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We propose the application of a coherence-based measure for non-Markovianity to study the
dynamics of color centers in diamond, where the optical coherence between two orbital states is
affected by interactions with a structured phonon bath. Although limited to pure dephasing, we
show that this measure is well-behaved at arbitrary temperatures and experimentally accessible
through Ramsey spectroscopy. By taking realistic phonon spectral density functions into account,
we use this quantity to show how non-Markovianity is affected by the presence of both bulk and
quasi-localized phonon modes, as relevant for most defects in solids. Importantly, with only a minor
modification the measure can be adapted to study the source of non-Markovianity in driven two-level
systems and is thus applicable for a large class of systems modeled by the spin-boson Hamiltonian.

I. INTRODUCTION

By employing the principles of superposition and en-
tanglement, quantum systems can outperform their clas-
sical counterparts in many applications such as computa-
tion, cryptography and high-precision measurements [1–
3]. However, to benefit from this quantum advantage,
the systems must be protected from detrimental interac-
tions with the environment using passive isolation as well
as active techniques such as error correction or decoupling
pulses. To implement efficient error-mitigation schemes it
is crucial to have a precise understanding of the underlying
system-environment interaction [4], in particular in real-
istic non-Markovian settings, where information can flow
back from the bath to the system and is not immediately
lost. These scenarios have been exploited, for example, for
quantum metrology [5], quantum channels [6], entangling
protocols [7] or quantum control [8] and led to a growing
interest in the questions how different environments can be
compared and how non-Markovianity (NM) can be quanti-
fied [9–12].

While a variety of completely general measures for NM
have already been proposed, those measures involve, for
example, the maximization of the trace distance between
two different initial states [9], the addition of auxiliary
systems [10] or the complete knowledge of the dynamical
map [11]. This makes proof-of-concept demonstrations and
the broad use of such measures for modeling realistic appli-
cations very cumbersome. However, in many situations of
interest the effect of the environment is naturally constraint
to pure dephasing, in which case a measure for NM can be
directly derived from the coherence of the system [13, 14].
This quantity is most essential for quantum technology ap-
plications and in many cases it can be directly accessed
through Ramsey measurements. It is thus important to an-
alyze such measures for NM not only from a mathematical
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point of view, but also to study their behavior in realistic
settings.

In this paper we introduce and investigate a coherence-
based measure suitable for characterizing NM features in
the dephasing dynamics of color centers in solids. Specifi-
cally, we focus on the silicon-vacancy (SiV−) and nitrogen-
vacancy (NV−) centers in diamond, which have attracted
wide attention because the quantum state of these centers
can be initialized, controlled and read out with high fi-
delity [15–17]. These unique properties make them strong
candidates for various quantum sensing and quantum in-
formation processing application [18, 19], but their op-
tical properties are still limited by unavoidable interac-
tions with phonons. The influence of a continuum of bulk
modes and distinct quasi-localized resonances originates a
rich and complex dynamics arising from different NM be-
havior beyond the extensively studied Ohmic environment
[20]. Based on this real-world example, we show that our
considered measure for NM is well-behaved and physically
meaningful at arbitrary temperatures, and can thus be used
to obtain a deeper understanding of the NM dynamics
also in more general phononic baths. This can be impor-
tant for engineering and optimizing defect-phonon interac-
tions in structured reservoirs such as cantilevers [21], two-
dimensional layers [22], phonon waveguides [23] or phononic
crystals [24, 25].

II. MEASURES OF NON-MARKOVIANITY

The dynamics of an open quantum system can be ex-
pressed in terms of a time-local master equation for the
density operator ρ [31]

ρ̇(t) = − i
~

[H(t), ρ(t)]

+
∑
j

γcj (t)

(
Lj(t)ρ(t)L†j(t)−

1

2
{L†j(t)Lj(t), ρ(t)}

)
,

(1)

where H(t) is Hermitian and the Lj are a set of orthogo-

nal jump operators Tr{L†i (t)Lj(t)} = δij . For a Markovian
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dynamics the canonical decay rates γcj (t) are positive and
usually they are also constant in time, in general this is
not necessarily the case. Therefore, assuming a single de-
cay channel for simplicity, one can introduce the function
f(t) ≡ max{−γc(t), 0} = (|γc(t)| − γc(t))/2 [31] and define
a measure for NM by integrating this function over a bound
time interval, [11, 31],

Nγ =
1

2

∫ t′

t

(|γc(τ)| − γc(τ)) dτ. (2)

Note that this measure is related to the Rivas-Huelga-
Plenio (RHP) measure by Nγ = (dH/2)NRHP [11], where
dH is the dimension of the Hilbert space. In this approach,
NM is witnessed from the negative values of γc(t) [9–
11, 32, 33].

In this work we follow another natural approach towards
witnessing NM through the examination of the back-flow
of quantum information in terms of the Coherence [26, 27].
For a given complete set of basis states {|i〉}, Coherence is
commonly defined as C(t) =

∑
i 6=j |ρij(t)| [28], where the

ρij(t) = 〈i|ρ(t)|j〉 are the matrix elements of the system
density operator. Although this definition is not unique,
the choice of basis states usually follows naturally from the
context and is very often taken as the eigenbasis of the
bare system. For a two-level system the definition above
reduces to C(t) =

√
〈σx〉2 + 〈σy〉2, where the σk are the

usual Pauli operators. In this case, C(t) can be experi-
mentally attained through standard Ramsey spectroscopy,
i.e., by applying two π/2-pulses separated by a time t. A
measurement of the final population in the excited state,
Pe = (1 + 〈σx〉)/2, then provides a measurement of 〈σx〉,
or 〈σy〉, if an additional rotation between the two pulses is
introduced. Similar strategies can also be applied to mea-
sure C(t) for higher dimensional systems, where, however,
the pulse sequences are slightly more involved.

Coherence does not increase under incoherent completely
positive and trace preserving (ICPTP) maps [28], i.e.,
dC/dt ≤ 0. Hence, for a pure dephasing decay chan-
nel (transverse relaxation)[29], it can be used to detect
non-Markovianity given a violation of this monotonicity
dC/dt > 0. We use the following measure for such inco-
herent open system dynamics

NC = max
ρ(0)∈Ic

∫
dC(ρ(t))/dt>0

dC(ρ(t))

dt
dt, (3)

where the maximization takes into account initial states
ρ(0) belonging to the set of coherent states Ic. Even though
NC might be considered as a basis-dependent measure, a
quantum resource theory support its applicability regard-
less of such dependency [30].

III. OPTICAL COHERENCE FOR ORBITAL
STATES OF COLOR CENTERS

In this section, we investigate in more detail the appli-
cation of the above defined measures NC and Nγ for SiV−

and NV− centers in diamond. In the frame rotating with
the frequency ωL of a driving laser, the Hamiltonian reads
(~ = 1) [34, 35]

H =
∆

2
σz+

Ω

2
σx+

∑
k

ωka
†
kak+

σz
2

∑
k

gk

(
ak + a†k

)
, (4)

where ∆ = ωeg − ωL is the detuning from the bare transi-
tion frequency ωeg and Ω is the optical Rabi frequency. The
gk = λe,k − λg,k [36] denote the effective electron-phonon
coupling constants, which arise from the different deforma-
tion potentials, λe,k and λg,k, in the ground and the excited
state.

During the free evolution time (Ω = 0) we assume that
the phonon reservoir is initially in a thermal state ρph =
exp(−βHph)/Tr{e−βHph}, where β = (kBT )−1 and Hph =∑
k ωka

†
kak. The exact orbital dynamics of the color center

is described by the following time-local master equation in
the interaction picture [32, 37]

dρs
dt

= −γ(t)

2
(ρs(t)− σzρs(t)σz). (5)

The system-environment interaction is fully determined by
the time-dependent dephasing rate [37] (~ = 1)

γ(t) =

∫ ∞
0

J(ω)

ω
coth

(
ω

2kBT

)
sin(ωt) dω, (6)

where J(ω) =
∑
k |gk|2δ(ω − ωk) is the spectral density

function (SDF), kB is the Boltzmann constant and T is the
reservoir temperature. In general, the SDF satisfies two
important properties: i) J(0) = J(ω > ωmax) = 0 and ii)
J(ω) > 0 ∀ ω ∈ (0, ωmax), where ωmax is the largest phonon
frequency of the reservoir. The formal solution of the off-
diagonal elements of ρs(t) is given by ρeg(t) = ρeg(0)e−Γ(t),

where Γ(t) =
∫ t

0
γ(τ) dτ is a bounded function that satisfies

0 ≤ Γ(t) ≤ 2
∫∞

0
J(ω)/ω2coth(ω/2kBT ) dω. Furthermore,

for this particular case the coherence is given by

C(t) = 2|ρeg(0)|e−Γ(t), (7)

where ρeg(0) = 〈e|ρ(0)|g〉 is the initial condition for the
off-diagonal element. As a result, NC can be found as [13]

NC = −2

∫
γ(t)<0

γ(t)e−Γ(t) dt. (8)

Note that the non-Markovian behavior is intrinsically re-
lated with the back-flow of quantum information, i.e.,
when γ(t) < 0. For this particular case, where the ef-
fect of the environment represented in Eq. (5) only in-
duces a pure dephasing dynamics, the orthonormality is
fulfilled by Tr{L†zLz} = 1 [11, 31] (Lz = σz/

√
2), and

thus γc(t) = γ(t). In the next section, we introduce the
phononic spectral density function in order to study the
effect of phonons in a realistic diamond lattice.
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FIG. 1. (Color online) Spectral density function of the SiV− and
NV− centers. Green (solid) and red (dashed) curves correspond
to the phenomenological model J(ω) = Jbulk(ω) + Jloc1(ω) +
Jloc2(ω) given in Eqs. (9)-(11) and the first-principles spectral
density function calculated in Ref. [41], respectively. At low fre-
quencies, both curves have a dominant contribution of acoustic
phonons leading to J(ω) ∝ ω3. The main peak of the green
curve (SiV−) is the contribution of a quasi-localized phonon
mode with frequency ωloc ≈ 15.19 THz.

IV. PHONON SPECTRAL DENSITY AND
DEPHASING RATE

From Eq. (6) we see that the dephasing rate γ(t), and
thus the degree of NM, depends only on the SDF, J(ω),
and the temperature T . In the case of color centers
or other solid-state emitters, information about the SDF
can be obtained from the photoluminescence (PL) spec-
trum [36, 38], where the coupling to the phonons both re-
duces the bare resonance (zero-phonon line) and leads to
additional phonon-sidebands. The experimental PL spec-
trum of the SiV− center exibits an isotopic shift feature
in the prominent and narrow phonon sideband [38]. This
can be explained by the strong electron-phonon interaction
with a quasi-localized phonon mode primarily composed
of a large oscillation of the silicon atom [36, 38, 39]. In
addition, lattice vibrations in the bulk lead to a smooth
SDF, which typically scales as ∼ ω3 for low frequencies in
a three-dimensional lattice. The phononic SDF that repro-
duces the isotopic shift feature of the PL spectrum and the
effect of acoustic phonons is phenomenologically given by
J(ω) = Jbulk(ω) + Jloc1(ω) + Jloc2(ω), with [36]

Jbulk(ω) = 2αω1−d
c ωde−ω/ωc , (9)

Jloc1(ω) =
J0ω

d(
ω
ωloc

+ 1
)2

Γ/2

(ω − ωloc)2 + (Γ/2)2
, (10)

Jloc2(ω) = J1ω
de−(ω−ω0)2/(2σ2), (11)

where d is the dimension of the diamond lattice (d = 3
in our case). Acoustic phonons are associated with low-
energy vibrational excitations where the atoms of the color

center are oscillating in phase and therefore experimenting
a weak electron-phonon interaction. Thus, these phonons
are reasonably well described by an intensity α and a cutoff
frequency ωc ' 1 THz. However, quasi-localized phonon
modes induce out-of-phase oscillations of the defect’s atoms
with large amplitude leading to a strong electron-phonon
interaction. This type of interactions is usually modeled
by Lorentzian-like functions centered around the specific
localized phonon frequency ωloc, with a characteristic width
Γ and an intensity J0. For the region in between (from 1
THz to ∼14 THz) other vibrational modes participate [40],
which is captured by the Gaussian contribution Jloc2(ω).
For the SiV− center, the following parameters of the SDF
are chosen to accurately match the PL spectrum obtained
from molecular dynamic simulations: α = 0.0275, J1 =
0.0025 THz−2, σ = 2.4042 THz, ω0 = 9.35 THz, J0 =
0.0235 THz−1, Γ = 0.8414 THz, and ωloc = 15.19 THz.
For the NV− center we do not make this decomposition and
use the exact SDF obtained from a detailed first-principles
calculation reported in Ref. [41]. In Figure 1 we plotted
the normalized spectral density functions of both NV− and
SiV− centers.

By following the same partition as for the SDF, we write
for the SiV− center the total dephasing rate defined in
Eq. (6) as γ(t) = γbulk(t) + γloc1(t) + γloc2(t). In order
to better illustrate the behavior of the individual contribu-
tions we will first consider the limit of very low tempera-
tures where coth(ω/2kBT ) ≈ 1 and

γ↓bulk(t, d) = 2αωc(d− 1)!
sin(d tan−1(ωct))

[1 + (ωct)2]
d/2

, (12)

γ↓loc1(t) ≈ 1

4
J0ω

2
locπ sin(ωloct)e

−Γt/2, (13)

γ↓loc2(t) = J1

∫ ∞
0

ω2e−(ω−ω0)2/(2σ2) sin(ωt) dω. (14)

For a detailed derivation of the dephasing rate γ↓loc1(t)

see Appendix B. We left γ↓loc2(t) in terms of the integral
since it involves a rather complicated expression. Note
that Eq. (12) is only valid for d > −1, which is satis-
fied in our case (d = 3). In the opposite, high tempera-
ture regime, ω/2kBT � 1 and coth(ω/2kBT ) ≈ 2kBT/ω.

In this case we obtain γ↑bulk(t) = (2kBT/ωc) γ
↓
bulk(t, d −

1), γ↑loc1(t) ≈ (2kBT/ωloc) γ
↓
loc1(t) and γ↑loc2(t) =

2kBTJ1

∫∞
0
ωexp(−(ω − ω0)2/(2σ2)) sin(ωt) dω.

Figure 2 shows the expected dephasing rates for the SiV−

center in diamond for low and high temperatures. More-
over, based on numerical simulations we set the low (high)
temperature regime to be below (above) T ≈ 20 K (286 K).
These boundaries have been chosen such that the approx-
imate low- and high-temperature limits for the dephasing
rate given above match its exact numerical shape. From the
statistical properties of the phonon reservoir, in particular,
the mean number of phonons n(w) = [exp (~ω/kBT )−1]−1,
we observe that n(ωloc) ≈ 2 for T ≈ 286 K and ωloc = 15.19
THz. In other words, the high-temperature regime is de-
fined from the thermal activation of the strong electron-
phonon coupling with the quasi-localized phonon mode.
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If we individually look at the components of γ(t), it is
straightforward to notice that each one will get involved
in the dynamics at a different temperature. For γbulk(t) in
Figure 2-(a) we observe a region where it takes negative val-
ues, and above a critical temperature (Tc ≈ 1.85 K) it is al-
ways positive. However, γloc1(t) and γloc2(t) show negative
values even at room temperature, with an amplitude that
is non-negligible as compared to the low-temperature case,
see Figures 2-(b) and 1-(c). This negative behavior has pre-
viously been connected to memory effects [10], as we will
detail in what follows. Finally, one can notice that γloc1(t)
has the leading contribution to the dephasing rate, see Fig-
ure 2-(d). For comparison, in Appendix C we evaluate the
dephasing rate for a NV− center, which also exhibits neg-
ative values at room temperature. In a recent experiment
with a NV− center, ultrafast vibrational relaxation dynam-
ics with a time constant around 50 fs was revealed [42],
evidencing that the fast dynamics exhibits by the dephas-
ing rates can be studied using spectrally resolved optical
pump-probe spectroscopy. Moreover, another experiment
uses the inherent nitrogen spin as a source for controllable
non-Markovian dynamics [43], leading to a deep and prac-
tical understanding of its effect.

V. NON-MARKOVIANITY IN COLOR CENTERS
AND THERMAL EFFECTS

Let us now discuss the degree of NM of the described
phonon environment, as quantified through NC and Nγ .
Firstly, the definition of Nγ in Eq. (2) and the relation
γc(t) = γ(t) implies that the previous discussion about the
negative behavior of γ(t) in Figure 2 stands as a proof of
NM for the orbital states of the SiV− center— similar con-
clusions are obtained for the NV− center. This result is the
first evidence that the phononic contribution induces NM
behavior in color centers in diamond, commonly modeled
as purely Markovian [21, 44, 45].

In Figure 3-(a) we show the temperature dependence
of NC (dashed lines) and Nγ (solid lines) for both color
centers in diamond (NV− and SiV−). It is interesting
that both measures are almost constant at low temper-
atures, but above T ≈ 100 K, Nγ starts to increase
linearly with temperature, while in contrast, NC goes
to zero. The former can be explained from the strong
contribution of the quasi-localized phonon mode given
by γloc1(t) ≈ (πJ0ω

2
loc/4) coth(ωloc/2kBT ) sin(ωloct)e

−Γt/2

(see Appendix B), where coth(ωloc/2kBT ) = 2n(ωloc) + 1
increases with temperature, being n(ω) = [exp(ω/kBT ) −
1]−1 the mean number of phonons at thermal equilibrium.
Therefore, the criteria for NM based on the measure Nγ
would lead to the conclusion that the bath becomes more
NM with increasing temperature. In contrast, by looking at
the time evolution of the Coherence plotted in Figure. 3(b),
one immediately sees that the proposed quantity NC in
Eq. (3) disappears at high temperature, as one would ex-
pect from the coupling to bulk phonons. To shed more
light on this matter, the key is to look at the unusual and
complex spectral density function of these systems. On the

FIG. 2. The dephasing rate is plotted separately by consid-
ering each contribution of the phononic spectral density func-
tion: (a) Jbulk(ω) (acoustic phonons), (b) Jloc1(ω) (strong in-
teraction with a quasi-localized phonon), (c) Jloc2(ω) (gaus-
sian spectral function), and (d) the whole contribution given
by J(ω) = Jbulk(ω) + Jloc1(ω) + Jloc2(ω). Blue (solid) and
red (dashed) curves shows temperature effects on the dephas-
ing rate for T = 1 K and T = 300 K, respectively. In (b) and
(d) the period of the oscillations are approximately given by
2π/ωloc ≈ 0.41 ps, where ωloc = 15.19 THz is the frequency
associated with the strong electron-phonon coupling illustrated
in Figure 1.

one hand, at low temperatures the dynamics is determined
by the SDF J(ω), since all phonons are frozen out. For
this reason, the quasi-localized phonon has the leading con-
tribution to NM, in agreement with the remarks given in
Ref. [46] for an engineered reservoir. On the other hand, at
high temperatures, low-frequency (acoustic) phonons are
dominant (γ↑(t) ∼

∫∞
0
J(ω)/(~ω)2 sinωt dω), and there-

fore the reservoir can be modeled by a super-Ohmic spec-
trum, see Appendix D. In this scenario, NM is highly sup-
pressed [32].

It is worthwhile to point out that these two measures
belong to different interpretations of NM, where Nγ is re-
lated to the divisibility of the evolution based on whether
the canonical decay rates are positive or not [31], while
NC accounts for the back-flow of quantum information
as the monotonicity of the Coherence breaks down. As
a consequence, these two measures have opposite tem-
perature responses as T increases. For instance, the
dephasing rate comes from the interaction Hamiltonian

(1/2)σz
∑
k gk(ak + a†k) which describe one-phonon pro-

cesses. For this case, at high temperatures the amplitude
of γ(t) is proportional to T , that leads to Nγ ∝ T . On the
contrary, the Coherence is connected with physical observ-
ables through the relation C(t) =

√
〈σx〉2 + 〈σy〉2. Thus,

the expectation values 〈σi〉 will depend on the matrix el-

ements ρij(t) = ρij(0)exp(−2
∫ t

0
γ(τ) dτ), which at high
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FIG. 3. (a) Comparison of the non-Markovian measures NC and
Nγ for the SiV− and NV− centers in logarithmic scale and for
temperatures ranging from 10 mK to 300 K. For the SiV− center
the SDF J(ω) = Jbulk(ω) +Jloc1(ω) +Jloc2(ω) was used and for
the NV− center the exact SDF given in Ref. [41]. The NM

measure Nγ(T ) =
∫ t′
t

(|γ(τ)| − γ(τ)) dτ was calculated using
t = 0 and a sufficient large time t′ = 300 ps. (b) Coherence
function C(t) reveals a back-flow of quantum information at
low temperature while at room temperature it monotonically
decreases. (c) Filtering function S−1/2 allows to distinguish the
origin of the NM for the generalized spin-boson model. We use
the values η = 1, ωc = 1 THz, T = 0 and Ω = 4∆, for a Ohmic
spectral density function J(ω). (d) Renormalization factor B
for the SiV− center using the full polaron transformation (FPT)
and the variational polaron transformation (VPT) for Ω = 0.6
GHz and ∆ = Ω/2.

temperatures leads to NC ∝ exp(−πJ0kBT ), as shown
in Figure.3-(a). Henceforth, a comparison between these
measures will contribute on the debate about how to use
different criteria of NM for practical applications, such as
modeling the vibrations of a diamond lattice at high tem-
peratures [21, 44, 45, 47, 48], that can be simply considered
as Markovian.

To further support the physical consistency of the coher-
ence measure NC , we now compare it with the well-known
measure proposed by Breuer, Laine, and Piilo (NBLP ) [9],
where the figure of merit is the trace distance between two
quantum states, D(t) = tr|ρ1 − ρ2|/2, (see Appendix E for
more details). Both measures have a similar behavior as
a function of temperature, see Figure 6, although NC can
be easily computed and experimentally measured through
a system observable such as 〈σx〉. Moreover, it does not
involve an auxiliary system, in contrast to the case of quan-
tum mutual information measure [10].

A. Coherent maps in the weak-coupling regime

In the current and many other settings of interest, the
Rabi-frequency Ω in Hamiltonian (4) is controlled by an ex-

ternal drive and can be switched off. This scenario (Ω = 0)
for pure dephasing channels has been extensively studied
[32, 49]. However, this might not be the case for other sys-
tems, where a non-vanishing coupling (Ω 6= 0) can induce
oscillations between the states |g〉 and |e〉, and therefore
induces oscillations in the Coherence. Since this dynam-
ics lies outside the incoherent regime assumed in Eq. (3),
it prevents the use of NC as a strict measure for NM.
However, we can still use it to distinguish whether the
NM solely comes from the environment or from the en-
vironment plus the external laser. To do so, we propose
here an experimental sequence for systems with a pure
dephasing dynamics, which allows us to eliminate a pos-
sible NM signature from the term (Ω/2)σx. This proce-
dure allows us to study the phonon environment in terms
of a simple measure of NM given by NC . We start from
the master equation for ρs(t) in Eq. (A1). The resulting
time evolution for the off-diagonal elements is given by
ρeg(t) = ρeg(0)exp(−iω0t − F0(t) + F (t)/2), where F0(t)

reduces to Γ(t) for Ω = 0, with Γ(t) =
∫ t

0
γ(τ) dτ and γ(τ)

is given in Eq. (6). The function F (t) contains contribu-
tions which are solely related to coherent population oscil-
lations (see Appendix A), and therefore must be cancelled.
This can be done by defining the following quantity [see
Eq. (A12)],

S =
1

2

[
〈Sz〉|ρ(0)=|e〉〈e| − 〈Sz〉|ρ(0)=|g〉〈g|

]
= eF (t), (15)

that depends on F (t) only. Here the subscripts indicate
that the average dynamics of 〈Sz〉 is calculated starting
from the initial excited (|e〉 = |e+〉) and ground (|g〉 = |e−〉)
eigenstates of the Hamiltonian Hs = (∆/2)σz + (Ω/2)σx,

with |e±〉 = (±Ω|e〉 + (ω0 ∓ ∆)|g〉)/
√

2ω0(ω0 ∓∆) [50].
The operators Si are the usual Pauli matrices written in the
system eigenbasis. In summary, we implement the following
three steps: (1) perform a measurement of 〈Sz〉 for the
initial condition ρ(0) = |g〉〈g|, (2) repeat the measurement
for ρ(0) = |e〉〈e|, (3) calculate the Coherence by performing
a measurement of 〈Sx〉 and 〈Sy〉 for the initial pure state

|ϕ(0)〉 = (|e〉 + |g〉)/
√

2, and multiply the outcome C(t) =√
〈Sx〉+ 〈Sy〉 by S−1/2. From this procedure we define a

renormalized coherence C̃(t) = C(t)× S−1/2 which can be
used instead of C(t) in Eq. (3). Note that this sequence
is unbiased with the spectral density function and it takes
advantage of the dynamics induced by the σx component.

One remaining question is whether a violation of the
monotonicity of C̃(t), say dC̃(t)/dt > 0, unavoidable leads
to a non-Markovian signature for the reduced dynamics
(applying the filter), as it was detailed for C(t) in the ab-
sence of an external field (Ω = 0) in Section II. To begin,

we note that from the definition of C̃(t) it follows that

C̃(t) = C(t)× S−1/2 = 2|ρeg(0)|e−(∆/ω0)2Γ(t), (16)

with ω0 =
√

∆2 + Ω2. By taking the time derivative on the
above equation, we find that the condition for breaking the
monotonicity of the function C̃(t) is given by the sign of
dΓ(t)/dt, that matches the one obtained for the incoherent
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case Ω = 0, see Eq. (7). Therefore, we conclude that the

function C̃(t) is a monotonically decreasing function in time

if the reduced dynamics is Markovian, i.e. dC̃(t)/dt ≤ 0.

Correspondingly, it is non-Markovian when dC̃(t)/dt > 0.
For further illustration we consider the Ohmic SDF

J(ω) = ηω exp(−ω/ωc). We found that for Ω 6= 0 the
BLP measure in Eq. (E1) reveals a NM behavior. Now, we
can distinguish where the NM comes from using the renor-
malized coherence C̃(t) to define a NM measure NC̃ for the
reduced dynamics. In Fig. 3-(c) we plot the coherence cal-
culated with and without the filtering function S−1/2. On
the one hand, one can observe that, in agreement with the
BLP measure, NC detects NM. On the other hand, NC̃ = 0
for the reduced dynamics. This means that the NM origi-
nates from the presence of the external laser and not from
the reservoir alone. This conclusions is also supported by
previous results with this SDF, where for Ω = 0 and at
arbitrary temperatures the dynamics is Markovian [32, 51].
It is important to notice that this sequence is only valid for
a pure dephasing dynamics, since for more involved inter-
actions including energy exchange the contributions of Ω
and ∆ in the rates are mixed.

In a recent work [52], the authors showed that there are
some particular cases where an oscillation in Coherence
leads to a false positive when detecting NM with NC in
Eq. (3). This scenario can be achieved for other orbital
states of color centers, for instance, for the ground state
dynamics of the silicon-vacancy center in diamond. We
observed that for a phonon super-Ohmic SDF describing
energy exchange, the secular approximation has an impor-
tant role on this false positive with NC [53]. In what fol-
lows, we show that the approximations considered along
this manuscript for optical orbital states are well satis-
fied. Firstly, we considered only a single ground state |g〉
and a single electronically excited state |e〉 with an en-
ergy gap ~ωeg = 1.68 eV [54] (SiV−) and ~ωeg = 1.95
eV (NV−) [41]. Phonons will not be able to trigger the
|g〉 ↔ |e〉 transition given that the highest phonon en-
ergy only reaches 160 meV [55]. Hence, in the absence of
this transition we can describe the orbital-phonon dynam-
ics using the pure dephasing model. Secondly, the secular
approximation is extensively used and valid for color cen-
ters [44]. To support this, we can look at the time scale
defined by Ts = |ω − ω′|−1. If Ts is much smaller than
the dissipation time scale τ , the terms with ω 6= ω′ lead
to a vanishing contribution in the dynamics [56]. Such is
the case for the ground and excited states of color centers
since Ts ∼ ω−1

eg ∼ 1 fs � τ , where τ ∼ 1 ps is the typical
dissipation time scale for phonons.

B. Coherent maps in the strong-coupling regime

Beyond the weak coupling regime the generalized po-
laron transformation offers the possibility to apply a simi-
lar procedure for strong system-bath interactions [57, 58].
This transformation is defined as H ′ = eS1He−S1 with
S1 = σz

∑
k(fk/ωk)(b†k − bk) and leads to H ′ = Hs +

Hph + V , where Hs = (∆/2)σz + (ΩR/2)σx is the sys-
tem Hamiltonian (neglecting the polaron shift), Hph =∑
k ωkb

†
kbk is the phonon Hamiltonian, V = σxVx+σyVy +

σzVz is the interaction Hamiltonian (see Eqs. (F3)-(F5))
and ΩR = BΩ, where B is the renormalization fac-
tor [57, 58], see Appendix F. In Figure 3-(d) we plotted
the renormalization factor B for the full polaron trans-
formation (FPT) (fk = gk) and the variational polaron
transformation (VPT) (fk = F (ωk)gk), where F (ωk) =
[1+Ω2

R/(ωkω0)coth (βωk/2) tanh (βω0/2)]−1. We observed
that for not too large values of Ω, the renormalized term
(ΩR/2)σx has a negligible effect in the open dynamics above
a temperature T ≈ 120 K. This temperature is very close to
the temperature associated with the quasi-localized phonon
mode Tloc = ~ωloc/kB ≈ 116 K. Therefore, oscillations in-
duced by σx on the coherence will not be observed at high
temperatures [57].

VI. CONCLUSIONS

In summary, we studied the dynamics of SiV− and NV−

centers due to the vibrations of the diamond lattice and
found that the competition of acoustic and quasi-localized
phonon modes give rise to a NM dynamics with a rich
thermal dependence. As a consequence, different measures
of non-Markovianity (NM) exhibit opposite dependence at
high temperature, suggesting that the power of each mea-
sure will rely on how it is linked to a specific application.
In addition, we focus on a simple measure based on Coher-
ence to quantify the degree of NM that takes advantage of
the pure dephasing dynamics and measures the back-flow of
information from the environment to the system. We com-
pare it with other established measures of NM [9, 11, 31],
and observed that it is well-behaved both at low and high
temperatures. Also, it is easy to compute and experi-
mentally accessible through Ramsey spectroscopy, which
make it suitable for quantifying NM in color centers in di-
amond [43]. Furthermore, for coherent dynamical maps
(general spin-boson model) and a pure dephasing interac-
tion with phonons, this NM measure can be used in the
weak coupling limit to identify whether the NM signature
solely comes from the reservoir, by following a specific ex-
perimental sequence where one can filter out the contribu-
tion of the σx-term. Even more, for the strong coupling
regime we found a temperature T ≈ 120 K above which
this term is negligible.
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Appendix A: Master Equation

For an interaction Hamiltonian of the form HI =
(σz/2)

∑
k gk(ak + a†k) + (σx/2)

∑
k λk(ak + a†k) the mas-

ter equation can be written as

ρ̇ = −i
[

1

2
ω0Sz, ρ

]
+
∑
i=z,±

γi(t)

2

[
SiρS

†
i −

1

2
{S†i Si, ρ}

]
,

(A1)
where we have neglected the Lamb-shift according our nu-
merical simulations and we have performed the secular ap-
proximation. The time-dependent decay rates are defined
as

γz(t) =

(
∆

ω0

)2

γ0
1(t) +

(
Ω

ω0

)2

γ0
2(t) + 2

Ω∆

ω2
0

γ0
3(t) (A2)

γ±(t) =

(
Ω

ω0

)2

γ±1 (t) +

(
∆

ω0

)2

γ±2 (t)− 2
Ω∆

ω2
0

γ±3 (t).(A3)

The functions γηi (t) (i = 1, 2, 3, η = 0,+,−) are given by

γηi (t) =

∫ ∞
0

Ji(ω)

[
n(ω)

sin(ω − ηω0)t

ω − ηω0

+[n(ω) + 1]
sin(ω + ηω0)t

ω + ηω0

]
dω, (A4)

where n(ω) = [exp(~ω/kBT ) − 1]−1 is the mean number
of phonons at thermal equilibrium, kB is the Boltzmann
constant, and T is the reservoir temperature. The spectral
density functions are defined as

J1(ω) =
∑
k

|gk|2δ(ω − ωk), J2(ω) =
∑
k

|λk|2δ(ω − ωk).

(A5)
The third spectral density function is given by J3(ω) =∑
k gkλkδ(ω − ωk), if the couplings are real. In this case

it is straightforward to show that J3(ω) =
√
J1(ω)J2(ω).

For J2(ω) = 0 (no energy-exchange) also J3(ω) = 0 and we
obtain

ρ̇ee =
1

2
γ+(t)− 1

2
(γ+(t) + γ−(t)) ρee, (A6)

ρ̇eg = −iω0ρeg −
[
γz(t) +

1

4
(γ+(t) + γ−(t))

]
ρeg,

(A7)

where ρee(t) = 〈e+|ρ(t)|e+〉, ρgg(t) = 〈e−|ρ(t)|e−〉 and
ρeg(t) = 〈e+|ρ(t)|e−〉. The above equations can be formally
integrated,

ρee(t) = ρee(0)eF (t) + eF (t)

∫ t

0

g(t1)e−F (t1) dt1, (A8)

ρeg(t) = ρeg(0)e−iω0t−F0(t)eF (t)/2, (A9)

where F (t) = −(1/2)
∫ t

0
(γ+(t1) + γ−(t1)) dt1, g(t) =

γ+(t)/2, and F0(t) =
∫ t

0
γz(t1) dt1. Notice that F0(t) corre-

sponds to the dynamics induced by Sz, which does not gen-
erate coherence. Only the contribution of F (t) in Eq. (A9)
will lead to non-Markovianity, and therefore we will cancel
it. To do so, we first calculate the expectation values of Sz
for different initial conditions.

〈Sz〉(ρee=1) = 2eF (t) + 〈Sz〉(ρee=1), (A10)

〈Sz〉(ρgg=1) = 2eF (t)

∫ t

0

g(t1)e−F (t1) dt1 − 1. (A11)

From these results it is straight forward to show that

S =
〈Sz〉|ρ(0)=|e〉〈e| − 〈Sz〉|ρ(0)=|g〉〈g|

2
= eF (t), (A12)

Furthermore, the renormalized Coherence is defined as
C̃(t) = C(t) × S−1/2 = 2ρeg(0)e−F0(t), where for an in-
coherent dynamics S = 1. Finally, one can observe that
this expression for the Coherence has no contribution from
(Ω/2)σx in Eq. (4) (as opposed to the case where C(t) is
calculated directly from Eq. (A9) and even more, we have
not done any assumption about the spectral density func-
tion J(ω), which makes this approach quite general.

Appendix B: Dephasing rate induced by strong
interactions with quasi-localized phonons

The dephasing rate associated with the strong interaction
with a quasi-localized phonon mode is given by

γloc1(t) =
J0Γ

2

∫ ∞
0

ω2 coth
(

ω
2kBT

)
sin(ωt)(

ω
ωloc

+ 1
)2

(ω − ωloc)2 + (Γ/2)2

dω.

(B1)
This integral can be solved analytically, however, we show
next a method to obtain a good approximation that gives
us a better understanding of the effect of the width Γ, the
frequency of the quasi-localized phonon ωloc, the amplitude
J0, and temperature T . Using the change of variable u =
ω−ωloc and extending the lower limit of the integration to
−∞ (assuming ωloc � 1), we obtain

γloc1(t) ≈ J0 cos(ωloct)

∫ ∞
−∞

f(u) sin(ut) du

+ J0 sin(ωloct)

∫ ∞
−∞

f(u) cos(ut) du, (B2)

where

f(u) =
(u+ ωloc)

2
coth

(
u+ωloc

2kBT

)
(u/ωloc + 2)

2

Γ/2

u2 + (Γ/2)
2 . (B3)

The main contribution in both integrals given in Eq. (B2)
comes from the narrow Lorentzian function L(u) =
(Γ/2)/(u2 +(Γ/2)2) centered around the value u = 0 (main
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peak around ω = ωloc for J(ω), see Figure 1). Using the
approximation

f(u) ≈ 1

4
ω2
loc coth

(
ωloc

2kBT

)
Γ/2

u2 + (Γ/2)
2 , (B4)

and the symmetry consideration
∫∞
−∞ f(u) sin(ut) du = 0,

we obtain

γloc1(t) ≈ πJ0ω
2
loc

4
coth

(
ωloc

2kBT

)
sin(ωloct)e

−Γt/2, (B5)

which corresponds to a damped periodic oscillation, where
ωloc is the frequency, Γ/2 is the decay rate and both temper-
ature T and strength J0 determine the maximum amplitude
of the oscillations. At zero temperature, coth(~ω/2kBT ) =
1, and therefore, we recover the expression given in
Eq. (13). At high temperatures, kBT � ~ωloc, we have
coth(~ω/2kBT ) ≈ 2kBT/~ω, and then

γ↑loc1(t) ≈
(

2kBT

ωloc

)
γ↓loc1(t). (B6)

Appendix C: Dephasing Rate for an NV− center

The dephasing rate γNV (t) is plotted in Figure 4, calcu-
lated from Eq. (6) with the spectral density function given
numerically in Ref. [41] and illustrated in Figure 1.

FIG. 4. Dephasing rate for the NV− center in diamond for
temperatures T = 1 K and T = 300 K. The period of the
oscillations are given approximately by 2π/ω ≈ 0.4 ps, where
ω = 15.7 THz is the frequency of the main peak of the spectral
density function of the NV− center.

Appendix D: Role of different spectral density
function on the Coherence

From Figure 3-(b), it is easy to see that Coherence C(t)
obeys two different regimes separated in temperature. At

FIG. 5. Behavior of the coherence function C(t) at T = 300
K. Solid line (evaluated for Jbulk(ω) only) evidences that bulk
phonons have the main contribution to the dynamics. More-
over, dashed line (evaluated for Jloc1(ω) only), evidences that
quasilocalized phonon modes can be roughly reproduced with an
interaction with a coherent state and a phenomenological decay
(dot-dashed).

low temperature, the time evolution of C(t) has contribu-
tions from of all the spectral density functions in Eqs. (9)-
(11), however the strong oscillation in the main plot evi-
dences that γloc1 has the leading contribution. Even when
one would expect γloc1 to hold as the leading term in the
dynamics at high temperatures, see Figure 2, this is not
the case. In Figure 5 we show C(t) for two particular de-
cay rates, namely γbulk(t) (solid) and γloc1(t) (dashed), at
300 K. It is remarkable that γbulk(t) reproduces the behav-
ior (in terms of Non-Markovianity) depicted in the inset
of Figure 3-(b), despite that it decays slower due to the
absence of the other decay rates. This outcome supports
the statement that only bulk phonons are relevant at high
temperature [47, 48]. In contrast, γloc1(t) shows a very
interesting dynamics as well.

In particular, similar behavior have been observed in
spin-echo spectroscopy for a single NV− [59] or an ensem-
ble [60] interacting with a natural environment of 13C nu-
clear spins, where the collapses and revivals originate from a
coherent interaction with individual proximal nuclear spins,
and the revivals decay comes from the interaction with the
13C bath. In the same way, this behavior has been ob-
served for a single NV interacting with a mechanical oscil-
lator [61]. In agreement with these results, we suggest that
the interaction with this quasi-localized phonon mode can
be though as an interaction with a single mode in a co-
herent state, with an added phenomenological decay that
goes as exp(−Γt), being Γ = 0.8414 THz the width of the
Lorentzian spectral density function. The composite state
after this interaction is given by [62],

|Ψ〉 = (|e〉|β↑〉+ e−2iλβ sin(tωloc)|g〉|β↓〉)/
√

2, (D1)

where ξ = 1 − e−itωloc , |β↑〉 = |βe−itωloc + λξ〉 (|β↓〉 =
|βe−itωloc − λξ〉) is the displaced coherent state, λ =
(
∫∞

0
Jloc1(ω))1/2 dω. Even more, we approximated |β|2

to the thermal occupancy phonon number n(ωloc) =
[exp(~ωloc/kbT ) − 1]−1, given that at T = 300 K the oc-
cupancy is small (n(ωloc) ≈ 2). Finally, after tracing out
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over the coherent state degrees of freedom we are able to
calculate C(t). This highly simplified model is capable to
capture the collapses, revivals, and the overall decay, as
illustrate by the dot-dashed curve.

Appendix E: Measures of the degree of
non-Markovianity

For comparison, we introduce now the Breuer-Laine-Piilo
(BLP) measure [9], which is based on the trace distance

NBLP = max
ρ1,2(0)

∫
dD/dτ>0

dD(ρ1, ρ2)

dτ
dτ, (E1)

where D(ρ1, ρ2) = Tr|ρ1(t)−ρ2(t)|/2 and |A| =
√
A†A. For

the spin-boson model (Ω = 0 in Eq. (4)), the maximization
can be exactly solved and one obtains [63]

NBLP = −2

∫
γ(t)<0

γ(t)|b|2e−Γ(t)(a2 + |b|2e−Γ(t))−1/2,

(E2)
where a = 〈e|(ρ1(0) − ρ2(0))|e〉, b = 〈e|(ρ1(0) − ρ2(0))|g〉,
γ(t) is given in Eq. (6), and Γ(t) = 2

∫ t
0
γ(τ) dτ .

The BLP measure is plotted in Figure. 6 (dotted line)
for the initial states

ρ1(0) =
1

2

(
1 1
1 1

)
, ρ2(0) =

1

2

(
1 −1
−1 1

)
. (E3)

FIG. 6. Comparison between different measures of non-
Markovianity as a function of temperature for the (a) SiV−

center, and (b) NV− center in diamond using Ω = 0 and ∆ = 1.

Notice that Nγ (solid line) shows a thermal dependence
that is based on the dephasing rate γ(t) given in Eq. (6),
and it has a strictly increasing behavior leading to a large
degree of NM when the temperature is above some critical
value T ∼ 30 K. However, we observed that NBLP shows
a strictly decreasing behavior leading to a small degree of
NM at room temperature. Finally, NC (dashed-line) shows
a thermal dependence that is similar toNBLP , as one would
expect since both NM measures are based on the back-flow
of quantum information.

Appendix F: Strong coupling model

In order to study strong interactions between a two-level
system and its phononic environment we introduce the fol-

lowing general polaron transformation [57, 58] (~ = 1)

H ′ = eS1He−S1 , S1 = σz
∑
k

fk
ωk

(b†k − bk), (F1)

where fk = gk corresponds to the the full polaron transfor-
mation (FPT). If we apply the above transformation on the
general spin-boson Hamiltonian H = (∆/2)σz + (Ω/2)σx+∑
k ωkb

†
kbk + σz

∑
k gk(b†k + bk), we obtain

H ′ =
∆

2
σz +

ΩR
2
σx +

∑
k

fk
ωk

(fk − 2gk) +
∑
k

ωkb
†
kbk + V.

(F2)
The interaction Hamiltonian is given by V = σxVx+σyVy+
σzVz, where

Vx =
Ω

4
(B+ +B− − 2B) , (F3)

Vy =
Ω

4i
(B− −B+) , (F4)

Vz =
∑
k

(gk − fk)(b†k + bk). (F5)

The bath operators are defined as

B± = exp

[
±2
∑
k

fk
ωk

(b†k − bk)

]
, (F6)

B = 〈B±〉ph = exp

[
−2
∑
k

f2
k

ω2
k

coth

(
βωk

2

)]
, (F7)

with β = (kBT )−1 and the expectation value is
calculated using the thermal phonon state ρph =
exp(−βHph)/Tr{exp(−βHph)}. To determine the opti-
mal values of fk for the variational polaron transformation
(VPT) it is necessary to minimize the free energy

AB = − 1

β
lnTrA+B{e−βH0}+ 〈V 〉H0 , (F8)

where H0 = HA + HB is the non-interacting Hamiltonian
with HA = (∆/2)σz + (ΩR/2)σx +

∑
k(fk/ωk) (fk − 2gk)

and HB =
∑
k ωkb

†
kbk. Using 〈V 〉H0

= 0 and the condition
dAB/dfk = 0 we obtain that fk = gkF (ωk), where

F (ωk) =

[
1 +

Ω2
R

ωkω0
coth

(
βωk

2

)
tanh

(
βω0

2

)]−1

,(F9)

ΩR = ΩB, (F10)

and ω0 =
√

∆2 + Ω2
R. In the continuum limit, the renor-

malization factor B is given by

B = exp

[
−2

∫ ∞
0

J(ω)

ω2
F 2(ω)coth

(
βω

2

)
dω

]
. (F11)

This renormalization factor depends on the shape of the
SDF J(ω) =

∑
k |gk|2δ(ω − ωk), the reservoir temperature

T , and must be calculated from self-consistency between
Eqs. (F9)-(F11).
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