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We derive a trade-off relation between accuracy of implementing a desired unitary evolution

using a restricted set of free unitaries and the size of the assisting system, in terms of the resource

generating/losing capacity of the target unitary. In particular, this relation implies that, for any

theory equipped with a resource measure satisfying lenient conditions, any resource changing unitary

cannot be perfectly implemented by a free unitary applied to a system and an environment if the

environment has finite dimensions. Our results are applicable to a wide class of resources including

energy, asymmetry, coherence, entanglement, and magic, imposing ultimate limitations inherent in

such important physical settings, as well as providing new insights into operational restrictions in

general resource theories.

I. INTRODUCTION

One of the ultimate goals in quantum information sci-

ence is to understand the operational enhancement made

possible by quantum phenomena as well as limitations on

the enhancement imposed by laws of quantum mechan-

ics. This is not only an important theoretical question

but also of practical relevance, as recent years have wit-

nessed the burgeoning development in manipulation of

systems on small scales, in which quantum effects play

central roles.

Any quantum information processing involves time evo-

lution of quantum states, and the most fundamental

building block for the quantum dynamics is unitary evo-

lution. Even though general quantum dynamics is de-

scribed by completely positive trace preserving (CPTP)

maps, also called quantum channels, any channel acting

on a system can be simulated by an appropriate unitary

operation applied over the system and an environment

[85], and thus any quantum evolution can be realized if

one has access to an arbitrary unitary. However, due to

technological limitations as well as restrictions imposed

by laws of physics, physical systems usually do not allow

one to apply an arbitrary unitary. This makes it essen-

tial to consider to what extent a desired unitary dynamics

can be realized only using a limited set of accessible uni-

taries. This question has been specifically addressed for

the systems with additive conserved quantities, in which

only unitaries that respect the conservation laws can be

applied [1, 55, 56, 69, 70, 87, 88]. In particular, Ref. [87]

has derived a lower bound for necessary amount of quan-

tum fluctuation that the ancillary state must possess to
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implement a desired unitary in terms of its implementa-

tion accuracy and the amount of energy that the target

unitary can create, and they further derived lower and

upper bounds that always match asymptotically in the

region where the implementation error is small [88]. The

presented bounds lead to a fundamental no-go theorem

that prohibits the perfect implementation of any unitary

that can create energy using energy conserving unitary

and finite-sized ancillary state.

However, there are various settings where other types

of quantities can play the main role, and one can ask

whether this type of trade-off relation is a general prop-

erty shared by generic physical situations. This line of

thought naturally leads to the idea of resource theories,

which are general frameworks that deal with quantifica-

tion and manipulation of precious quantities considered

“resource” under a given setting [24]. The resource the-

oretic framework allows for systematic investigation on

specific physical settings [2, 4, 8, 12, 13, 38, 39, 44, 51,

52, 64, 73, 76, 86, 94, 96, 100, 103] and has turned out to

be especially useful for providing a unifying operational

view to general class of quantities [7, 14, 26, 28, 42, 50, 57–

59, 61, 62, 75, 91, 92, 97]. In this context, it can be seen

that the previous works [87, 88] dealt with a specific the-

ory (i.e. theory of asymmetry with U(1) group [44, 64]),

and it has remained elusive whether one can extend the

relevant consideration to more general resources.

Here, we address the above question for the setting

where a set of “free” (i.e. accessible) unitaries is given,

and one aims to implement “resourceful” (i.e. non-free)

unitaries with a free unitary and an aiding state defined

in the ancillary system. Our main results are trade-

off relations between the implementation accuracy, the

amount of resources that the target unitary can change,

and the size of the ancillary system, which are applicable

to a wide class of physical settings that satisfy several
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lenient conditions. These relations immediately lead to

no-go theorems that prohibit us from implementing any

resourceful unitary with perfect accuracy only using free

unitaries and aiding states defined in a system with fi-

nite size, which qualitatively reproduces the results in

[87, 88] as a special case. We also apply our results to

several important settings and discuss significance of the

results.

This paper is organized as follows. In Section II, our

setup and useful quantities as well as conditions that play

major roles in later discussions are introduced. In Sec-

tion III, our first main result on the trade-off relation

between accuracy, the amount of resources the target uni-

tary can change, and the size of the ancillary system is

presented. In Section IV, we show our second main result

that relaxes one of the conditions in the trade-off relation,

which significantly increases its applicability. In Section

V, we apply our results to various resources such as en-

ergy, asymmetry, coherence, entanglement, and magic.

In Section VI, we discuss possibilities of extending the

no-go result to even more general settings. We finally

conclude our discussion in Section VII.

II. FREE UNITARIES AND RESOURCE

MEASURES

Let Hd denote the Hilbert space with dimension d and

D(Hd) be the set of density operators acting on Hd. Also,

let UF(d) ⊆ U(d) be some set of unitaries acting on Hd

and define UF :=
⋃

d UF (d), which we call set of free

unitaries. The set of free unitaries is usually determined

by the system of interest, and it can be most naturally

understood as free operations in the context of resource

theories. A resource theory is specified by its set of free

states and free operations, which are considered given

for free under the interested physical setting, and an im-

portant requirement for free operations is that they are

not capable of creating any resources out of free states.

For instance, for the setting where two parties are physi-

cally separated apart, a reasonable theory comes with the

set of separable states as free states and the set of local

operations and classical communication (LOCC) as free

operations. Motivated by the resource theoretic consider-

ations, we also define resource measures as the maps from

states to non-negative real numbers. If one assumes some

underlying resource theory of quantum states, one natu-

ral choice is to take resource monotones (which evaluate

zero for free states and do not increasing under applica-

tion of free operations) defined in the theory as resource

measures.

Once some resource theory is provided, one can nat-

urally consider UF as the set of unitaries that are also

free operations (e.g. the set of local unitaries for the case

of entanglement.) However, although considering the un-

derlying resource theory is conceptually useful, for our

purpose as long as the set of free unitaries is given, one

does not necessarily need to assume an underlying struc-

ture of the resource theory. Indeed, as we shall see later

it is sometimes convenient to only consider the set of free

unitaries, not explicitly taking into account the underly-

ing set of free states. In the same vein, we do not impose

the monotonicity property for resource measures in gen-

eral. Instead, we consider the following properties for a

resource measure R determined by the given set of free

unitaries, which play major roles in later discussions.

Property 1: (Invariance under free unitaries) R(ρ) =

R(V ρV †), ∀V ∈ UF .

Property 2: (Continuity) There exist non-negative in-

creasing functions f , g with limx→0 f(x) = 0,

g(x) < ∞, ∀x < ∞, and a real function h with

limx→0 h(x) = 0 such that

|R(ρ)−R(σ)| ≤ f(D(ρ, σ))g(d) + h(D(ρ, σ)) (1)

for ρ, σ ∈ D(Hd) where D(ρ, σ) is some distance

measure between ρ and σ.

Property 3: (Additivity for product states) R(ρ⊗σ) =
R(ρ) +R(σ).

Property 1 refers to that free unitaries do not change

the resource contents attributed to quantum states, and

it is especially a natural property when application of

a free unitary can be reversed by another free unitary.

Property 2 states that if two states are close to each other,

the amount of resources possessed by these states should

be also close. Property 3 is the property that if a state

is prepared independently of another state, the resource

contents attributed to the two states is evaluated as the

sum of the amount of resources possessed by each state.

As we see in Section V, these properties are shared by a

number of known resource measures, and we shall obtain

ultimate bounds on implementation accuracy of desired

unitary in term of the resource measures satisfying these

conditions.

We also define the resource generating power and re-

source losing power for unitary U [29, 59, 77, 106, 111]:

GU := max
ρ

{

R(UρU †)−R(ρ)
}

, (2)

LU := −min
ρ

{

R(UρU †)−R(ρ)
}

. (3)

Note that GU ,LU ≥ 0 for any U because there always

exists a state ρ that is invariant under U , for which one

can for instance take ρ = |u〉〈u| where |u〉 is an eigenstate

of the unitary.
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III. IMPLEMENTATION OF RESOURCEFUL

UNITARIES

Once the concept of free unitaries is introduced, one

can ask what can be done with them and what are ulti-

mate limitations imposed on the tasks accomplished by

the given free unitaries. One of the fundamental ques-

tions that is both practically and theoretically important

is whether we can implement (or simulate) non-free uni-

taries, which we call resourceful unitaries, only using free

unitaries with aid of ancillary system.

More specifically, our aim is to simulate the given uni-

tary US on the Hilbert space HS by a channel ΛS imple-

mented by a free unitary VSE ∈ UF acting on the Hilbert

space HS ⊗ HE and some ancillary state ρE ∈ D(HE),

i.e.

ΛS(·) := TrE [VSE(· ⊗ ρE)V
†
SE ]. (4)

The tuple I := (HE , VSE , ρE) defines a specific imple-

mentation of the channel. A standard way of evaluating

the closeness of two quantum channels is to see how close

the output states from these channels are when the chan-

nels are allowed to act on only part of the input space.

In order to take into account the worst-case input, we

define the error for the given implementation I, which is

a type of gate fidelity, as

δUS

I := max
ρS

δUS

I (ρS) (5)

where

δUS

I (ρS) := Le(ρS ,ΛU†
S

◦ ΛS), (6)

ΛU (·) := U · U † (7)

and

Le(ρS ,Λ) :=
√

2(1− Fe(ρS ,Λ)), (8)

Fe(ρS ,Λ) :=
√

〈ψ|SR [Λ⊗ idR](ψSR) |ψ〉SR. (9)

where |ψ〉SR is a purification of ρS . A related distance

measure is the Bures distance for two quantum states:

L(ρ, σ) :=
√

2 (1− F (ρ, σ)) (10)

where F (ρ, σ) := ‖√ρ√σ‖1 is the Uhlman fidelity. The

choice of this distance measure is primarily due to the

mathematical convenience in later discussions, but be-

cause of the well-known relations with other distance

measures, one can easily transform the results to the

ones with respect to other measures as well — indeed,

we will reformulate the relation in terms of the distance

measure based on trace norm and diamond norm, which

come with clear operational meaning in terms of distin-

guishability.

Then, we obtain the following trade-off relation be-

tween resourcefulness of desired unitary, implementation

accuracy, and dimension of the ancillary system with re-

spect to any resource measure satisfying the three prop-

erties above.

Theorem 1. Let R be a resource measure satisfying

Property 1, 2, 3 and fL, gL, hL, GUS
, LUS

be the func-

tions defined in (1), (2), (3) with respect to R and the

Bures distance: D(ρ, σ) := L(ρ, σ). Then, for any imple-

mentation I, it holds that

GUS
+ LUS

≤ αL(δ
US

I , dE) + βL(δ
US

I ). (11)

where αL(x, y) := fL(2
√
2x)gL(y) + 2fL(2x)gL(dS · y),

βL(x) := hL(2
√
2x)+2hL(2x) with dE := dimHE, dS :=

dimHS.

The proof of Theorem 1 can be concisely stated by uti-

lizing the “no-correlation lemma” shown in [88], which

quantitatively clarifies the fact that in order to imple-

ment a unitary on the target system approximately, the

correlation between the target system and the external

device must become weak. We defer a detailed proof to

Appendix. Note that αL and βL are increasing functions

that approach 0 as x, y → 0. Thus, fixing the dimension

of the system of interest, Theorem 1 can be seen as a

trade-off relation between the size of the device in the

ancillary system and the implementation accuracy, and

in particular the result indicates that in order to imple-

ment a resourceful unitary the dimension of the ancillary

system must grow as the implementation becomes bet-

ter, and at the limit of perfect implementation the size

of the ancillary system must diverge. Notably, Theorem

1 holds for any resource measure that satisfies Property

1, 2, 3, which ensures a wide applicability of the trade-

off relation. This observation immediately leads to the

following fundamental no-go theorem.

Corollary 2. Given the set of free unitaries UF and a

finite dimensional ancillary system HE with dimHE <

∞, it is impossible to perfectly implement any unitary

that can generate (or lose) nonzero resources in terms of

at least one resource measure satisfying Property 1, 2, 3

by means of Eq. (4).

Theorem 1 and Corollary 2 suggest an important im-

plication — one might think that if a target operation

can only create certain amount of resource, supplying a

state defined in a finite-dimensional space with roughly

the same amount of resource would be enough to accom-

plish the desired implementation. The above results state

that it is not the case when it comes to the unitary im-

plementation, and Theorem 1 in particular provides a

quantitative estimation of the necessary dimension even

when a non-zero error is allowed.
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It is also convenient to rewrite Theorem 1 in terms of

the trace norm and diamond norm.

Corollary 3. Suppose the implementation I =

(HE , ρE , VSE) implements channel ΛS with the error

measured by the diamond norm: δUS

I,⋄ := ‖ΛUS
− ΛS‖⋄.

Let R be a resource measure satisfying Property 1, 2,

3 and f1, g1, h1, GUS
, LUS

be the functions defined

in (1), (2), (3) with respect to R and the trace norm:

D(ρ, σ) := ‖ρ− σ‖1. Then, it holds that

GUS
+ LUS

≤ α1(δ
US

I,⋄, dE) + β1(δ
US

I,⋄) (12)

where α1(x, y) := f1
(

4
√
2x
)

g1(y) + 2f1 (4
√
x) g1(dS · y)

and β1(x) := h1
(

4
√
2x
)

+ 2h1 (4
√
x).

This is a direct consequence from Theorem 1, but we

include a proof in Appendix for completeness.

IV. RELAXATION OF ADDITIVITY

CONDITION

Although a large class of resource theories possess

generic resource measures that satisfy Property 1 and

Property 2, the additivity condition (Property 3) is

rather a peculiar one. In fact, classes of resource mea-

sures that can be defined for any convex resource theory

(e.g. relative entropy measure, robustness measure, con-

vex roof measure etc.) are often only subadditive for

product states. Thus, relaxing the additivity condition

is highly desired in order for the results to be applicable

to more generic scenarios.

Here, we relax the additivity condition into that for

pure product states. It gives us much more freedom to

choose resource measures because some important mea-

sures are additive only for pure product states. Exam-

ples for such measures include relative entropy of entan-

glement [98] and (logarithm of) stabilizer extent for the

theory of magic [15], which we discuss later in detail.

To this end, we introduce a relaxed version of Prop-

erty 3 for resource measures.

Property 3’: (Additivity for pure product states) R(ρ⊗
σ) = R(ρ) +R(σ) for any pure states ρ, σ.

We also define the following resource generating/losing

power for pure input states:

GpU := max
|ψ〉

{

R(U |ψ〉〈ψ|U †)−R(|ψ〉〈ψ|)
}

(13)

LpU := −min
|ψ〉

{

R(U |ψ〉〈ψ|U †)−R(|ψ〉〈ψ|)
}

. (14)

For the same reason that GU , LU ≥ 0, it also holds that

GpU ,L
p
U ≥ 0 for any unitary U .

Then, we obtain the following trade-off relation.

Theorem 4. Let R be a resource measure satisfying

Property 1, 2, 3’ and fL, gL, hL, GpUS
, LpUS

be the func-

tions defined in (1), (13), (14) with respect to R and the

Bures distance: D(ρ, σ) := L(ρ, σ). Then, for any im-

plementation I = (HE , VSE , ρE) with a pure state ρE, it

holds that

GpUS
+ LpUS

≤ 2
(

fL(2(1 +
√
2)δUS

I )gL(dEdS) + hL(2(1 +
√
2)δUS

I )
)

.

(15)

A proof can be found in Appendix. It is worth noting

that R does not have to be defined for general mixed

states; as long as it is well-defined for pure states, the

statement holds and the continuity (Property 2) can be

relaxed to that for pure states.

This Theorem leads to a variant of the aforementioned

no-go theorem on perfect implementability of resourceful

unitary.

Corollary 5. Given the set of free unitaries UF and a

finite dimensional ancillary system HE with dimHE <

∞, it is impossible to perfectly implement any unitary

that can generate (or lose) nonzero resources out of pure

states in terms of at least one resource measure satisfying

Property 1, 2, 3’ by means of Eq. (4) with ρE being a pure

state.

These results encompass a standard setup where some

unit resource state (e.g. Bell state for entanglement, uni-

form superposition state for coherence), which is usually

pure, is prepared in the ancillary system. Although using

the unit state as a resource supply appears to be more

effective than using a mixed state, interestingly the re-

quirement for Theorem 4 to hold is more lenient than

that for Theorem 1, imposing more severe restriction on

the achievable accuracy for the implementation with a

pure ancillary state.

V. APPLICATIONS

Here, we examine the validity of our results by apply-

ing them to specific physical settings. Although there

is no systematic way of constructing a resource measure

satisfying the three properties to our knowledge, it turns

out that many of the important settings come with such

measures tailored to each situation.

A. Systems with additive conserved quantities

Consider a composite system consisting of subsystems

{Si}Mi=1 with an observable Htot = H1 ⊗ I
⊗M−1 + I ⊗
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H2 ⊗ I
⊗M−2 + . . . where Hi are local observables associ-

ated with subsystem Si. For these observables, we choose

the set of free unitaries as the ones that conserve the ex-

pectation values for any states, or equivalently, commute

with the observable. Namely, we choose

UF =
{

US1...SM

∣

∣

∣
[Htot, US1...SM

] = 0
}

. (16)

An important setting that fits into this formalism is

the system with conserved energy where the observable in

question is the Hamiltonian of the system. Then, the free

unitaries can be considered time evolutions that respect

the energy conservation law, which in particular play key

roles in thermodynamics on small scales [3, 12, 13, 43, 48,

49, 65, 78, 81, 89, 95].

For this theory, natural resource measures one can take

will be the expectation value of the observable: R(ρS) :=

Tr[ρSHS ]. It is clear that this measure satisfies Property

1 and 3. Regarding Property 2, let us take the observable

of the form HS =
∑dS−1
j=0 j|j〉〈j|. Then, we get

|R(ρ)−R(σ)| = |Tr[(ρ− σ)HS ]|
= |
∑

j

(ρjj − σjj)HS,j |

≤
∑

j

|(ρjj − σjj)||HS,j |

≤
∑

j

|(ρjj − σjj)|‖H‖∞

= ‖∆(ρ− σ)‖1(dS − 1)

≤ ‖ρ− σ‖1(dS − 1)

(17)

where ρjj = 〈j| ρ |j〉, σjj = 〈j| σ |j〉, HS,j = 〈j|HS |j〉, ∆
is the dephasing with respect to the eigenbasis ofHS , and

we used the contractivity of the trace norm under CPTP

maps in the last inequality. Thus, for this case one can

take f1(x) = x, g1(x) = x, and h1(x) = −x in Corol-

lary 3, and we conclude that finite dimensional environ-

ment does not allow for perfect implementation of unitary

that changes the energy by any energy-conserving unitary

and an energy “battery” state, which qualitatively repro-

duces the results in [87, 88]. Although we considered the

observable with uniform spectrum, a similar argument

can be applied to other observables with more general

form.

It will be worth pointing out that this is a situation

where our approach in which one does not necessarily

need to assume any underlying resource theory becomes

useful, since the concept of free states and free operations

for this setting can be ambiguous — from the perspective

that the energy is resource, one could say that the ground

state |0〉 is free, but in that case the set of free unitaries

defined in terms of free operations does not coincide with

the set of energy-conserving unitaries since any unitary

that can change energy but does not affect the ground

state (e.g. bit flip between |1〉 and |2〉) also becomes free

in this definition. Thus, when the focus is put on the

conservation law, it is natural to just consider the set of

free unitaries that meets the physical requirement.

On the other hand, by shifting our focus on the type

of resource of interest from the expectation value of the

observable to that of fluctuation, the underlying resource

theory can be naturally identified as the resource theory

of asymmetry [44, 64]. In particular, the resource theory

of asymmetry with U(1) group with unitary representa-

tion Ut = eiHSt is equipped with a family of resource

monotones that are additive for product states known

as metric-adjusted skew informations [47, 90, 112]. One

of the examples in this family is the well-known Wigner-

Yanase skew information [63, 107] defined as

IWY (ρ,HS) = −1

2
Tr([

√
ρ,HS ]

2)

= Tr(ρH2
S)− Tr(

√
ρHS

√
ρHS).

(18)

Since this satisfies Property 1 and 3, Theorem 1 and

Corollary 2 can be applied with respect to this measure

as well, providing another way of looking at the trade-off

relation.

Finally, when the observable of interest is the Hamilto-

nian, the free unitaries in (16) preserve the Gibbs state

τ = exp(−HS/T )/Z where T is the temperature and Z

is the partition function of the system. This motivates us

to consider the “athermality”, a measure indicating the

distance from the Gibbs state to the given state, and es-

pecially the free energy is recovered by taking the relative

entropy as a distance measure:

AR(ρ) := S(ρ||τ) = 1

T
(F (ρ)− F (τ)) (19)

where F (ρ) := Tr[ρHS ] − TS(ρ) is the free energy. It

is then easy to see that this also satisfies all the three

properties.

B. Coherence

Consider the theory of coherence [2, 8, 86] where

one is interested in the degree of superposition with re-

spect to the given preferred basis {|i〉}. For this the-

ory, the set of incoherent states I := conv({|i〉〈i|})
is a reasonable choice for the free states, and one can

naturally choose the relevant free unitaries UF(d) =
{

U
∣

∣

∣
U =

∑d−1
j=0 e

iθj |π(j)〉〈j|
}

where π is the permuta-

tion on {0, . . . , d − 1}, which is often called the set of

incoherent unitaries.
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As a resource measure, let us consider a standard co-

herence measure, the relative entropy of coherence:

CR(ρ) := min
σ∈I

S(ρ||σ) = S(∆(ρ))− S(ρ). (20)

For this measure, it is easy to see that Property 1 is sat-

isfied. The explicit form of CR in (20) ensures Property 3

as well because of the additivity of the von Neumann en-

tropy for product states. As for Property 2, recall the

following asymptotic continuity property that holds for

relative entropy measure MR(ρ) := infσ∈F S(ρ||σ) with

F being any convex and closed set of positive semidefi-

nite operators that contains at least one full-rank opera-

tor [108]:

|MR(ρ)−MR(σ)| ≤ κǫ+ (1 + ǫ)b

(

ǫ

1 + ǫ

)

(21)

for any two states 1
2‖ρ − σ‖1 ≤ ǫ where κ :=

supτ,τ ′{MR(τ) − MR(τ
′)} and b(x) := −x log x − (1 −

x) log(1−x) is the binary entropy. For the case of theory

of coherence, (21) reduces to the following bound:

|CR(ρ)− CR(σ)| ≤ ǫ log d+ (1 + ǫ)b

(

ǫ

1 + ǫ

)

, (22)

for which we find f1(x) = x, g1(x) = log x, and h1(x) =

(1 + x)b(x/(1 + x)). Since this measure is also faithful,

i.e. CR(ρ) = 0 iff ρ ∈ I , Corollary 3 implies that any

coherence generating unitary that can create a coherent

state out of an incoherent state cannot be implemented

with zero-error with aid of any coherent state acting on

finite-dimensional ancillary system.

C. Entanglement

Arguably, entanglement is one of the most important

resources to consider, which has a strong connection to

operational tasks in quantum information processing. In

particular, using only local operations and classical com-

munication to implement desired global operations with

help of preshared entanglement is a key idea of quantum

network and distributed quantum computing [30, 72],

and methodology as well as necessary entanglement cost

for implementing global gates with local operations and

classical communication have been considered for vari-

ous settings [21, 22, 33, 82, 104, 105]. Our formalism

addresses a more restricted scenario where the parties

only have access to local gates in order to implement a

desired global gate with aid of preshared entanglement.

Our results induce necessary size of the shared entan-

gled state and imply the impossibility of perfectly imple-

menting any entangling gate with finite-sized aiding sys-

tem. Since it is clearly possible to perfectly implement

any global unitary if classical communication is allowed

(via quantum teleportation), our results clarify the signif-

icance of classical communication for the situations such

as distributed quantum computing [67].

In order to apply our results, we need to find an en-

tanglement measure satisfying the three properties. In

particular, one needs to be careful about the additivity

property since some well-known entanglement measures

(e.g. such as the (max-)relative entropy of entanglement

[27, 102], robustness of entanglement [101]) are only sub-

additive even for product states, and it had been indeed

an important program to find an additive measure of en-

tanglement. As a result, the squashed entanglement was

introduced as an additive entanglement measure [25], and

its continuity was also shown [5]. In addition, the con-

ditional entanglement of mutual information [109] was

introduced as another additive and continuous measure

of entanglement. Remarkably, this measure can be easily

extended to multipartite entanglement, which allows our

results to be applied to the multipartite scenarios.

On the other hand, Theorem 4 allows us to avoid this

subtlety and take even simpler entanglement measure.

For instance, the relative entropy of entanglement is ad-

ditive for pure product states, as can be seen by not-

ing that it reduces to the entanglement entropy for pure

states. Since it clearly satisfies Property 1 and 2 as well,

Theorem 4 and Corollary 5 immediately follows for such

measure.

D. Fault-tolerant quantum computation

To realize the quantum computation in a noise-resilient

fashion, which is so called fault-tolerant quantum compu-

tation [74, 80], encoding quantum states into quantum

error correcting codes and carrying out logical compu-

tation inside the code space is essential. Since many

promising error correcting codes allow for relatively ef-

ficient implementation of the logical Clifford gates in a

fault-tolerant manner [10, 36, 79, 83, 84], for the situ-

ations where those codes are in use, Clifford gates can

be naturally considered “free”. However, since Clifford

gates do not form a universal gate set, some non-Clifford

gate needs to be implemented fault-tolerantly, and a pop-

ular way of realizing it is via the gate teleportation [41],

in which “magic states” [17] are injected as resources

of “non-Cliffordness”. Since good logical magic states

are hard to prepare in general, a magic-state distillation

protocol [17] should be run beforehand to increase the

quality of the noisy magic states. However, a large over-

head cost comes with the distillation protocols and how

to reduce the overhead has been under active research

[16, 18, 19, 31, 32, 34, 35, 40, 46, 54, 60, 68] (error cor-
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recting codes that avoid using the magic-state distillation

have also been investigated [6, 9, 20, 53, 66, 71, 93, 110]),

and this costly nature of magic states motivates us to

consider the resource theory of magic, which considers

the “magicness” as precious resources.

The resource theory of magic is defined by the set

of free states called stabilizer states, which is the con-

vex combinations of pure states produced by Clifford

gates [100]. By definition, non-Clifford gates are able

to create non-stabilizer sates out of stabilizer states, and

as described above it is an essential building block for

universal quantum computation. This operationally mo-

tivated framework leads us to a natural question on how

well non-Clifford gate could be implemented by Clifford

gates with aid of magic states as resources. Our results

address this question by considering appropriate resource

measures for magicness. We consider the cases of qubits

(dimension 2) and quopits (qudits with odd-prime dimen-

sions) separately.

1. Qubits

Although one can consider valid magic monotones de-

fined for multiqubit states (e.g. relative entropy of magic

[100], robustness of magic [52]), they are not additive

for product states in general, which prevents us from ap-

plying Theorem 1. However, Theorem 4 turns out to

be useful in this case since there indeed exists a measure

defined for pure states and additive for pure product mul-

tiqubit states. To this end, consider the stabilizer extent

introduced in [15]:

ξ(|ψ〉) := min







(

∑

i

|ci|
)2

∣

∣

∣

∣

∣

∣

|ψ〉 =
∑

i

ci |φi〉







(23)

where |φi〉 are pure stabilizer states. The stabilizer ex-

tent was originally introduced for investigating the over-

head cost for classically simulating quantum circuits, but

we find that it is also useful for our purpose, providing

a new perspective to this measure. Let us take our re-

source measure as R(|ψ〉〈ψ|) = log ξ(|ψ〉). It was shown

that the stabilizer extent is multiplicative for tensor prod-

ucts between states supported on up to three qubits [15],

and thus R satisfies Property 3’. Property 1 is also sat-

isfied because of the monotonicity of ξ under Clifford

gates and reversibility of Clifford unitary under another

Clifford unitary (since Clifford gates constitute a group).

As for Property 2, we first remark that our measure co-

incides with the max-relative entropy of magic for pure

states as shown in Ref. [75], where the max-relative en-

tropy measure is defined as

Dmax(ρ) := min
{

r
∣

∣

∣
ρ � 2rσ, σ ∈ STAB

}

(24)

where STAB refers to the set of stabilizer states, and

� denotes the inequality with respect to the positive

semidefiniteness. Then, we prove the following continu-

ity bound for max-relative entropy of magic, which may

be of independent interest. Using the identity between

R and (24) for pure states, the continuity of stabilizer

extent is derived as a special case of this result. It would

be also worth noting that the following result holds for

the max-relative entropy measure defined for any convex

resource theory that includes the maximally mixed state

as a free state. (One can also easily extend the relation

to the theories with at least one full-rank free state.)

Proposition 6. Let ρ, σ ∈ D(HdS ) and suppose that

‖ρ− σ‖1 < 1/(2dS). Then, it holds that

|Dmax(ρ)−Dmax(σ)| ≤ 2‖ρ− σ‖1dS . (25)

The proof is presented in Appendix. Our results pro-

vide an interesting implication for implementation of non-

Clifford gates. Suppose we are given qubits acting on

system A and try to implement some non-Clifford gate

UNC on the subsystem A1 ⊂ A by applying Clifford gates

on A. Let N be the number of qubits supported on the

subsystem A \A1. Then, our results imply that in order

to realize the implementation accuracy ǫ with respect to

the diamond norm, the required number of qubitsN must

scale as Ω

(

log

(

Gp

UNC
+Lp

UNC√
ǫ

))

. This observation explic-

itly tells us the importance of measurement + feedfor-

ward (adaptive) operations for quantum circuits to gain

their power.

2. Quopits

For the case when the dimension of the system that

each qudit acts on is odd-prime, “mana” was introduced

as a magic monotone [100]:

M(ρ) := log

(

∑

u

|Wρ(u)|
)

(26)

where Wρ(u) is the discrete Wigner function for state ρ

[45]. The mana essentially measures the total negativ-

ity of the discrete Wigner function, which is motivated

by the fact that stabilizer states only take non-negative

value for the discrete Wigner function. An important

property of this measure for our purpose is that it is

additive for product states, which comes from that the

discrete Wigner function for a product state is just the

multiplication of the two discrete Wigner functions of the

states that constitute the product state. It is also con-

tinuous (although it is not asymptotically continuous as

shown in [100]), and Property 1 can be also easily seen by
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the monotonicity of mana under Clifford gates and the

fact that the application of Clifford gate can be reversed

by another Clifford gate. Thus, Theorem 1 and Corollary

2 can be applied with respect to the mana measure.

Note that the mana is not faithful: there exists a magic

state ρ with M(ρ) = 0 [99]. However, the discrete Hud-

son’s theorem [45] ensures that it is faithful for pure

states, which is enough to show that any non-Clifford

unitary cannot be implemented with zero-error with fi-

nite number of magic states.

VI. TOWARD FULL GENERALITY

Although Theorem 4 covers most of the known impor-

tant settings, one could still argue that some theory of

interest may not come with a resource measure that satis-

fies all the three properties, especially the additivity con-

dition. Here, we focus on the qualitative no-go statement

and see that it is quite unlikely for the perfect implemen-

tation of resourceful unitary to be possible even in more

general settings.

Suppose that free unitary VSE and pure state

|φ〉 allow for an exact implementation of US , i.e.

TrE

[

VSE(ρS ⊗ |φ〉〈φ|E)V †
SE

]

= USρSU
†
S for any ρS . By

taking δUS

I = 0 in (C1), we get

TrS

[

VSE(ρS ⊗ |φ〉〈φ|E)V †
SE

]

= σ′
E (27)

where σ′
E is a pure state. Since states with pure reduced

states are only product states, we know that the total

state must look like

VSE(ρS ⊗ |φ〉〈φ|E)V †
SE = USρSU

†
S ⊗ σ′

E . (28)

Then, we get for any ρS and any measure R that is in-

variant under free unitaries that

R(ρS ⊗ |φ〉〈φ|) = R(VSE(ρS ⊗ |φ〉〈φ|)V †
SE )

= R(USρSU
†
S ⊗ σ′

E)
(29)

Thus, for the given theory, unless any resource measure

with Property 1 (but not necessarily Property 2, 3, 3’)

satisfies (29) for any ρS , it is impossible to implement

the target US exactly. Note that this is a very strong

restriction, and when R is additive for product states,

Corollary 2 and 5 are reproduced.

Let us impose another natural condition on R that it

be a subadditive monotone for some resource theory in

which composition of free states and partial trace are free

operations. For such cases, one can show thatR(|φ〉〈φ|) =
R(σ′

E) as follows. Take a free state τS and ηS = U †
SτSUS.

Then, we get

R(|φ〉〈φ|) ≥ R(τS ⊗ |φ〉〈φ|)
= R(USτSU

†
S ⊗ σ′

E) ≥ R(σ′
E)

(30)

and

R(σ′
E) ≥ R(USηSU

†
S ⊗ σ′

E)

= R(ηS ⊗ |φ〉〈φ|) ≥ R(|φ〉〈φ|).
(31)

where to show both of the above relations we used that

the composition of free states is a free operation in the

first inequalities, the invariance of R under free unitaries

and (28) in the equalities, and that the partial trace is a

free operation in the last inequalities together with the

assumption that R is a monotone under free operations.

This makes it even more surprising that Eq. (29) holds

for any ρS for resourceful unitary US since it would indi-

cate that attaching ancillary states with the same amount

of resources to two states with different amount of re-

sources would necessarily produce the states with the

same amount of resources. We leave the thorough analy-

sis on how general the no-go statement can be made for

future work.

VII. CONCLUSIONS

We considered a general setting where one aims to im-

plement a target unitary with access to a restricted set of

unitaries as well as ancillary system. We derived a trade-

off relation between the implementation accuracy and the

size of the ancillary system in terms of the amount of the

resources that can be changed by the target unitary with

respect to resource measures that satisfy three properties:

invariance under free unitaries, continuity, and additivity

for product states. Using this relation, we presented a

fundamental no-go theorem on the perfect implementa-

tion of resourceful unitaries with finite-dimensional ancil-

lary systems. We further relaxed the subtle condition in

the above three properties, additivity for product states,

and showed an analogous trade-off relation that only re-

quires the resource measures to be additive for pure prod-

uct states, in addition to the other two properties. We

exemplified the wide validity of our results by applying

them to various important settings and discussed physi-

cal significance implied by the results for specific settings.

We finally discussed the feasibility of extending our no-go

results to even more general settings that do not assume

all the properties for the resource measures we consid-

ered.

For future work, it will be intriguing to clarify whether

some of the required properties for resource measures con-

sidered in this work can be dropped to obtain a similar

trade-off relation. It will also be interesting to investigate

how good our lower bounds are in general by constructing

upper bounds with explicit protocols that approximately

implement desired unitaries.
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Note added. — During the completion of this

manuscript, we became aware of the independent related

work by G. Chiribella, Y. Yang, and R. Renner [23].

ACKNOWLEDGMENTS

We thank Tomoyuki Morimae for fruitful discussions.

R. T. acknowledges the support of NSF, ARO, IARPA,

and the Takenaka Scholarship Foundation. H. T. ac-

knowledges the support of JSPS (Grants-in-Aid for Sci-

entific Research No. JP19K14610).

Appendix A: Proof of Theorem 1

We first retrieve the main lemma we use for the readers’

convenience.

Lemma 7 (No-correlation lemma [88]). Let ΛAB be a

channel on the composite system AB and UA be a unitary

operation on A. We consider three possible initial states

of A: ρ
(0)
A , ρ

(1)
A , and ρ

(0+1)
A := (ρ

(0)
A + ρ

(1)
A )/2 and write

the initial state of B as ρB. We refer to the final states

of AB and B with the initial state ρ
(i)
A (i = 0, 1, 0+1) as

σ
(i)
AB := ΛAB(ρ

(i)
A ⊗ ρB), (A1)

σ
(i)
B := TrA[σ

(i)
AB]. (A2)

Let ΛA be the channel implemented by the implementa-

tion I = (HE ,ΛAB, ρB), i.e. ΛA(·) := TrB[ΛAB(· ⊗ ρB)]

and write the accuracy of implementation of UA with im-

plementation I for input state ρ
(i)
A as δ

U,(i)
I := δUI (ρ

(i)
A )

as in (7). Then, for any UA and I, we have the following

relations:

1. It holds that

L(σ
(i)
AB, UAρ

(i)
A U †

A ⊗ σ
(i)
B ) ≤ 2δ

UA,(i)
I . (A3)

2. There exists a state σ
′(0+1)
B of B such that

L(σ
(0)
B , σ

′(0+1)
B ) + L(σ

′(0+1)
B , σ

(1)
B ) ≤ 2

√
2δ
UA,(0+1)
I .

(A4)

Moreover, if ρB is a pure state and ΛAB is a unitary

operation, one can take a pure state for σ
′(0+1)
B .

We are now in a position to prove Theorem 1.

Proof. Define ρ
(i)
S , i = 0, 1 as

ρ
(0)
S := argmax(R(USρSU

†
S)−R(ρS)) (A5)

ρ
(1)
S := argmin(R(USρSU

†
S)−R(ρS)) (A6)

and corresponding final states on SE and E as

σ
(i)
SE := VSE(ρ

(i)
S ⊗ ρE)V

†
SE , (A7)

σ
(i)
E := TrS [σ

(i)
SE ]. (A8)

Due to Property 1 and 3 of the resource measure R, we

have

R(ρ
(i)
S ) +R(ρE) = R(σ

(i)
SE). (A9)

Using (A3), we get

L(σ
(i)
SE , USρ

(i)
S U †

S ⊗ σ
(i)
E ) ≤ 2δUS

I . (A10)

Due to Property 2 of R and (A9), (A10), we obtain

|R(ρ(i)S ) +R(ρE)− R(USρ
(i)
S U †

S)−R(σ
(i)
E )|

≤ fL(2δ
US

I )gL(dEdS) + hL(2δ
US

I ).
(A11)

Using the triangle inequality and (A11), we get

|R(ρ(0)S )−R(USρ
(0)
S U †

S)−R(σ
(0)
E )

−R(ρ
(1)
S ) +R(USρ

(1)
S U †

S) +R(σ
(1)
E )|

≤ 2
(

fL(2δ
US

I )gL(dEdS) + hL(2δ
US

I )
)

.

(A12)

Another use of the triangle inequality leads to

|R(σ(0)
E )−R(σ

(1)
E )|

≥ |R(USρ(0)S U †
S)−R(ρ

(0)
S )−R(USρ

(1)
S U †

S) +R(ρ
(1)
S )|

− 2
(

fL(2δ
US

I )gL(dEdS) + hL(2δ
US

I )
)

= GUS
+ LUS

− 2
(

fL(2δ
US

I )gL(dEdS) + hL(2δ
US

I )
)

(A13)

where we used GUS
,LUS

≥ 0 in the equality. On the

other hand, using (A4) together with triangle inequality

and Property 2 of R, we get

|R(σ(0)
E )−R(σ

(1)
E )|

≤ fL(2
√
2δUS

I )gL(dE) + hL(2
√
2δUS

I ). (A14)

Combining (A13) and (A14), we finally obtain

GUS
+ LUS

≤ fL(2
√
2δUS

I )gL(dE) + hL(2
√
2δUS

I )

+ 2
(

fL(2δ
US

I )gL(dEdS) + hL(2δ
US

I )
)

= αL(δ
US

I , dE) + βL(δ
US

I ). (A15)

Appendix B: Proof of Corollary 3

Proof. Recall the relation between the Bures distance and

the trace distance [37]

1

2
(L(ρ, σ))2 ≤ 1

2
‖ρ− σ‖1 ≤ L(ρ, σ), (B1)
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which also implies δUS

I ≤
√

δUS

I,⋄. Then, (A3) and (A4)

imply

1

2
‖σ(i)

SE − USρ
(i)
S U †

S ⊗ σ
(i)
E ‖1 ≤ 2

√

δUS

I,⋄ (B2)

and

1

2
‖σ(0)

B − σ
(1)
B ‖1 ≤ 2

√

2δUS

I,⋄ (B3)

Then, the same proof as Theorem 1 can be employed to

obtain the statement.

Appendix C: Proof of Theorem 4

Proof. Lemma 7 together with the assumption that ρE
is pure ensures that there exists a pure state σ′

E that

satisfies (A4), namely

L(σ
(i)
E , σ′

E) ≤ L(σ
(0)
E , σ′

E) + L(σ
(1)
E , σ′

E)

≤ 2
√
2δUS

I .
(C1)

Then, we obtain

L(σ
(i)
SE , USρ

(i)
S U †

S ⊗ σ′
E)

≤ L(σ
(i)
SE , USρ

(i)
S U †

S ⊗ σ
(i)
E )

+ L(USρ
(i)
S U †

S ⊗ σ
(i)
E , USρ

(i)
S U †

S ⊗ σ′
E)

≤ 2δUS

I + L(σ
(i)
E , σ′

E)

≤ 2(1 +
√
2)δUS

I (C2)

where in the first inequality we used the triangle inequal-

ity, in the second inequality we used (A3) and the fact

that L(ρ⊗σ, ρ⊗ τ) = L(σ, τ), and in the third inequality

we used (C1).

Let ρ
(0)
S and ρ

(1)
S be pure states that achieve (13) and

(14) respectively. Then, Property 1 and 3’ of R lead to

R(σ
(i)
SE) = R(ρ

(i)
S ) +R(ρE). (C3)

and

R(USρ
(i)
S U †

S ⊗ σ′
E) = R(USρ

(i)
S U †

S) +R(σ′
E). (C4)

Combining Property 2, (C2), (C3), (C4), we get

|R(ρ(i)S ) +R(ρE)−R(USρ
(i)
S U †

S)−R(σ′
E)|

≤ fL(2(1 +
√
2)δUS

I )gL(dEdS) + hL(2(1 +
√
2)δUS

I ).

(C5)

Hence,

0 = R(ρE)−R(σ′
E) +R(σ′

E)−R(ρE)

≥ R(USρ
(0)
S U †

S)−R(ρ
(0)
S )−R(USρ

(1)
S U †

S) +R(ρ
(1)
S )

− 2
(

fL(2(1 +
√
2)δUS

I )gL(dEdS) + hL(2(1 +
√
2)δUS

I )
)

= GUS
+ LUS

− 2
(

fL(2(1 +
√
2)δUS

I )gL(dEdS) + hL(2(1 +
√
2)δUS

I )
)

,

(C6)

which proves the statement.

Appendix D: Proof of Proposition 6

Proof. We assume Dmax(ρ) ≥ Dmax(σ) without loss of

generality. The definition of max-relative entropy mea-

sure (24) admits the following dual form [11]:

maximize logTr[ρX ]

subject to X � 0

Tr[τX ] ≤ 1, ∀τ ∈ STAB.

(D1)

Let Xρ be an optimal solution that achieves (D1) for

state ρ. Then, we obtain

Dmax(σ) ≥ logTr[σXρ]

≥ log (Tr[ρXρ]− ‖ρ− σ‖1‖Xρ‖∞)

= Dmax(ρ) + log

(

1− ‖ρ− σ‖1‖Xρ‖∞
Tr[ρXρ]

)

≥ Dmax(ρ) + log (1− ‖ρ− σ‖1dS)
≥ Dmax(ρ)− 2‖ρ− σ‖1dS

(D2)

The first inequality is because Xρ is a suboptimal so-

lution for σ. The second inequality is because of the

same argument in (17). The third inequality is because

it holds that ‖Xρ‖∞ ≤ dS from the second constraint

in (D1) together with the fact that the maximally mixed

state I/dS is a stabilizer state, and that Tr[ρXρ] ≥ 1 be-

cause I serves as a suboptimal solution for X that gives

Tr[ρI] = 1. The fourth inequality is because it holds that

log(1− x) ≥ −2x for 0 ≤ x ≤ 1/2 (note that we take the

base 2 for the logarithm), where we used the assumption

that ‖ρ − σ‖1 < 1/(2dS). Note also that the logarithm

in (D2) is always well-defined because Tr[ρXρ] ≥ 1 and

‖ρ− σ‖1‖X‖∞ ≤ 1/2. The statement is reached by com-

bining the assumption that Dmax(ρ) ≥ Dmax(σ).
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