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Abstract

A theory is presented that describes the atom and field dynamics for two atoms in a chiral

waveguide. A source-field approach is used that enables one to identify the various physical pro-

cesses contributing to these dynamics. Each atom is prepared in an arbitrary state at t = 0 and

the field intensity and correlation functions are calculated, fully accounting for retardation. When

the atoms are prepared in identical superposition states, the effects of constructive and destructive

interference play a significant role on both the field intensity and second-order correlation function.

It is also shown that the results can be taken over to provide a solution for the related problem of

a single-photon pulse incident on an atom prepared in an arbitrary initial state.
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I. INTRODUCTION

The problem of two stationary atoms coupled by the vacuum radiation field represents

a fundamental problem in quantum optics. If, at t = 0, the atoms are prepared in some

arbitrary initial state and the field is in its vacuum state, a complete solution of the problem

requires that the atom-field state vector be determined for all times t > 0. Since this problem

is of such fundamental importance, it has been the subject of numerous studies dating back

to the beginning of the quantum theory [1]. In many of these studies, the atoms are modeled

as having a J = 0 ground state and a J = 1 excited state. The decay rate of the excited

state for an isolated atom is denoted by γ2. If γ2R/c≪ 1, where R is the separation of the

atoms, retardation effects can be neglected insofar as they affect the atomic state dynamics.

In this limit the problem admits to an analytic solution. For example, Lehmberg [2] has

given a detailed description of the average field intensity radiated by the atoms for a number

of different initial conditions. If retardation effects cannot be neglected, the solution can be

expressed only as an infinite sum [3].

For the most part, calculations of the atomic state dynamics have been carried out as-

suming the atoms are at fixed positions in free space. More recently, however, motivated

by developments in quantum information, there have been a number of studies of atoms

confined to chiral waveguides, waveguides that allow for emission into one direction of the

guide only [4–6]. Many of these studies have focused on the interaction of an incident pulse

with ground state atoms [5], but several authors have analyzed a problem in which a single-

photon or n−photon pulse is incident on an atom prepared in its excited state [6]. By

obtaining an analytic solution for the state vector or the state amplitudes, these authors [6]

were able to show that, with a proper choice of the initial state for the field, the output field

can mirror the input field to a good approximation, with one additional photon in the field.

In such cases, the input field acts like a π pulse, driving the atom to its ground state. To

achieve this result for a single-photon pulse, it is necessary that its temporal width be of the

same order as the inverse lifetime of the atom. With increasing n, the pulse width needed

for it to act as a π pulse is diminished. As a consequence the input pulse duration becomes

much less that the atomic lifetime and radiative decay plays a negligible role. In this limit,

the output pulse for an n−photon input pulse approaches that of an (n + 1)−photon pulse

with approximately, but not exactly, the same spatio-temporal profile. Although accessible
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in their calculations, the authors do not focus on the output field intensity in the guide.

In this paper, I consider emission from two atoms located on the axis of a chiral waveguide.

The radiation is produced solely by the atoms - there is no input field as in the previous

studies mentioned above. One atom is located at X = 0 and the other at X = X2 > 0. At

time t = 0, the atoms are prepared in an arbitrary initial state, which can be entangled.

A source-field approach [7] is used to obtain closed form analytic expressions for the field

intensity, the integrated field intensity, the second-order correlation function, and the time-

integrated second-order correlation function. The source-field approach is especially well-

suited to this calculation since it allows one to isolate and identify the various physical

process that contribute to the field radiated by this two-atom system. It will be seen that

the second-order correlation function g(2)(X, t;X, t + τ) at some position X > X2 in the

guide is a discontinuous function of t for t = X/c. In the Appendix, I show how the results

can be used to obtain expressions for the field intensity and second-order correlation function

in the complementary problem involving a single-photon pulse that is incident on an atom

prepared in an arbitrary initial state.

II. HAMILTONIAN AND EQUATIONS OF MOTION

The atoms are modeled as two-level quantum systems having transition frequency ω0,

with the lower level denoted by 1 and the upper by 2. It is assumed that the atoms emit

only z polarized radiation and I consider only z polarized electric fields in the guide. In

the chiral guide under consideration, atoms can radiate only in the positive X direction.

That is, for this two-atom system, the expectation value of the field intensity vanishes for all

X < 0. An unusual feature of such a guide is that the ”dipole-dipole” interaction between the

atoms is independent of their separation [8], a consequence of the strong coupling between

the atoms and the modes of the chiral waveguide. The positive frequency operator of the

electric field operator for this one-dimensional problem can be written as

E+(X, t) = i
∑

k

(~ωk/2ǫ0AL)
1/2 ak(t)e

ikXe−iωkt, (1)

where L is a quantization length, A is the cross-sectional area of the guide, and ak(t)

is a destruction operator (written in an interaction representation) for the mode having

propagation constant k = ωk/c. All relevant field modes have frequencies that are sufficiently
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close to the atomic frequency to justify the replacement of (~ωk/2ǫ0AL)
1/2 that appears in

the expression for the field operator by (~ω0/2ǫ0AL)
1/2.

For an atom - field interaction of the form −µE, where µ is the atomic dipole moment

matrix element (assumed real), the Hamiltonian for the atom - field system is written in an

interaction representation and in the rotating-wave approximation as

H(I)(t) ≈ ~g
2

∑

j=1

∑

k

σ
(j)
+ (t)ak(t)e

ikXje−i(ωk−ω0)t − a†k(t)e
−ikXjσ

(j)
− (t)ei(ωk−ω0)t, (2)

where σ
(j)
+ (t) [σ

(j)
− (t)] is a raising [lowering] operator for atom j and

g = −i
(

ω0

2~ǫ0AL

)1/2

µ (3)

is a coupling constant. The interaction representation is defined by

aHk (t) = ak(t)e
−iωkt; (4a)

σ
H(j)
± (t) = σ

(j)
± (t)e±iω0t, (4b)

where the H superscript indicates an operator in the Heisenberg representation.

In the Wigner-Weisskopf approximation, it is straightforward to show that the excited

state decay rate for a single atom in the guide is given by

γ2 =
ω0µ

2

2~ǫ0Ac
. (5)

In terms of γ2, the coupling constant g can be written as

g = −i
√

γ2c

L
(6)

and the factor (~ωk/2ǫ0AL)
1/2 ≈ (~ω0/2ǫ0AL)

1/2 that appears in Eq. (1) as

(

~ω0

2ǫ0AL

)1/2

=

√

γ2c

L

~

µ
.

From Schrödinger’s equation with the Hamiltonian given in Eq. (2), it then follows that the
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time evolution equations for the atomic and field operators are

σ̇
(j)
+ (t) =

√

γ2c

L

∑

k

a†k(t)e
−ikXj

[

2σ
(j)
22 (t)− 1

]

ei(ωk−ω0)t (7a)

σ̇
(j)
22 (t) = −

√

γ2c

L

∑

k

σ
(j)
+ (t)ak(t)e

ikXje−i(ωk−ω0)t

−
√

γ2c

L

∑

k

a†k(t)e
−ikXjσ

(j)
− (t)ei(ωk−ω0)t (7b)

ȧk(t) =

√

γ2c

L

2
∑

j=1

e−ikXjσ
(j)
− (t)ei(ωk−ω0)t (7c)

along with the adjoints of these equations. The operator σ
(j)
22 (t) is that associated with the

Schrödinger operator |2〉 〈2| for atom j.

The formal solution for ak(t) is given by

ak(t) = ak(0) +

√

γ2c

L

2
∑

j=1

∫ t

0

e−ikXjσ
(j)
− (t′)ei(ωk−ω0)t′ (8)

containing a term proportional to ak ≡ ak(0) and a source term that depends on atomic

operators. Substituting Eq. (8) back into Eqs. (7a) and (7b), converting the sum over k to

an integral using the prescription

∑

k

→ L

2πc

∫ ∞

−∞

dωk, (9)
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I find that, for t > 0, the atomic operators evolve as

σ̇
(1)
+ (t) = −γσ(1)

+ (t) + i
~

µ
Ẽ

(0)
− (0, t)

[

2σ
(1)
22 (t)− 1

]

; (10a)

σ̇
(1)
− (t) = −γσ(1)

− (t)− i
~

µ

[

2σ
(1)
22 (t)− 1

]

Ẽ
(0)
+ (0, t); (10b)

σ̇
(2)
+ (t) = −γσ(2)

+ (t) + γ2σ
(1)
+ (t−X2/c)

[

2σ
(2)
22 (t)− 1

]

e−ik0X2

+ i
~

µ
Ẽ

(0)
− (X2, t)

[

2σ
(2)
22 (t)− 1

]

; (10c)

σ̇
(2)
− (t) = −γσ(2)

− (t) + γ2

[

2σ
(2)
22 (t)− 1

]

σ
(1)
− (t−X2/c)e

ik0X2

− i
~

µ

[

2σ
(2)
22 (t)− 1

]

Ẽ
(0)
+ (X2, t); (10d)

σ̇
(1)
22 (t) = −γ2σ(1)

22 (t) + i
~

µ

[

σ
(1)
+ (t)Ẽ

(0)
+ (0, t)− Ẽ

(0)
− (0, t)σ

(1)
− (t)

]

; (10e)

σ̇
(2)
22 (t) = −γ2σ(2)

22 (t)− γ2σ
(2)
+ (t)σ

(1)
− (t−X2/c)e

ik0X2

− γ2σ
(1)
+ (t−X2/c)σ

(2)
− (t)e−ik0X2 ;

+ i
~

µ

[

σ
(2)
+ (t)Ẽ

(0)
+ (X2, t)− Ẽ

(0)
− (X2, t)σ

(2)
− (t)

]

, (10f)

where k0 = ω0/c, γ = γ2/2, and

Ẽ
(0)
+ (X, t) =

[

Ẽ
(0)
− (X, t)

]†

= i

(

~

µ

)
√

γ2c

L

∑

k

eikXake
−i(ωk−ω0)t. (11)

In using the prescription (9), I have implicitly made the Wigner-Weisskopf approximation

by setting ωk = |k| c and neglecting the contributions from negative values of k. In one-

dimension, this approximation is a good one for a chiral guide, but not for a bi-directional

guide. In a bi-directional guide atoms can radiate in both directions and negative values

of k contribute to the decay rate in the same way as positive values - the decay rate in

that case is twice that given in Eq. (5). Equations (10) reflect the underlying physics of

this chiral guide. Atom 1 evolves as if atom 2 were absent. Since atom 2 cannot radiate

in the backwards direction, it does not influence the decay of atom 1. On the other hand

the evolution of atom 2 at time t depends on the state of atom 1 at the retarded time

t − X2/c. The additional Ẽ
(0)
± (Xj, t) terms in Eqs. (10) are ”fluctuation” terms that are

needed to maintain the equal-time commutation relations between the atom-atom and atom-

field operators as well as operator products such as σ
(j)
+ (t)σ

(j)
− (t) = σ

(j)
22 (t); σ

(j)
+ (t)σ

(j)
22 (t) = 0.

However, owing to the fact that the initial state for the field is the vacuum state and that
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[9]

[

Ẽ
(0)
+ (0, t), σ

(1)
+ (t′)

]

= 0 t ≥ t′; (12a)
[

Ẽ
(0)
+ (X2, t), σ

(2)
+ (t′)

]

= 0 t ≥ t′ (12b)

the fluctuation terms do not contribute to any of the expectation values of operators that

are evaluated in this paper.

III. FIELD INTENSITY

I first calculate the field intensity I(X, t) at position X > X2 and time t, defined as

I(X, t) = 2ǫ0cA 〈E−(X, t)E+(X, t)〉 . (13)

In this case, the position X is meant to correspond to the position of a photo-detector that

records the field intensity. When the solution given by Eq. (8) is substituted back into Eq.

(1) and the sum over k is converted to an integral using Eq. (9), the field operator can be

expressed

E+(X, t) = E+(tr) = E
(0)
+ (tr) + E

(Source)
+ (tr), (14)

where the ”free-field” component is given by

E
(0)
+ (tr) = i

(

~

µ

)
√

γ2c

L

∑

k

ake
−iωktr , (15)

and the ”source-field” component by

E
(Source)
+ (tr) = i

(

~γ2
µ

)

e−iω0tr
[

σ
(1)
− (tr) + σ

(2)
− (tr +X2/c) e

−ik0X2

]

. (16)

The time

tr = t−X/c. (17)

appearing in Eq. (14) is the retarded time at the field point relative to the origin.

The E
(0)
± (tr) terms do not contribute to the expectation value in Eq. (13), since the field

starts in the vacuum state. It then follows that

I(X, t) = I(tr) = ~ω0γ2

〈

σ
(1)
22 (tr) + σ

(2)
22 (tr +X2/c)

+
[

σ
(1)
+ (tr)σ

(2)
− (tr +X2/c) e

−ik0X2 + adjoint
]

〉

, (18)
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where the expectation value is taken with respect to the initial state vector

|ψ(0)〉 = |i〉A |0〉F , (19)

and |i〉A is the initial atomic state vector and |0〉F is the vacuum state of the field. The

intensity at point X at time t depends only on the retarded time tr = t − X/c relative to

the position of atom 1 and on the retarded time

tr(2) = t− (X −X2) /c = tr +X2/c (20)

relative to the position of atom 2. From this point onwards, I drop the r subscript on t - t

always refers to the retarded time tr relative to the origin unless noted otherwise.

From Eqs. (10e) and (11), I find that the first term needed in Eq. (18) is simply

〈

σ
(1)
22 (t)

〉

= e−γ2tρ
(1)
22 (0)Θ(t), (21)

where ρ
(1)
22 (0) is the initial excited state density matrix element for atom 1 and Θ(t) is a

Heaviside function defined by Θ(t) = 1 for t ≥ 0 and Θ(t) = 0 for t < 0. Atom 1 decays

as if atom 2 was not present. The second term needed in Eq. (18) is proportional to
〈

σ
(2)
22 (t+X2/c)

〉

. To calculate this term, I start from Eq. (10f), use Eqs. (10a), (10c), and

(11), and obtain

〈

σ̇
(2)
22 (t)

〉

= ρ̇
(2)
22 (t) = −γ2ρ(2)22 (t)− γ2G(t)f(t)

− γ2G
∗(t)f ∗(t), (22)

where

f(t) = e−γ(t−X2/c)eik0X2Θ(t−X2/c), (23)

G(t) =
〈

σ
(2)
+ (t)σ

(1)
− (0)

〉

, (24)

and ρ
(2)
22 (t) is the excited state density matrix element for atom 2.

Using Eqs. (10c) and (11), I find that G(t) satisfies the differential equation

Ġ(t) = −γG(t) + γ2f
∗(t)

〈

σ
(1)
+ (0)

[

2σ
(2)
22 (t)− 1

]

σ
(1)
− (0)

〉

= −γG(t) + 2γ2f
∗(t)

〈

σ
(1)
+ (0)σ

(2)
22 (t)σ

(1)
− (0)

〉

− γ2f
∗(t)ρ

(1)
22 (0). (25)

It then follows from Eqs. (10f) and (12) that
〈

σ
(1)
+ (0)σ

(2)
22 (t)σ

(1)
− (0)

〉

obeys the differential

equation

d
〈

σ
(1)
+ (0)σ

(2)
22 (t)σ

(1)
− (0)

〉

/dt = −γ2
〈

σ
(1)
+ (0)σ

(2)
22 (t)σ

(1)
− (0)

〉

. (26)
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In deriving this equation, I used the identities

σ
(1)
− (t)σ

(1)
− (0) |ψ(0)〉 = 〈ψ(0)|σ(1)

+ (0)σ
(1)
+ (t) = 0, (27)

which are a consequence of Eqs. (10a), (10b), (12), (11), and (19). The solution of Eq. (26)

is

〈

σ
(1)
+ (0)σ

(2)
22 (t)σ

(1)
− (0)

〉

= e−γ2t
〈

σ
(1)
+ (0)σ

(2)
22 (0)σ

(1)
− (0)

〉

Θ(t)

= e−γ2tT (0)Θ(t), (28)

with

T (0) =
〈

σ
(2)
22 (0)σ

(1)
22 (0)

〉

. (29)

When Eq. (28) is substituted into Eq. (25), the resulting equation can be integrated to

obtain

G(t) = G(0)e−γtΘ(t) + 2T (0)e−γ(t−X2/c)e−ik0X2

(

e−γ2X2/c − e−γ2t
)

×Θ(t−X2/c)− γ2(t−X2/c)e
−ik0X2e−γ(t−X2/c)ρ

(1)
22 (0)Θ(t−X2/c). (30)

It is now straightforward to insert Eq. (30) back into Eq. (22) and to integrate that equation

to arrive at

〈

σ
(2)
22 (t +X2/c)

〉

= ρ
(2)
22 (t +X2/c) = ρ

(2)
22 (0)e

−γ2(t+X2/c)Θ(t+X2/c)

−γ2tre−γ2te−γX2/c
[

G(0)eik0X2 +G∗(0)e−ik0X2

]

Θ(t)

−4T (0)e−γ2t
[

e−γ2X2/c (γ2t− 1) + e−γ2(t+X2/c)
]

Θ(t)

+ρ
(1)
22 (0)e

−γ2tγ22t
2Θ(t). (31)

I now have the first two terms needed in Eq. (18).

The remaining terms in Eq. (18) are proportional to

〈

σ
(2)
+ (t+X2/c)σ

(1)
− (t) eik0X2

〉

+ c.c. = G(t +X2/c)e
ik0X2e−γtΘ(t) + c.c. (32)

Using Eq. (30), I find

G(t+X2/c)e
ik0X2e−γtΘ(t) + c.c. = G(0)e−γX2/ceik0X2e−γ2tΘ(t)

+2T (0)e−γ2t
(

e−γ2X2/c − e−γ2(t+X2/c)
)

Θ(t)

−γ2te−γ2tρ
(1)
22 (0)Θ(t) + c.c. (33)
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Finally, by combining Eqs. (18), (21), (31), and (30), I obtain

IN(t) =
I(t)

~ω0γ2
= ρ

(2)
22 (0)e

−γ2X2/ce−γ2tΘ(t+X2/c)

+ (1− γ2t) e
−γ2te−γX2/c

[

G(0)eik0X2 +G∗(0)e−ik0X2

]

Θ(t)

+ρ
(1)
22 (0)e

−γ2t (1− γ2t)
2Θ(t)

+4T (0)e−γ2te−γ2X2/c
[

2
(

1− e−γ2t
)

− γ2t
]

Θ(t), (34)

where IN(t) is a dimensionless intensity defined such that its time integral is equal to the

initial energy of the two-atom system.

The most general initial atomic state can be written as

|i〉A = c11 |11〉+ c12 |12〉+ c21 |21〉+ c22 |22〉 , (35)

where |jk〉 is a state in which atom 1 is in state j and atom 2 in state k. For this initial

state vector,

ρ
(1)
22 (0) = |c12|2 + |c22|2 ; (36a)

ρ
(2)
22 (0) = |c21|2 + |c22|2 ; (36b)

T (0) = |c22|2 ; (36c)

G(0) = c∗21c12. (36d)

If the initial state is the factorized symmetric state

|i1〉A = (α |1〉1 + β |2〉1) (α |1〉2 + β |2〉2) (37)

(|α|2 + |β|2 = 1), then

ρ
(1)
22 (0) = ρ

(2)
22 (0) = |β|2 ; (38a)

T (0) = |β|4 ; G(0) = |αβ|2 . (38b)

On the other hand, for the maximally entangled state

|i2〉A =
1√
2
(|12〉+ |21〉) , (39)

ρ
(1)
22 (0) = ρ

(2)
22 (0) = G(0) = 1/2; (40a)

T (0) = 0. (40b)
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Equation (34) gives the intensity dynamics for any initial conditions, with retardation

taken fully into account. It is easy to verify that

∫ ∞

0

I(t)dt = ~ω0

[

ρ
(1)
22 (0) + ρ

(2)
22 (0)

]

, (41)

as it must from conservation of energy. I consider two limits, γX2/c ≪ 1 and γX2/c ≫ 1.

For convenience, I define

d = γX2/c; θ = k0X2. (42)

A. d = γX2/c ≪ 1

In the limit that γX2/c≪ 1, interatomic retardation plays no role and

IN(t) ∼ ρ
(2)
22 (0)Θ(t)e−γ2t

+ (1− γ2t) e
−γ2t

[

G(0)eiθ +G∗(0)e−iθ
]

Θ(t)

+ρ
(1)
22 (0)e

−γ2t (1− γ2t)
2Θ(t)

+4T (0)e−γ2t
[

2
(

1− e−γ2t
)

− γ2t
]

Θ(t). (43)

For the symmetric factorized initial state [see Eq. (38)],

IN1(t) ∼ |β|2 e−γ2t
[

1 + (1− γ2t)
2]Θ(t)

+2 (1− γ2t) e
−γ2t |αβ|2 cos θΘ(t)

+4 |β|4 e−γ2t
[

2
(

1− e−γ2t
)

− γ2t
]

Θ(t) (44)

and for the maximally entangled initial state [see Eq. (40)],

IN2(t) ∼
1

2

[

1 + (1− γ2t)
2]Θ(t)e−γ2t

+ (1− γ2t) e
−γ2t cos θΘ(t). (45)

At t = 0

IN1(0) = 2 |β|2
[

1 + |α|2 cos θ
]

; (46a)

IN2(0) = 1 + cos θ. (46b)

In both cases there can be constructive or destructive interference resulting from the relative

spatial phase factor. For the factorized state, interference occurs only when the initial dipole
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moment of the atoms is non-vanishing (αβ 6= 0), with the spatial phase provided by the

vacuum field. For the maximally entangled state, the atoms never acquire a dipole moment,

but the relative spatial phase factor of the vacuum field at the two atomic sites at t = 0

leads to the interference. When θ = k0X2 is an odd multiple of π, IN2(0) ∼ 0, whereas the

minimum value possible for IN1(0) is 2 |β|4. In Fig. 1, I plot IN1(t) as a function of γ2t for

d ≪ 1 and α = β = 1/
√
2. The solid red curve is for θ = 2nπ (constructive interference)

and the dashed blue curve for θ = (2n + 1)π (destructive interference). The dotted black

curve is e−γ2t, drawn for reference. The analogous curves for the maximally entangled state

are shown in Fig. 2. Note that IN2(t) = 0 if θ = 2nπ and γ2t = 2.

In Fig. 3, I plot IN1(t) as a function of γ2t for d ≪ 1 and β = 1 (both atoms inverted).

In this limit,

IN1(t) ∼ e−γ2t
[

10− 6γ2t + (γ2t)
2 − 8e−γ2t

]

Θ(t). (47)

The dotted black curve is 2e−γ2t and corresponds to what the intensity pattern would be

for two non-interacting atoms. The fact that IN2(t) > 2e−γ2t for early times and that

the output field decays to zero more rapidly than 2e−γ2t can be viewed as a signature of

stimulated emission - the field from the first atom produces stimulated emission in the

second atom. Alternatively, the output field can be interpreted as superradiance from the

inverted two-atom system. It is interesting to compare Eq. (47) with the analogous result

for the spatially integrated intensity of two, inverted atoms in free space having d ≪ 1. In

that case [2],

IsrN1(t) = 2e−2γ2t (1 + 2γ2t) Θ(t), (48)

which is plotted as the dashed blue curve in the figure. As you can see, the chiral result is

close, but not identical, to that of the corresponding free space result. I will return to this

point in Sec. V.

B. d = γX2/c ≫ 1

In the limit that γX2/c ≫ 1, the field from atom 2 arrives at the detector, followed by

the field from atom 1, which is modified by its interaction with atom 2. In that limit,

IN (t) ∼ ρ
(2)
22 (0)e

−γ2(t+X2/c)Θ(t+X2/c)

+ρ
(1)
22 (0)e

−γ2t (1− γ2t)
2Θ(t). (49)
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FIG. 1: Dimensionless intensity IN1 as a function of γ2t for the symmetric factorized intitial state

with d = γ2X2/c ≪ 1, α = β = 1/
√
2, and θ = k0X2 = (2n+ 1) π, 2nπ.

FIG. 2: Dimensionless intensity IN2 as a function of γ2t for a maximally entangled initial state

with d = γ2X2/c ≪ 1, α = β = 1/
√
2, and θ = k0X2 = (2n+ 1) π, 2nπ.

There is no longer any interference that depends on the spatial separation of the atoms.

The only interference is between the scattered and unscattered components of the field

radiated from atom 1 that is scattered by atom 2. This interference is totally destruc-

tive at γ2t = 1. In Fig. 4, the solid red curve is a plot of IN1(t) as a function

of γ2t for d = 6 and |β|2 = 1/2
[

ρ
(1)
22 (0) = ρ

(2)
22 (0) = 1/2

]

. The dotted black curve is
[

e−γ2(t+X2/c)Θ(t +X2/c) + e−γ2tΘ(t)
]

/2, drawn for reference. It is seen that the detector

initially records the field radiated by atom 2 whose wavefront arrives at t = −X2/c, followed

13



FIG. 3: Dimensionless intensity IN1 as a function of γ2t for the symmetric factorized intitial state

with d = γ2X2/c ≪ 1 and β = 1 (both atoms inverted). The dashed blue curve corresponds to the

spatially integrated intensity from two atoms in free space, that is, to two-atom superradiance.

by the field from atom 1, modified by its interaction with atom 2, whose wavefront arrives

at t = 0. For t > 0, the intensity at the detector no longer depends on the initial state of

atom 2, since atom 2 has decayed by the time the field from atom 1 reaches atom 2.

IV. SECOND-ORDER CORRELATION FUNCTION

I now turn my attention to the second-order correlation function, which can be defined

as

g(2)(X, t, τ) =
〈E−(X, t)E−(X, t+ τ)E+(X, t+ τ)E+(X, t)〉
〈E−(X, t)E+(X, t)〉 〈E−(X, t + τ)E+(X, t + τ)〉 . (50)

For a photo-detector located at position X , g(2)(X, t, τ) is proportional to the joint probabil-

ity of detecting one photon at time t and a second photon at time t+ τ . For τ > 0, owing to

Eqs. (12), the contributions to E+(X, t) from E
(0)
+ (t) make no contributions to g(2)(X, t, τ),

and Eq. (50) reduces to

g(2)(t, τ) =

∑2
i,jk,ℓ=1

〈

σ
(i)
+ (t(i))σ

(j)
+ (t(j) + τ)σ

(k)
− (t(k) + τ)σ

(ℓ)
− (t(ℓ))

〉

eik0(ijkℓ)X2

IN (t)IN(t+ τ)
, (51)

14



FIG. 4: Normalized intensity IN1 as a function of γ2t for the symmetric factorized intitial state

with d = γ2X2/c = 6, |β|2 = 1/2, and θ = 2nπ. For d ≫ 1, the intensity depends only on the initial

state populations of the atoms. The black dotted curve represents the intensity at the detector

neglecting any modification of the field from atom 1 produced by atom 2.

where

t(1) = t; (52)

t(2) = t+X2/c; (53)

k0(ijkℓ) = k0 [δi,2 + δj,2 − δk,2 − δℓ,2] , (54)

and δi,2 is a Kronecker delta. Recall that t is the retarded time associated with the position

of atom 1.

A time-integrated second-order correlation function can be defined by

g(2) =

∫∞

−∞
dt1

∫∞

−∞
dt2 〈E−(X, t1)E−(X, t2)E+(X, t2)E+(X, t1)〉
[

∫∞

−∞
dt 〈E−(X, t)E+(X, t)〉

]2 , (55)

which will turn out to be independent of X and X2, provided X > X2, as is assumed. Using
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the fact that g(2)(X, t,−τ) = g(2)(X, t, τ), it is possible to recast this equation as

g(2) =

2γ22
∫∞

−∞
dt

∫∞

0
dτ

∑2
i,jk,ℓ=1

〈

σ
(i)
+ (t(i))σ

(j)
+ (t(j) + τ)

×σ(k)
− (t(k) + τ)σ

(ℓ)
− (t(ℓ))

〉

eik0(ijkℓ)X2

[

ρ
(1)
22 (0) + ρ

(2)
22 (0)

]2 . (56)

The calculation of g(2)(t, τ) reduces to an evaluation of the 16 terms in the sum

M(t, τ) =

2
∑

i,jk,ℓ=1

〈

σ
(i)
+ (t(i))σ

(j)
+ (t(j) + τ)σ

(k)
− (t(k) + τ)σ

(ℓ)
− (t(ℓ))

〉

. (57)

Using relationships of the type

σ
(i)
+ (t(i))σ

(i)
− (t(i)) = σ

(i)
22 (t

(i)); (58)

σ
(i)
22 (t

(i))σ
(i)
− (t(i)) = σ

(i)
+ (t(i))σ

(i)
22 (t

(i)) = 0, (59)

one can show that there are only nine only non-vanishing terms in the sum, which can be

rewritten as

M(t, τ) =
9

∑

j=1

Aj(t, τ), (60)

where

A1(t, τ) =
〈

σ
(2)
+ (t+X2/c)σ

(1)
22 (t+ τ)σ

(2)
− (t+X2/c)

〉

; (61a)

A2(t, τ) =
〈

σ
(1)
+ (t)σ

(2)
22 (t+ τ +X2/c)σ

(1)
− (t)

〉

; (61b)

A3(t, τ) =
〈

σ
(1)
+ (t)σ

(2)
22 (t+ τ +X2/c)σ

(2)
− (t+X2/c)

〉

e−ik0X2 ; (61c)

A4(t, τ) =
〈

σ
(2)
+ (t+X2/c)σ

(2)
22 (t+ τ +X2/c)σ

(1)
− (t)

〉

eik0X2 = A∗
3(t, τ); (61d)

A5(t, τ) =
〈

σ
(2)
+ (t+X2/c)σ

(2)
22 (t+ τ +X2/c)σ

(2)
− (t +X2/c)

〉

; (61e)

A6(t, τ) =
〈

σ
(1)
+ (t)σ

(2)
+ (t+ τ +X2/c)σ

(1)
− (t+ τ)σ

(2)
− (t+X2/c)

〉

; (61f)

A7(t, τ) =
〈

σ
(2)
+ (t+X2/c)σ

(2)
+ (t+ τ +X2/c)σ

(1)
− (t + τ)σ

(2)
− (t +X2/c)

〉

eik0X2 ;

(61g)

A8(t, τ) =
〈

σ
(2)
+ (t+X2/c)σ

(1)
+ (t+ τ)σ

(2)
− (t+ τ +X2/c)σ

(1)
− (t)

〉

= A∗
6(t, τ);

(61h)

A9(t, τ) =
〈

σ
(2)
+ (t+X2/c)σ

(1)
+ (t+ τ)σ

(2)
− (t+ τ +X2/c)σ

(2)
− (t +X2/c)

〉

e−ik0X2

= A∗
7(t, τ). (61i)
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In these expressions, all the arguments of the operators must be positive.

Using Eqs. (12), (11), and (19), I find that, for τ > 0, the Aj(t, τ) satisfy the differential

equations:

∂A1(t, τ)

∂τ
= −γ2A1(t, τ)Θ(t+ τ); (62a)

∂A2(t, τ)

∂τ
= −γ2A2(t, τ); (62b)

∂A3(t, τ)

∂τ
= −γ2A3(t, τ)− γ2A6(t, τ); (62c)

∂A5(t, τ)

∂τ
= −γ2A5(t, τ)− γ2 [A7(t, τ) + A∗

7(t, τ)] ; (62d)

∂A6(t, τ)

∂τ
= −γ2A6(t, τ); (62e)

∂A7(t, τ)

∂τ
= −γ2

2
[Θ(t+ τ +X2/c) + Θ(t+ τ)]A7(t, τ)− γ2A1(t, τ) + 2γ2B(t, τ); (62f)

∂B(t, τ)

∂τ
= −γ2 [Θ(t+ τ +X2/c) + Θ(t+ τ)]B(t, τ), (62g)

A4(t, τ) = A∗
3(t, τ); A8(t, τ) = A∗

6(t, τ); A9(t, τ) = A∗
7(t, τ), (62h)

where

B(t, τ) =
〈

σ
(2)
+ (t +X2/c)σ

(1)
+ (t+ τ)σ

(2)
22 (t+ τ +X2/c)σ

(1)
− (t+ τ)σ

(2)
− (t+X2/c)

〉

. (63)

It follows immediately from the definitions given in Eqs. (61) that

A3(t, 0) = A4(t, 0) = A5(t, 0) = A7(t, 0) = A9(t, 0) = 0. (64)

Moreover, using Eqs. (10a), (10b) and (12), one can show that

[

σ
(1)
− (t), σ

(2)
− (t +X2/c)

]

|ψ(0)〉 = 〈ψ(0)|
[

σ
(2)
+ (t+X2/c), σ

(1)
+ (t)

]

= 0. (65)

This relationship holds for both positive and negative t. As a consequence, I can deduce

from Eqs. (62a), (62b), (62e), (62h), (63), that

A1(t, 0) = A2(t, 0) = A6(t, 0) = A8(t, 0)

=
〈

σ
(1)
+ (t)σ

(2)
22 (t+X2/c)σ

(1)
− (t)

〉

≡ F (t) (66)

and

B(t, 0) = 0. (67)
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With these initial conditions the solution of Eqs. (62) is

A1(t, τ) = F (t)e−γ2τ
[

Θ(t) + Θ(−t)Θ(t + τ)e−γ2t
]

; (68a)

A2(t, τ) = F (t)Θ(t)e−γ2τ ; (68b)

A3(t, τ) = −γ2τF (t)Θ(t)e−γ2τ ; (68c)

A5(t, τ) = γ22τ
2e−γ2τF (t)Θ(t) (68d)

+ γ22 (t+ τ)2 e−γ2(t+τ)F (t)Θ(t+ τ)Θ(−t);

A6(t, τ) = F (t)Θ(t)e−γ2τ ; (68e)

A7(t, τ) = −γ2τF (t)e−γ2τΘ(t)

− γ2 (t+ τ)F (t)e−γ2(t+τ)Θ(t + τ)Θ(−t), (68f)

provided t ≥ −X2/c. For t < −X2/c and τ > 0, all terms vanish since the earliest time that

radiation can reach a detector located at position X is t = −X2/c.

I can obtain a differential equation for F (t) using Eqs. (10b) and (10f), but some care

must be taken for negative t, that is for −X2/c ≤ t < 0. Equation (10b) is valid only for

t ≥ 0; for t < 0, it must be replaced by

σ̇
(1)
− (t) = −i~

µ

[

2σ
(1)
22 (t)− 1

]

Ẽ
(0)
+ (0, t). (69)

It then follows from Eqs. (10b), (10f), (69), and (12) that

dF/dt = [− (2γ2 +X2/c) Θ(t)− (γ2 +X2/c)Θ(−t)]F, (70)

implying that

F (t) =
[

e−γ2(2t+X2/c)Θ(t) + e−γ2(t+X2/c)Θ(−t)
]

T (0), (71)

where T (0) = F (0) is given by Eq. (29).

By combining Eqs. (51)-(71), I finally arrive at

M(t, τ) = T (0)e−γ2(2t+τ)e−γ2X2/cΘ(t+X2/c)

×
[

(2− γ2τ)
2Θ(t) + [1− γ2 (t + τ)]2Θ(−t)Θ(t + τ)

]

. (72)

The quantity M(t, τ) is proportional to the joint probability that a detector placed at po-

sition X records one count at time t and a second count at time t + τ , with τ > 0. It can
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be seen that M(t, τ) undergoes a discontinuous jump at t = 0. That is, for γ2t = ± |ǫ| and
|ǫ| ≪ 1

M(|ǫ| /γ2, τ) ∼ T (0)e−γ2τe−γ2X2/c (2− γ2τ)
2 ; (73a)

M(− |ǫ| /γ2, τ) ∼ T (0)e−γ2τe−γ2X2/c [1− γ2τ ]
2Θ(τ − |ǫ| /γ2). (73b)

For t > 0, the count at time t can be produced by radiation from either atom, regardless

of the value of τ . However, once t is negative, the count at time t can be produced only by

atom 2. The value of M(± |ǫ| /γ2, τ) is a maximum near τ = 0, but it is about four times

larger for t > 0. Mathematically, this result can be understood from the fact that A2(t, τ),

A3(t, τ), A4(t, τ), A6(t, τ), and A8(t, τ) no longer contribute to M(t, τ) for t < 0.

Other quantities of physical interest are the rate of delayed coincidences Rc(X2, τ) which,

for τ > 0, is defined by

Rc(X2, τ) = γ22

∫ ∞

−∞

dtM(t, τ) =
γ2T (0)

4
e−γ2(τ+X2/c) (7− 6γ2τ)

+
γ2T (0)

4
e−γ2(τ−X2/c)

[

1− 2γ2τ + 2γ22τ
2 + 2

γ2X2

c

(

1− 2γ2τ +
γ2X2

c

)]

Θ(τ −X2/c)

+
γ2T (0)

4
e−γ2(X2/c−τ)Θ(X2/c− τ), (74)

the time-integrated number of coincidence counts,

Nc = 2

∫ ∞

0

dτ Rc(τ) = 2T (0),

the second-order correlation function

g(2)(t, τ) =
M(t, τ)

IN(t)IN (t+ τ)
, (75)

and the time-integrated second-order correlation function

g(2) =
2P12

(P1 + P2)
2 =

2T (0)
[

ρ
(1)
22 (0) + ρ

(2)
22 (0)

]2 , (76)

with

P12 = Nc/2 = T (0); P1 = ρ
(1)
22 (0); P2 = ρ

(2)
22 (0). (77)

The time-integrated second-order correlation function is twice the number of pairs of

excitations (P12) divided by the square of the number of excitations. If there are exactly

two excitations in the system, that is, when ρ
(1)
22 (0) = ρ

(2)
22 (0) = T (0) = 1, then g(2) = 1/2,
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FIG. 5: Dimensionless rate of delayed coincidences γ2Rc(X2, τ) as a function of γ2τ for T (0) = 1

(both atoms inverted) and d = γ2X2/c = 0, 0.5.

the same result that would be obtained for a two-photon, single mode field. Interestingly,

for the symmetric factorized initial state with β 6= 0 [ρ
(1)
22 (0) = ρ

(2)
22 (0) = |β|2 ;T (0) = |β|4],

g(2) = 1/2 as well. For the maximally entangled initial state, g(2) = 0, since there is only a

single excitation in the system.

In Figs. 5 and 6 the dimensionless rate of delayed coincidences γ2Rc(X2, τ) is plotted as a

function of γ2τ for T (0) = 1 and d = {0, 0.5} and {2, 5}, respectively. Note that for X2 = 0,

γ2Rc(0, τ) =
T (0)

2
e−γ2τ (2− γ2τ)

2 (78)

is equal to 2 at γ2τ = 0, vanishes identically for γ2τ = 2, and has a secondary maximum

before decaying away. When X2 6= 0 and d > 1, there is a local maximum at γ2τ = d and a

secondary maximum at γ2τ ≈ d+
(

3 +
√
3
)

/2. If X2 6= 0, the slope is always discontinuous

at τ = X2/c; it varies from −3T (0) to −4T (0) if d≪ 1 and from (1/4)T (0) to (−3/4)T (0)

if d ≫ 1.

I restrict the discussion of the second-order correlation function to the symmetric factor-

ized state with β 6= 0. For this initial state, I denote the second-order correlation function

by

g
(2)
1 (t, τ) =

M1(t, τ)

IN1(t)IN1(t+ τ)
, (79)

where

M1(t, τ) = |β|4 e−γ2(2t+τ)e−γ2X2/cΘ(t+X2/c)

×
[

(2− γ2τ)
2Θ(t) + [1− γ2 (t+ τ)]2Θ(−t)Θ(t+ τ)

]

(80)
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FIG. 6: Dimensionless rate of delayed coincidences γ2Rc(X2, τ) as a function of γ2τ for T (0) = 1

(both atoms inverted) and d = γ2X2/c = 2, 5.

and IN1(t) is given by Eq. (34). Moreover, I consider only the two limiting cases, γ2X2/c≪ 1

and γ2X2/c ≫ 1. Recall that T (0) = |β|4 for the symmetric factorized state. For classical

fields, g
(2)
classical(t, τ) = 1. For the two-atom system under consideration, g

(2)
1 (t, τ) can vary

between 0 and ∞ and can exhibit very different behavior as τ is scanned for different t.

That is, both photon bunching and anti-bunching can occur, depending on the values of

γ2τ and θ = k0X2. Only a few representative plots are given. For any value of γ2X2/c,

g
(2)
1 (t ≥ 0, τ = 2γ−1

2 ) = 0 and g
(2)
1 (t < 0, τ = −t + γ−1

2 ) = 0, non-classical values resulting

from intensity-intensity interference.

A. d = γ2X2/c ≪ 1

Since t ≥ −X2/c and γ2X2/c ≪ 1, it is sufficient in this subsection to take t ≥ 0. For

the symmetric factorized initial state and d ≪ 1,

g
(2)
1 (t, τ) ∼ (2− γ2τ)

2

F (γ2t)F [γ2 (t + τ)]
, (81)

where

F (x) = 1 + (1− x)2 + 2 |α|2 (1− x) cos θ + 4 |β|2
(

−2e−x + 2− x
)

. (82)

As a function of γ2t, the correlation function can become large if γ2τ = 0,∞, as F (γ2t) goes

through a minimum. For the symmetric factorized state with |β|2 ≪ 1, this can occur at
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γ2t = 0 or 2. Explicitly,

g
(2)
1 (0, 0) ∼ 1

[

1 + |α|2 cos θ
]2 ; (83)

g
(2)
1 (0,∞) ∼ 1

2
[

1 + |α|2 cos θ
] , (84)

g
(2)
1 (2/γ2, 0) ∼

1
[

1− |α|2 cos θ − 4 |β|2 e−2
]2 ; (85)

g
(2)
1 (2/γ2,∞) ∼ 1

2
[

1− |α|2 cos θ − 4 |β|2 e−2
] . (86)

For θ = (2n+ 1)π (integer n), g
(2)
1 (0, 0) ∼ |β|−4, g

(2)
1 (0,∞) ∼ |β|−2 /2, while for θ = 2nπ,

g
(2)
1 (2/γ2, 0) ∼ 4.75 |β|−4, g

(2)
1 (2/γ2,∞) ∼ 1.09 |β|−2. If both atoms are inverted initially,

g
(2)
1 (t, τ ; β = 1) ∼ (2− γ2τ)

2

[−8e−γ2t + 10− 6γ2t + γ22t
2]
[

−8e−γ2(t+τ) + 10− 6γ2 (t+ τ) + γ22 (t + τ)2
]

(87)

and g
(2)
1 (t, 0; β = 1) reaches a maximum value of 13.2 for γ2t = 2.74, with g

(2)
1 (t =

2.74/γ2,∞; β = 1) ∼ 1.81.

In Fig. 7, g
(2)
1 (t, τ) is plotted as a function of d = γ2X2/c ≪ 1 for θ = (2n+ 1)π, |β|2 =

0.4, and γ2t = 0 (solid red curve) and γ2t = 2 (dashed blue curve). Analogous curves are

shown in Fig. 8 for θ = 2nπ. The curves in Fig. 9 are drawn for β = 1 and γ2t = 2, 2.74.

Asymptotic values are indicated by dotted black lines.

B. d = γ2X2/c ≫ 1

Radiation from atom 2 reaches the detector at t = −X2/c and that from atom 1 at t = 0.

Thus, to have coincidence counts from the two atoms when γ2X2/c≫ 1, it is necessary that

t > −X2/c and τ & t. If t > 0 and γ2X2/c ≫ 1, then g
(2)
1 (t, τ) ≪ 1, in general, so the

examples that are given are restricted to −X2/c < t < 0. For −X2/c < t < 0,

g
(2)
1 (t, τ) = g(d, y) ∼ (1− y)2

D(d, y)
Θ (y) , (88)

where

d = γ2X2/c; y = γ2(t+ τ), (89)
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FIG. 7: Second order correlation function as a function of γ2τ for a symmetric factorized initial

state and |β|2 = 0.4, d ≪ 1, and θ = k0X2 = (2n + 1)π. The dotted black lines are the theoretical

asymptotes.

FIG. 8: Second order correlation function as a function of γ2τ for a symmetric factorized initial

state and |β|2 = 0.4, d ≪ 1, and θ = k0X2 = 2nπ. The dotted black lines are the theoretical

asymptotes.

and

D(d, y) = (1− y)2 + 2 |α|2 (1− y)e−d/2 cos θ

+
[

1 + 4 |β|2 (2− y)
]

− 8 |β|2 e−(d+y). (90)
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FIG. 9: Second order correlation function as a function of γ2τ for a symmetric factorized initial

state with β = 1 and d ≪ 1. The dotted black lines are the theoretical asymptotes.

The second-order correlation function vanishes for τ < −t and at y = γ2(t + τ) = 1. For

−γ2t < γ2τ < (−γ2t+ 1) , g
(2)
1 (t, τ) rises for θ = (2n+ 1)π, falls for θ = 2nπ, and is

approximately constant for θ = (n + 1/2)π. For γ2τ > (−γ2t+ 1), g
(2)
1 (t, τ) rises to an

asymptotic value of unity for θ = (2n+ 1) π, rises sharply and then falls to an asymptotic

value of unity for θ = 2nπ, and is approximately equal to unity for θ = (n + 1/2)π. These

features are illustrated in Figs. 10 - 12, in which g
(2)
1 (t, τ) is plotted as a function of γ2τ for

d = 7, γ2t = −3,−6, α =
√
0.9, β =

√
0.1 and θ = (2n + 1)π (Fig. 10), θ = 2nπ (Fig. 11),

and θ = (n + 1/2)π (Fig. 12). Analogous curves for β = 1 (not shown) are essentially the

same as those shown in Fig. 12.

If γ2X2/c ≫ 1 and t is close to zero, some special attention is needed. As long as t < 0,

Eq. (88) remains valid and the dependence of g
(2)
1 (t, τ) on γ2τ mirrors that shown in Figs.

10-12. However, as soon as t ≥ 0, the dependence changes dramatically since the count at

time t can be produced by radiation from either atom. For d ≫ 1 and t = 0, g
(2)
1 (0, τ) is

nonvanishing only in a small range ǫ of γ2τ about unity, for which

g
(2)
1 [0, τ = (1 + ǫ) /γ2] ∼

1

4 |β|2
(

1− 2
e

)

+ 1− 2 |α|2 ǫed/2 cos θ + ǫ2ed
. (91)

That is, g
(2)
1 (0, τ) is centered at

γ2τ = 1 + |α|2 e−d/2 cos θ, (92)
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FIG. 10: Second order correlation function as a function of γ2τ for a symmetric factorized initial

state and |β|2 = 0.1, d = 7, and θ = k0X2 = (2n + 1)π.

FIG. 11: Second order correlation function as a function of γ2τ for a symmetric factorized initial

state and |β|2 = 0.1, d = 7, and θ = k0X2 = 2nπ.

has a width of order e−d, and a maximum value

g
(2)
1 (0, τ)max =

1

4 |β|2
(

1− 2
e

)

+ 1− |α|4 cos2 θ
. (93)

In Fig. 13, g
(2)
1 (0, τ) is plotted as a function of z = (γ2τ − 1) ed/2/ |α|2 for |α|2 = 0.9, d = 12,

and θ = π (solid red curve), θ = 2π (dashed blue curve), and θ = π/2 (lower solid black

curve), exhibiting all the features predicted above. The maximum values predicted in Eq.
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FIG. 12: Second order correlation function as a function of γ2τ for a symmetric factorized initial

state and |β|2 = 0.1, d = 7, and θ = k0X2 = (n+ 1/2) π.

FIG. 13: Second order correlation function g
(2)
1 (0, τ) as a function of z = (γ2τ − 1) ed/2/ |α|2 for

a symmetric factorized initial state and |α|2 = 0.9, d = 12, and θ = k0X2 = (2n + 1) π. Dotted

black lines give theoretical values for the maxima.

(93) are indicated by dotted black lines. The feature that g
(2)
1 (0, τ) undergoes a qualitative

change as t changes sign when d ≥ 1 is illustrated in Fig. 14, drawn for d = 4, θ = π, and

γ2t = −0.1, 0.1.
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FIG. 14: Second order correlation function as a function of γ2τ for a symmetric factorized initial

state and |β|2 = 0.1, d = 4, and θ = k0X2 = π, showing the change as t changes sign.

V. CONCLUSIONS AND DISCUSSION

The problem of two atoms in a chiral waveguide has been studied in detail using a

source-field approach. Analytic solutions were obtained for the field intensity and the second-

order correlation function. In a chiral guide having cross-sectional area A ≫ λ2, the pulse

area of the field radiated by each atom is much less than unity. As a consequence, when

γ2X2/c≫ 1, atom 2 does not undergo Rabi oscillations as it scatters the field from atom 1.

Instead, it modifies this output field from atom 1, with total destructive interference in the

output intensity at a time t = γ−1
2 following the arrival of the wavefront at atom 2. When

γ2X2/c≪ 1 and both atoms are initially inverted, there is stimulated emission, but not into

the same spatio-temporal modes as the input field produced by atom 1. The second-order

correlation function can take on non-classical values ranging from zero to arbitrarily high

limits, depending on the initial conditions. In the appendix, it is shown how the results can

be taken over to provide a solution for the related problem of a single-photon pulse incident

on an atom prepared in an arbitrary initial state.

Admittedly, the solutions presented in this paper correspond to an idealized situation.

Aside from the difficulty in designing chiral guides, preparing atoms in the desired initial

state, and measuring the output field, there are always some losses present. The losses can

be accounted for in a phenomenological manner in Eqs. (10) and (16) by assuming that the
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amplitude of the source field decays exponentially as it propagates down the guide. The

effect of losses is to reduce both the output field intensity and the coupling between the

atoms. As a consequence, when ρ
(1)
22 (0) = ρ

(2)
22 (0) = T (0) = 1, the output field is no longer

a two-photon field and g(2) < 1/2. It is not difficult to generalize Eqs. (10) and (16) to

allow for additional atoms in the guide. However, the solution of the equations becomes

increasingly complicated as the number of atoms increases. In effect, you need to first solve

the operator equations for the first two atoms, then use this solution to obtain the operator

solution for three atoms, and so forth.

If retardation is neglected and if all the atoms are prepared in their excited states, the

problem corresponds to a unique type of superradiance, in which the atom-atom coupling

induced by the vacuum field is independent of interatomic separation and does not result

in a shift of the atomic energy levels, as in conventional superradiance. As we have seen

[Eqs. (47) and (48)], even for two atoms separated by less than a wavelength, the total

intensity radiated in the chiral guide differs from that of atoms in free space (two-atom

superradiance). In effect, the chiral nature of the guide leads to coupling of Dicke states

[10] that are not coupled for atoms in free space (states having the same m but different r

in Dicke’s notation). For example, in the two-atom case, there are four Dicke states,

|E〉 = |r = 1, m = 1〉 = |22〉 ; (94a)

|S〉 = |r = 1, m = 0〉 = 1√
2
(|21〉+ |12〉) ; (94b)

|G〉 = |r = 1, m = −1〉 = |11〉 ; (94c)

|A〉 = |r = 0, m = 0〉 = 1√
2
(|21〉 − |12〉) . (94d)

Assuming the atoms are separated by much less than a wavelength and the atoms are

prepared in state |E〉, the antisymmetric state |A〉 is not coupled to any other state for

atoms in free space. However, in a chiral guide, while state |A〉 is still not coupled to states

|E〉 and |G〉, it is coupled to state |S〉 and becomes populated as the two-atom system

decays.
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VII. APPENDIX - SINGLE-PHOTON PULSE + ATOM

An analytic solution to the problem of a single-photon pulse interacting with an atom in

a chiral guide was given by Valente et al. [11] by obtaining and solving a partial differential

equation for field propagation in the guide. In this appendix, I show that the source-field

approach can be used as an alternative method for arriving at expressions for the field

intensity and second-order correlation function for the atom-field problem by simply taking

over the results of the main text for the atom-atom problem. It is not difficult to understand

why the atom-atom results can be mapped into the atom-field results, since the atom-atom

problem, in the limit that ρ
(1)
22 (0) = 1, corresponds to a single photon pulse (albeit a specific

one) incident on an atom. In fact, this is the situation envisioned by Valente et al. in

formulating their problem.

I take the atom located at X = 0 and the wavefront of the single photon pulse located at

−ct0 ≤ 0 at time t = 0. For an arbitrary single-photon input pulse, the initial state vector

for the system is written as

|ψ(0)〉 = |i〉A
∫ ∞

−∞

dk b(k) |k〉 , (95)

where |i〉A is the initial atomic state vector, b(k) is a field state amplitude, and |k〉 is a single

photon state of the field. I have assumed I can extend the k integral to −∞ with little error.

I define

q(t) =

(

1

2πc

)1/2 ∫ ∞

−∞

dω b(ω/c)e−i(ω−ω0)t. (96)

The quantity |q(t)|2 is proportional to the pulse intensity at X = 0 at time t; since the

wavefront of the pulse arrives at the origin at t = t0, |q(t)|2 = 0 for t < t0.

The calculation of the main text can then be used by setting X2 = 0, ρ
(1)
22 (0) = 1 and

replacing σ
(1)
− (t) with q(t)σ

(1)
− (0)/

√
γ2. In this manner, I find

I(t) = ~ω0γ2IN(t), (97)

where

IN(t) =

[

|q(t)|2
γ2

+Q (t) +Q∗ (t) + ρ22 (t)

]

Θ (t) , (98)
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where

Q̇ (t) = −γ2
2
Q(t)− dq/dt

q (t)
Q(t) + |q(t′)|2

[

2e−γ2t′ρ22(0)− 1
]

; (99a)

ρ22(t) = ρ22(0)e
−γ2t − γ2

∫ t

0

dt′ [Q (t′) +Q∗ (t′)] e−γ2(t−t′). (99b)

Equation (99a) can be solved formally as

Q(t) =

∫ t

0

dt′e−
γ2
2
(t−t′)q (t) q∗(t′)

[

2e−γ2t′ρ22(0)− 1
]

. (100)

As in the main text, all times in these equations are retarded times relative to the origin.

First consider the case where ρ22(0) = 0 and

q(t) = q1(t) =
√
γ2e

−γ(T−t)/2Θ (T − t) , (101)

with γT ≫ 1 [5]. For this pulse, the intensity rises exponentially at the origin until time

t = T , and then falls instantaneously to zero. The time constant of the intensity matches

the excited state lifetime of the atom. In this case

Q (t) = e−γ(t+T )
[

1− eγ2T +
(

eγ2t − eγ2T
)

Θ (T − t)
]

; (102a)

ρ22(t) = e−γ2(t+T )
[

(

1− eγ2T
)2

+
(

eγ2t − eγ2T
) (

−2 + eγ2t + eγ2T
)

Θ (T − t)
]

, (102b)

and

lim
γ2T≫1

IN(t) = e−γ2(t−T )Θ (t− T ) . (103)

At t = T , ρ22(T ) = 1; the system is completely inverted when the tail end of the pulse

reaches the origin [5]. For this result to be consistent with energy conservation, IN (t) must

vanish identically for t < T , as it does [see Eq. (103)]. The contribution to the radiated

intensity from the first term in Eq. (98) and that part of ρ22 (t) associated with the first

term in Eq. (102b), is exactly canceled by the interference terms. In other words, as the

pulse arrives at the atom, the interference of the incident and scattered radiation is totally

destructive for times t < T . For t > T , the atom simply decays.

Next consider an atom prepared in its excited state [ρ22(0) = 1] and an exponentially

falling input pulse

q(t) = q2(t) =
√

Γpe
−Γpt/2Θ (t) (104)
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whose wavefront coincides with the atom at t = 0, for which

Q (t) = 2Θ (t) Γp

[

e−Γpt − e−(γ2+Γp)t/2

Γp − γ2
+ 2e−(γ2+Γp)t/2

1− e−(γ2+Γp)t/2

γ2 + Γp

]

; (105a)

ρ22(t) = e−γ2tΘ (t) +
4γ2e

−(γ2+Γp)tK(t)Θ (t)

(γ2 − Γp)
2 (γ2 + Γp)

, (105b)

and

IN(t) =
e−(γ2+Γp)t

γ2 (γ2 − Γp)
2J(t)Θ (t) , (106)

where

K(t) = 2 (γ2)
2 (−1 + eΓpt

)

+ γ2Γp

(

4 + eγ2t + eΓpt − 6e(γ2+Γp)t/2
)

+ (Γp)
2 (−2 + eγ2t − eΓpt + 2e(γ2+Γp)t/2

)

(107)

and

J(t) = (γ2)
3 (−8 + 9eΓpt

)

+ (γ2)
2 Γp

(

16 + eγ2t − 6eΓpt − 12e(γ2+Γp)t/2
)

+ γ2 (Γp)
2 (−8 + 2eγ2t + eΓpt + 4e(γ2+Γp)t/2

)

+ (Γp)
3 eγ2t. (108)

The condition Γp = 3γ2 is the optimal one for stimulated emission [6]. In this limit,

IN(t) = 4
(

3e−3γ2t − 2e−4γ2t
)

Θ (t) . (109)

Although the emission rate is increased, the temporal shape of the output pulse is not the

same as the input pulse. If Γp = γ2,

IN(t) = e−γ2t
[

10− 6γ2t + (γ2t)
2 − 8e−γ2t

]

Θ (t) , (110)

and we recover Eq. (47). For arbitrary q(t),

γ2

∫ ∞

0

IN(t)dt = [1 + ρ22(0)] ;

∫ ∞

0

I(t)dt = ~ω0 [1 + ρ22(0)] ; (111)

the integrated intensity always corresponds to ~ω0 of energy from the field and ~ω0ρ22(0) of

energy from the atom.

The second-order correlation function is given by

g(2)(t, τ) =
C(t, τ)

IN(t)IN(t + τ)
(112)

with

C(t, τ) = ρ22(0)e
−γ2tΘ(t)

9
∑

j=1

Cj(t, τ), (113)
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and

C1(t, τ) =
|q(t + τ)|2

γ2
; (114a)

C2(t, τ) =
|q(t)|2
γ2

e−γ2τ ; (114b)

C3(t, τ) = −q∗(t)
∫ τ

0

dτ ′e−γ2(τ−τ ′)q(t + τ ′)e−γ2τ ′/2 = C∗
4(t, τ); (114c)

C6(t, τ) =
q∗(t)q(t+ τ)

γ2
e−γ2τ/2 = C∗

8(t, τ), (114d)

with

∂C5(t, τ)

∂τ
= −γ2C5(t, τ)− γ2 [C7(t, τ) + C∗

7(t, τ)] ; (115a)

∂C7(t, τ)

∂τ
= −γ2

2
C7(t, τ)−

∂q (t+ τ) /∂t

q (t + τ)
C7(t, τ)− γ2C1(t, τ), (115b)

from which it follows that

C7(t, τ) = −q(t + τ)

∫ τ

0

dτ ′ exp
[

−γ2
2
(τ − τ ′)

]

q∗(t+ τ ′) (116a)

C5(t, τ) = −γ2
∫ τ

0

dτ ′e−γ2(τ−τ ′) [C7(t, τ
′) + C∗

7 (t, τ
′)] . (116b)

Given q (t), it is now possible to use Eqs. (97)-(116) to calculate C(t, τ) and g(2)(t, τ). Note

that

(γ2)
2

∫ ∞

−∞

dt

∫ ∞

0

dτ C(t, τ) = ρ22(0) (117)

for any q (t).
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