0
0 cos(θ) −sin(θ) 0
0 sin(θ) cos(θ) 0
0 0 0 1


 . (91)

As shown by Wiebe et al. in [52] a Bayesian recon-
struction strategy can be effectively employed to learn
κR and κI from measurement of the device even in the
presence of substantial depolarizing noise described by
the channel

ΛD(ρ) = (1− pD) +
pD
d

1 , (92)

where d = 2n and n is the number of qubits used to
encode |Ψ〉. According to the results in [52], large values
pD = 50% could be handled with relative ease.
Furthermore, the reconstruction is simplified in our

case since the structure of our channel is known before-
hand, and one can tailor strategies aimed at estimating
matrices of the specific form in Eq. (89). The extent
to which these could be leveraged to minimize the nega-
tive effect of more realistic noise channels in the system
qubits is left for future explorations. Before concluding,
we want to point out that the possibility of removing
read-out lines from all but the ancilla qubit could also
help more generally in reducing the overall noise in the
device.

V. IMPLEMENTATION CHALLANGES

During the exposition of our methodology in Sec. II we
have only briefely touched upon the practical cost of im-
plementing the core parts of the algorithm on near term
quantum devices. This section is dedicated to address
these issues. In particular we first present a discussion
on how to estimate the potential gain of using sQPE us-
ing condition Eq. (31) in practical situations where only
partial information on the higher order coefficients mk is
available. We then provide a description of the resources
needed to implement the time evolution needed for sQPE
using different strategies.

A. Practical bound estimation

Due to the presence of the expectation value 〈O2K+1〉,
it is difficult in most situations to asses directly if the
condition in Eq. (31) holds. In order to obtain a more
manageable condition we can rewrite Eq. (31) as

|〈O〉|
‖OT ‖1

≥ f(K)K

ǫr

〈O2K〉|〈O〉|+ Cov[O2K ,O]

‖OT ‖2K+1
1

. (93)

Due to fact that h(x) = xK with K ≥ 1 has a bounded
first derivative on a finite interval Ω we have

|xK − yK | ≤ max
z∈Ω

[KzK−1]|x− y| , (94)

which in turn implies

V ar[O2K ] ≤ 4K2λ4K−2
max V ar[O] (95)

with λmax the largest singular value of the operator O.
Using the bound

|Cov[X,Y ]| ≤
√
V ar[X ]V ar[Y ] , (96)

which can be obtained by using Jensen’s inequality, we
arrive at the following, looser, condition

|〈O〉|
‖OT ‖1

≥ f(K)K

ǫr

〈O2K〉|〈O〉| + ‖O‖2K−1
1 V ar[O]

‖OT‖2K+1
1

.

(97)
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Reasonably tight ubberbounds on V ar[O] and 〈O2K〉 for
small K = O(1) can be obtained in many situations
of interest: an important example are many-body cal-
culations of ground-state properties where a variational
calculation with classically simulatable trial states can
provide such bounds with reasonable efficiency (eg. one
could use Quantum Monte Carlo methods [53, 54]). An-
other situation is when we have some control on the fi-
delity of the prepared state. For instance consider the
case where we are preparing an initial state |Ψ〉 with
large overlap with some eigenvector |φ〉 of O

|Ψ〉 = α|φ〉 + β|φ⊥〉 O|φ〉 = λφ|φ〉 , (98)

with 〈φ|φ⊥〉 = 0 and |α|2 + |β|2 = 1. We can obtain a
bound on 〈O2K〉 if we have a upperbound for the state
fidelity

F [|Ψ〉] = Tr [|Ψ〉〈Ψ|φ〉〈φ|] = |〈Ψ|φ〉|2 < ∆ , (99)

by using

〈O2K〉 ≤ λ2K
φ +∆‖O‖2K . (100)

When only a bound on the variance is available instead
we can use the inequality

〈O2K〉|〈O〉| ≤ λ2K+1
max ≤ ‖O‖2K+1

1 , (101)

to obtain the even looser condition

|〈O〉|
‖OT ‖1

≥ f(K)K

ǫr

‖O‖2K+1
1

‖OT ‖2K+1
1

(
1 +

V ar[O]

‖O‖21

)
. (102)

Unfortunately this condition can bee too loose to be of
practical value as we can see by looking at the limit
V ar[O] → 0: the approximate expression Eq. (97) re-
covers the correct limit of Eq. (33), while the right hand
side of Eq. (102) is always larger than f(k)K/ǫr and this
can produce an overly pessimistic assessment of the effi-
ciency gain achievable with the sQPE schemes of Sec. II.
To get more insight on this problem we plot in Fig. 11

the regions in a two-dimensional (V ar[O], ǫr) space where
the inequalities above predict an advantage of our pro-
posed scheme for the estimation of the deuteron’s ground
state energy. The solid black lines define the maximum
relative error ǫr achievable for a trial state |Ψ〉 with a
given variance obtained using the condition of Eq. (97).
The simple linear algorithm of Sec. II B is predicted to
be efficient for situations that stay in the top left corner
of parameter space bounded by the first black line. For
lower target ǫr or larger variance V ar[O] we then progres-
sively need to increase the order K of the algorithm to
ensure Eq. (97) is satisfied. From Fig. 11 we also see that
for a 1% target error the simple linear scheme with K = 1
is predicted to be more efficient up to V ar[O] ≈ E2

GS be-
fore the growth of the bias term forces us to increase the
order in K. This is encouraging since this condition is
not necessarily tight in the sense that, due to the use
of the upperbound Eq. (96), the inequality of Eq. (97)
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FIG. 11. Estimated parameter regions for problems expected
to be efficiently solvable with the scheme of Sec. II as pre-
dicted by Eq. (97) (black solid lines) and by the looser con-
dition in Eq. (102) (red contours). See text for more details.

is a sufficient but not necessary condition for Eq. (93)
to hold true. The extent to witch one can still find an
efficiency gain by using the linear algorithm past this con-
dition will most likely depend on the particular problem
instance and is therefore difficult to predict without some
prior knowledge on Cov[O2K ,O].
The red contours in Fig. 11 are obtained instead by us-

ing the looser condition Eq. (102) and as we can see they
are overly pessimistic: a relatively high order algorithm
with K > 4 is judged to be needed even in the limiting
case when the trial state has zero variance. This obser-
vation reinforces the importance of being able to use a
tighter condition like Eq. (97) in order to assess mean-
ingfully the possibility of a gain in using the strategy
proposed in this work.

B. Time evolution

We finally turn our attention to the problem of esti-
mating the circuit depth required for the implementation
of the time-evolution unitary Uτ = eiτO needed for the
sQPE method. In particular we consider the more realis-

tic situation where only an approximation Ũτ of Uτ with
error bounded by δτ is available:

‖Ũτ − Uτ‖ ≤ δτ . (103)

In this situation the induced error on the sQPE estimator
Eq. (20) is then ǫτ = δτ/τ . A simple way to control the
total error ǫ of the calculation is to require that ǫτ < ǫ/2
and similarly for the MSE ǫM in Eq. (23). The latter
modification will increase the bound reported in Eq. (26)
only by a factor 21+1/K . This requirement can be relaxed
if one employs optimal algorithms like [55–57] that allow
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to implement Ũτ for ǫτ ≪ ǫ with only a small increase in
gate count.
Due to the relatively short propagation time required

by the sQPE algorithm, we can also use simpler strategies
based on the Trotter–Suzuki decomposition [58] while
still maintaining a short circuit depth. To see how this
works let us start by considering a simple first order
scheme obtained by dividing the propagation time τ into
r segments:

T (τ, r) = eiτα0

[
L∏

k=1

ei
τ
r αkUk

]r
, (104)

where we used the decomposition in Eq. (8) for the oper-
ator O. As shown in [59] the error for this approximation
can be bounded by

‖T (τ, r)− Uτ‖ ≤
(
τ‖O‖1

)2

r
e

τ
r ‖O‖1 , (105)

with the norm ‖O‖1 = |α0| + ‖OT‖1 defined as in
Eq. (11). Note that this is slightly tighter than the re-
sult Proposition F.3 obtained in [59] and can be found
following the same proof. Following the derivation in [59]
we can now provide the following analytic bound for the
number of intervals r required to guarantee that ǫτ < ǫ/2

r1 =

⌈
ρ1 max

[
1,

2e

ǫ
‖O‖1

]⌉
, (106)

where we have defined

ρ1 = τopt‖O‖1 = γ(K)
‖O‖1

|mK | 1
2K

ǫ
1

2K , (107)

and rewrote the optimal time step Eq. (25) as

τopt = γ(K)

(
ǫ

|mK |

) 1
2K

, (108)

whith the definition

γ(K) ≡
(
(2K + 1)!

2
√
2K + 1

) 1
2K

. (109)

We note that the additional factor of 2 in the denomina-
tor is coming from the choice ǫM = ǫ/2 and that and that
for reasonably small errors the bound Eq. (106) is maxi-
mized with the rightmost expression giving the algorithm
an overall depth scaling at best as r1 = O (1/

√
ǫ).

It is instructive to express these bounds in terms of
the relative error ǫr and the expectation value ratio RO

from Eq. (15). For instance in the case of eigenvalue
estimation we find

ρ1 = γ(K)
‖O‖1
‖OT ‖1

ǫ
1

2K
r

RO
, (110)

which leads to a generic scaling given by

r1 = O

(
γ(K)

‖O‖21
‖OT ‖21

ǫ
1−2K
2K

r

R2
O

)
, (111)

which in the linear case of Sec. II B simplifies to

r1 = O

( ‖O‖21
‖OT‖21

1

R2
O

1√
ǫr

)
. (112)

This provides only a minor advantage over the O (1/ǫ)
scaling associated with full fledged QPE algorithms [10]
which can be easily spoiled with a sufficiently small RO

ratio. It is therefore important to use higher order expan-
sions that are able to achieve a more favourable scaling
and in the following we will consider higher order prod-
uct formulas as an example. If we denote the (2j)-th
order Trotter-Suzuki formula with r intervals [58, 59] as
S2j(τ, r) we can generalize the error bound Eq. (105) ob-
tained above to

‖S2j(τ, r) − Uτ‖ ≤
(
2τ5j−1‖O‖1

)2j+1

3r2j
e2

τ
r 5

j−1‖O‖1 ,

(113)
and bound the number of intervals as

rj =

⌈
ρj max

[
1,

(
4e

3ǫ
5j−1‖O‖1

) 1
2j

]⌉
, (114)

with ρj ≡ 2ρ15
j−1. Again this is slightly tighter than

the result obtained by Childs et al. in the Supplemental
Material of [59]. As for the linear decomposition the right
term dominates for reasonably small errors ǫ and we find
the overall scaling

rj = O

(
5j+

1
2j

γ(K)

|mK | 1
2K

‖O‖1+
1
2j

1 ǫ
j−K
4jK

)
. (115)

As above we can express this in terms of relative quan-
tities in a compact way for the special case of eigenvalue
estimation

rj = O


5j+

1
2j γ(K)

( ‖O‖1
‖OT ‖1

)1+ 1
2j ǫ

j−K
4jK
r

R
1+ 1

2j

O


 , (116)

and due to the fast growth of the first term in the above
expression we might want to keep the order j as small as
possible. For instance using j = K will already guarantee
a gate count independent on the target precision ǫ and

scaling as O
(
1/R

3/2
O

)
in terms of the eigenvalue ratio.

Notably by simply choosing j = K + 1, for the price of
a fixed increase in cost of less than a factor of 5 we can
achieve a circuit depth that decreases as a function of the
target relative error.
Note that these estimates are based on the possibly

very pessimistic bounds in Eqs. (105,113) which means
that these circuit depths could possibly be greatly re-
duced in practice (see eg. [59]). Before finishing this sec-
tion we want to point out that even though the estimates
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provided above are for the implementation of Uτ a com-
plete implementation of its controlled version (needed in
Eq. (18)) can be obtained with an overall linear increase
in depth as a function of the number of qubits in the
system register used to represent |Ψ〉. Tighter bounds
will require further knowledge of the particular operator
O whose time evolution we want to simulate, but the re-
sults presented here give us good reasons to believe prac-
tical implementations could be achievable for interesting
systems on near term devices.

VI. SUMMARY AND CONCLUSIONS

In this work we reviewed the standard methodology
of Operator Averaging [5, 6, 18] to evaluate expecta-
tion values 〈O〉 of general Hermitian operators efficiently
on quantum computers by minimizing the number of
quantum operations needed while maintaining a shot-
noise limited number of measurement Ntot = O

(
1/ǫ2

)
.

This provides a great advantage on current genera-
tion noisy devices where the asymptotically optimal be-
haviourNtot = O (1/ǫ) of methods that employ Quantum
Phase Estimation [10, 12] cannot be attained in prac-
tice due to the large circuit depths CQPE = O (1/ǫ) in-
volved. As we explain in Sec. I however, the Operator
Average strategy has a major drawback in that in terms
of relative error ǫr the total measurement count grows as
Ntot = O

(
1/(ǫrRO)

2
)
where RO defined in Eq. (15) is

approximately the ratio between the wanted expectation
value and the largest eigenvalue of O.
In this work we propose to use a single step of phase

estimation as in the well known Hadamard Test to learn
the expectation value 〈O〉 by looking at the short time
behaviour of 〈sin(τO)〉 instead. This strategy was al-
ready discussed in the context of full QPE calculations
in [10] and it remains the method of choice for fully
error-corrected devices capable of executing accurately
very long gate sequences. Our contribution is in show-
ing how, by using circuits implementing only a single
Hadamard Test with appropriately chosen time-steps,
one can greatly reduce the classical cost (the number
of experimental measurements Ntot) using much shorter
circuits than those needed for QPE. For instance in the
important case of eigenvalue estimation we can achieve

Ntot = O(1/ǫ
2+1/K
r ) for K = O(1) independent on

RO while keeping the gate count bounded by CsQPE =

O
(
5K/R

1+1/2K
O

)
using a very simple general purpose

strategy employing the high-order Trotter-Suzuki decom-
position [58, 59]. As we argue in Sec. VB the latter re-
quirement can possibly be further reduced by using more
advanced simulation strategies [55–57] and we plan to
further this possibility along the lines of the study pre-
sented in [59] in a future work.
We presented a complete analysis of the first two low-

est order sQPE algorithms with K = 1 and K = 2 in
Sec. II together with a self consistent procedure aimed at

finding the optimal time-steps to be used in the calcula-
tion. As our approach could be extremely helpful in some
situations but it is not efficient in an asymptotic scaling
sense in general, we provide both strict and easy to es-
timate conditions to help determine if the use of sQPE
con provide a speedup for a particular problem instance
(see Sec. II and Sec. VA). As these conditions require
the availability of bounds on the expectation value to be
computed and some control over the operator spectrum
(like bounds on the n-th cumulant 〈On〉) further work
on classically efficient strategies to estimate them (using
for instance ideas from [60, 61]) could have a possible big
impact on the practicality of our approach. As discussed
in Sec. VA classical Quantum Monte Carlo simulations
could be employed efficiently in the meantime. Finally
in Sec. IV we have shown some evidence on the robust-
ness of our proposed methodology to readout noise on
the quantum device and provided arguments to justify
the expectation that ancilla based algorithms like sQPE
provide in general a much more robust layout to deploy
and execute non trivial quantum algorithms on NISQ de-
vices. It will be very interesting in the future to see the
impact of adaptive machine-learning techniques as those
presented in [52] on the practical feasibility of scaling up
quantum computations in the near term.
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Appendix A: Implementation of controlled

time-evolution

We report in this section the implementation of the
two-qubit controlled time evolution appearing in Eq. (18)
needed for the sQPE algorithm and schematically pre-
sented in Eq. (81) in the main text. Throughout this
section we assume that the initial state |Ψ〉 has been pre-
pared with a rotation Ry(θ) with θ the angle of interest.
For a system of two qubits a generic controlled unitary
operation associated with a 2 × 2 unitary matrix U can
be represented in the computational basis |00〉, |01〉,|10〉,
|11〉 as

CU =

(
12×2 02×2

02×2 U

)
, (A1)

with 12×2 and 02×2 indicating the two-by-two identity
matrix null matrix respectively.
Let’s now recall the general decomposition of a U(2)

unitary

U = eiθ0Rz(θ1)Ry(θ2)Rz(θ3) (A2)

for appropriately chosen angles. The rotation matrices
here are defined as

Rz(φ) =

(
eiφ/2 0
0 e−iφ/2

)
(A3)

Ry(θ) =

(
cos(θ/2) sin(θ/2)
− sin(θ/2) cos(θ/2)

)
. (A4)

Using this decomposition, together with the definition
Eq. (A1), we can implement the controlled time-evolution
operator with the following circuit (see eg. [37])

Φ(θ0) • •

Rz(θ1) Ry

(
θ2
2

)
Ry

(
− θ2

2

)
Rz(− θ3+θ1

2 ) Rz(
θ3−θ1

2 )

(A5)

where we have defined the phase gate as

Φ(θ) =

(
1 0
0 eiθ

)
. (A6)

Using the following decomposition of the Hamiltonian
matrix

H =

(
α β
β γ

)
≡ α+ γ

2
1 + βX +

α− γ

2
Z (A7)

with X,Z Pauli spin matrices, 1 the identity matrix
and (α, β, γ) real numbers, we can write the exact time-

propagator as

eiδH = eiδ
α+γ

2

[
cos(θ) + iθ̂ · σsin(θ)

]
(A8)

with

~θ = (δβ, 0, δ
α− γ

2
) θ̂ =

~θ

θ
. (A9)

From this expression we can easily determine the needed
angles (θ0, . . . , θ3). The full circuit for sQPE is then

|0〉 H Φ(θ0) • • S H

|Ψ〉 Rz(θ1) Ry

(
θ2
2

)
Ry

(
− θ2

2

)
Rz(− θ3+θ1

2 ) Rz(
θ3−θ1

2 )

(A10)

and the last rotation can be avoided.
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[40] R. Demkowicz-Dobrzański, J. Ko lodyński, and M. Guţă, Nature Communications 3, 1063 (2012), arXiv:1201.3940 [quant-

ph].
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[51] J. M. Chow, J. M. Gambetta, A. D. Córcoles, S. T. Merkel, J. A. Smolin, C. Rigetti, S. Poletto, G. A. Keefe, M. B.



21

Rothwell, J. R. Rozen, M. B. Ketchen, and M. Steffen, Phys. Rev. Lett. 109, 060501 (2012).
[52] N. Wiebe, C. Granade, C. Ferrie, and D. Cory, Phys. Rev. A 89, 042314 (2014).
[53] W. M. C. Foulkes, L. Mitas, R. J. Needs, and G. Rajagopal, Rev. Mod. Phys. 73, 33 (2001).
[54] J. Carlson, S. Gandolfi, F. Pederiva, S. C. Pieper, R. Schiavilla, K. E. Schmidt, and R. B. Wiringa, Rev. Mod. Phys. 87,

1067 (2015).
[55] D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D. Somma, Phys. Rev. Lett. 114, 090502 (2015).
[56] G. Hao Low and I. L. Chuang, ArXiv e-prints (2016), arXiv:1610.06546 [quant-ph].
[57] G. H. Low and I. L. Chuang, Phys. Rev. Lett. 118, 010501 (2017).
[58] M. Suzuki, Journal of Mathematical Physics 32, 400 (1991).
[59] A. M. Childs, D. Maslov, Y. Nam, N. J. Ross, and Y. Su, Proceedings of the National Academy of Sciences 115, 9456

(2018).
[60] T. Baumgratz and M. B. Plenio, New Journal of Physics 14, 023027 (2012).
[61] A. W. Harrow and A. Montanaro, Quantum 1, 6 (2017).


