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We present a theoretical scheme and its experimental proof of principle for an open quantum
system undergoing Markovian and non-Markovian evolutions. We exhibit these two regimes by
diagnosing them with the relative entropy of coherence of two polarization qubits playing the roles
of system and ancilla. These are initially prepared in a polarization maximally entangled state of a
photon pair produced by spontaneous parametric down-conversion. We induce Markovian and non-
Markovian regimes in the system’s dynamics with the help of two auxiliary qubits, experimentally
implemented by optical paths in a layout of Sagnac and Mach-Zehnder interferometers. We replicate
system-environment interactions by means of an amplitude-damping-channel and a suitably designed
inversion of it. In our scheme, one needs only two experimentally accessible parameters to achieve
Markovian and non-Markovian regimes.

I. INTRODUCTION

In the framework of open quantum systems, it is useful
to consider the system under study and its environment
as two subsystems that constitute a closed Hilbert space.
In this space, the total amount of information is pre-
served, even though it may be exchanged between system
and environment [1, 2]. System-environment communi-
cations are governed by a global dynamical map that
usually leads to irreversible Markovian processes, where
any structured information gets dissipated among the in-
terconnected parts of the total Hilbert space. However,
there are also cases in which information can flow from
the environment back to the system, thereby exhibiting
a non-Markovian behavior [3]. By exploiting cases like
these, one could in principle engineer techniques to pre-
vent information losses and so design robust communica-
tion protocols.

The purpose of this work is to study a suitably de-
signed example of coherence tracking and control on an
open quantum system. We identify coherence as being a
quantum resource that can be generated and consumed
by means of suitably designed mechanisms. This makes
coherence a useful quantifier for quantum information
tasks [4], while it further allows to signal Markovian and
non-Markovian evolutions [5]. In particular, the so called
relative entropy of coherence Crec has been defined [4] to
measure the population balance and its relative correla-
tion according to

Crec(ρ) = S(ρdiag)− S(ρ). (1)

Here, S is the von Neumann entropy [6] and ρdiag denotes
the matrix obtained by deleting all off-diagonal elements
in the density matrix ρ.

When a system s undergoes a Markovian process, its
state ρs evolves in time according to ρs(t) = Λs(t)ρs(0),
with Λs(t) being a completely-positive and divisible map.

Such a map cannot increase the amount of coherence
[4, 7]. Hence, one may assume that the monotonic deriva-

tive condition Ċrec(ρs(t))≤0 signals a non-Markovian dy-
namics on the system space. However, it has been shown
that this condition fails to diagnose Markovianity in some
cases, in particular when the amplitude damping chan-
nel is involved [5]. This channel represents an important
dissipation mechanism that can lead, for instance, to bit-
flip errors. These errors do not occur when dissipation
comes only from phase-damping, a channel that has been
much studied lately [8–15]. It is thus worth addressing
the amplitude damping channel in order to get additional
insight about information losses and recovery. Fortu-
nately, there is a way around the inappropriateness of
the derivative condition Ċrec(ρs(t))≤0. Indeed, one may
resort to a modified rule for Markovianity, that reads as
Ċrec(ρa,s(t))≤0, where the compound state ρa,s describes
the system of interest (s) together with some ancilla (a).
Accordingly, for the state evolution ρa,s(t) = E(ρa,s(0)),
with a bipartite process E = Ia ⊗ Λs, the violation of
the last extended monotonicity implies the appearance
of non-Markovianity [5, 16–18].

In this work, we analyze the evolution of Crec for a
state ρa,s in which system and ancilla are encoded in two
polarization photon qubits. System s interacts with two
additional degrees of freedom that represent two envi-
ronment qubit spaces (e and d). One of them has been
implemented by the two output modes of a Sagnac inter-
ferometer, while the other qubit corresponds to two pos-
sible detection times due to an unbalanced nested struc-
ture within a Mach-Zehnder interferometer (MZI). With
this scheme, we are able to generate different regimes of
Markovian and non-Markovian dynamics by tuning only
two experimental parameters. Such regimes and their ex-
perimental realizations constitute the first steps towards
the implementation of related protocols for efficient in-
formation tracking and recovery of information losses.

Our study complements previous researches related
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with phase-damping channels, where the open system
was either a single polarized photon, or a pair of po-
larized photons [8–15]. In most of those cases, the en-
vironment was given by the photon’s frequency mode,
ruled by some frequency distribution whose evolution de-
pended on the polarization state, thereby giving rise to
non-Markovian processes. In other cases, the role played
by the photon’s frequency distribution was played by
the photon’s spatial distribution, i.e., the distribution
of photon’s emission angles [12]. The degree of non-
Markovianity was assessed through the rate of change σ
of the trace distance D(ρ1, ρ2) = Tr |ρ1 − ρ2|/2 between
states ρ1(t) and ρ2(t), i.e., through σ(t, ρ1(0), ρ2(0)) =

Ḋ(ρ1(t), ρ2(t)). In terms of σ, one defines the measure
N = max0

∫
σ>0

σ(t, ρ1(0), ρ2(0))dt, where max0 means

the maximum over all possible pairs of initial states ρ1(0)
and ρ2(0). What N measures is thus the total increase
of the trace distance during the system’s evolution and
this is usually interpreted as a quantifier of the max-
imal amount of information that comes from the en-
vironment back to the system. This interpretation is
based on the assumption that similarity between quan-
tum states is a property from which one can draw con-
clusions about quantum resources. However, care should
be exercised when making such an assumption [19, 20].
Indeed, two states may be very close to each other in
terms of the trace distance as well as in terms of, say,

the Bures distance DB(ρ1, ρ2) =

√
2
(

1−
√
F (ρ1, ρ2)

)
,

where F (ρ1, ρ2) =
(
Tr
√√

ρ1ρ2
√
ρ1
)2

is Uhlmann’s fi-
delity [21]. In spite of being close to each other, two
states can nonetheless have very different physical prop-
erties, e.g., one being separable and the other entangled
[22]. In order to assess, for instance, information recov-
ery when employing quantum resources, it is advisable
to study different features, such as distinguishability be-
tween quantum states as well as the amount of coher-
ence. Appropriate quantifiers should then be introduced
in each case.

Our goal is to employ coherence as a tool to diagnose
information recovery in terms of the total increase of the
relative entropy of coherence. To this end, we must im-
plement some accompanying, non-Markovian evolution
and see how much control we can have over it. Here we
present a viable approach and its experimental proof of
principle by addressing the amplitude damping channel.
Our all-optical approach requires polarization and path
qubits alone. This suggests a possible complementary
role that such an approach could have when dealing with
phase damping and with various degrees of freedom that
might enter more sophisticated scenarios. The results we
report below should serve to increase our understanding
of non-Markovian processes and the degree of control we
might have upon them.

II. THEORETICAL MODEL

A. Non-Markovianity Measure

Similarly to the measure N , which involves trace dis-
tance, there is a measure that involves the relative en-
tropy of coherence. As we said before, for the purposes of
addressing the amplitude damping channel, this measure
should be applied to the bipartite system that comprises
the system under study and some ancilla. This bipartite
system should evolve according to ρa,s(t) = E(ρa,s(0)),
with E = Ia⊗Λs. The required measure is then given by
[5]

N (S)
rec = maxρa,s(0)

∫
Ċrec(ρa,s(t))>0

Ċrec(ρa,s(t))dt. (2)

We see that N (S)
rec evaluates the monotonicity

Crec(E(ρa,s))≤Crec(ρa,s). As it occurs with N , measure

N (S)
rec also prescribes that we should seek for the maxi-

mum over all possible initial states ρa,s(0), which implies
an optimization procedure that is generally a hard task.

Fortunately, in our case we can replace N (S)
rec by a simpler

quantifier that is based on the maximally entangled
system-ancilla state ρa,s(0) = 1

2 (|00〉+ |11〉)(〈00|+ 〈11|).
With reference to this initial state, we can introduce
and use henceforth the following expression for a
non-Markovian quantifier [5]:

Nrec ≡
∫
Ċrec(ρa,s(t))>0

Ċrec(ρa,s(t))dt. (3)

B. Dynamical Process

Our proposed evolution contains two steps. The first
step models the usual amplitude damping (AD) chan-
nel [6], whose action describes the excitation of e by
the relaxation of s. This mechanism can be simulated
by the transitions |V 〉s |0〉e → |V 〉s |0〉e and |H〉s |0〉e →√

1− η1 |H〉s |0〉e+
√
η1 |V 〉s |1〉e, where η1 is the damping

parameter, |H〉s (|V 〉s) is the horizontal (vertical) polar-
ization of a photon, while |0〉e and |1〉e stand for the two
spatial modes of a Sagnac interferometric configuration.
We have taken |V 〉s and |0〉e as “ground” states, and |H〉s
and |1〉e as “excited” states. The associated transforma-
tion that couples system (polarization) with environment
(spatial modes) from t0 to t1 is described by a unitary op-
erator U(s,e)(t1, t0), whose internal structure and optical
implementation will be discussed later. The second step,
which takes place between t1 and t2, has been suitably de-
signed to effectively generate an anti-amplitude damping
(A-AD) channel that reverses the previous decoherence
effect. Its mechanism involves, besides the s and e spaces,
also the photon arrival-time, which is implemented by
resorting to an additional qubit, the d-qubit (|0〉d and
|1〉d). The associated evolution operator U(s,e,d)(t2, t1)
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depends therefore on three qubits, the explicit formula-
tion of which will be given below.

If we consider an uncoupled, normalized initial state
|ψ(t0)〉(s,e) = (α |H〉s + β |V 〉s) |0〉e, the first step of the

evolution reads

|ψ(t1)〉(s,e) = U(s,e)(t1, t0) |ψ(t0)〉s,e
= (α

√
1− η1 |H〉s + β |V 〉s) |0〉e

+α
√
η1 |V 〉s |1〉e . (4)

For the second step, we seek to implement an AD chan-
nel in which the damping parameter is changed from η
to something proportional to 1− η. This causes that an
increase in η translates into a population increase of the
“excited” state |H〉e, i.e., something contrary to what
happens with the usual AD channel, which depopulates
the excited state. It is in this way that we turn the AD
channel into an A-AD channel. Our sought-after process
can be realized, for instance, by the following transfor-
mation:

|ψ(t2)〉s,e = (α
√

1− η1(1− η2) |H〉s + β |V 〉s) |0〉e
+α
√
η1(1− η2) |V 〉s |1〉e . (5)

Here, η2 is the running anti-damping parameter, while
η1 remains fixed during this step. Thus, the role played
by η1 in (4), is played by 1− η2 in (5).

Since the first step is equivalent to a completely-
positive (CP) map Λ acting on s alone, it admits the
following representation:

ρs(t1) = Λ(ρs(t0)) =

1∑
i=0

Kiρs(t0)K†i , (6)

where Ki ≡ 〈i|eUs,e(t1, t0)|0〉e are the associated Kraus
operators [6]. Thus, such a process describes a Markovian
evolution in its more formal definition [2, 23]. On the
other hand, in the second step we have a non CP-map
for η1 6= 0 and η2 6= 0, which corresponds to a non-
Markovian dynamics [24, 25]. With our choice of |V 〉 as
“ground” state, the Kraus operators for the AD channel
of the first step read

K0 =

( √
1− η1 0

0 1

)
, K1 =

(
0 0√
η1 0

)
. (7)

Since the second step we propose is intrinsically non-
Markovian, we stress that there is no Kraus decomposi-
tion associated to Eq. (5) from t1 to t2, but only from t0
to t2 according to

K0 =

( √
1− η1 (1− η2) 0

0 1

)
, K1 =

(
0 0√

η1 (1− η2) 0

)
(8)

One can easily check that for an initial maximally
entangled state ρa,s(t0) = 1

2 (|00〉 + |11〉)(〈00| + 〈11|),
where the system is in a completely mixed state ρs(t0) =

Tr[ρa,s(t0)] = 1
2 Is, the two-step evolution from t0 to t2

simply leads to

ρs(t2) =
1

2

(
1− η1 (1− η2) 0

0 1 + η1 (1− η2)

)
. (9)

In our proposal, when the AD channel reaches its max-
imum level (η1 = 1) at the end of the first step, the pop-
ulation of the excited state |H〉s is totally depleted and
the system is in its ground state ρs(t1) = |V 〉s〈V |. After
completion of the second step, when η2 = 1, the system
is in state ρs(t2) = 1

2 Is = ρs(t0). As we shall see, in cases
like this the relative-entropy-coherence (Crec) goes from
Crec = 1 at t0 to Crec = 0 at t1, and then back to Crec = 1
at t2. Other processes are also possible, in which partial
loss and recovery of coherence may occur at a given rate.

C. Non-Markovian Quantifier

As already said, we start with qubits a and s in the
maximally entangled state ρa,s(t0) = |ψ(t0)〉a,s〈ψ(t0)|,
where ancilla and system are polarization qubits:
|ψ(t0)〉a,s = 1√

2
(|H〉a |H〉s + |V 〉a |V 〉s). The e-qubit

starts in its ground state |0〉e, which corresponds to a
propagation path. The first step in the evolution of the
a-s state is defined by

ρ(a,s)(t1) = Tre

[
E1
(
ρ(a,s)(t0)⊗ |0〉e〈0|

)
E†1
]

= Tre
[
ρ(a,s,e)(t1)

]
, (10)

where E1 = Ia ⊗ U(s,e)(t1, t0).

The second step in the evolution of the a-s state is
defined by

ρ(a,s)(t2) = Tre

[
Trd

[
E2
(
ρ(a,s,e)(t1)⊗ |0〉d〈0|

)
E†2
]]

= Tre
[
ρ(a,s,e)(t2)

]
, (11)

where E2 = Ia ⊗ U(s,e,d)(t2, t1) is the corresponding full
operator. In this case, we have to trace out both en-
vironment spaces, e and d, in order to extract the in-
formation stored in the a-s subsystem. Since the above
dynamics leads to Ċrec(ρa,s(t)) > 0 for t1 ≤ t ≤ t2, the
non-Markovian quantifier of equation (3) is given by

Nrec = Crec(ρa,s(t2))− Crec(ρ(a,s)(t1)). (12)

D. All-optical implementation

In what follows, we describe how the required unitary
transformations that correspond to the Markovian and
non-Markovian evolutions can be implemented using all-
optical setups. Figure (1) shows a scheme of the complete
arrangement.
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FIG. 1. Diagram of the experiment. a) SPDC source and a-
photon tomography. b) Implementation of the two-step chan-
nel: a SI-based AD channel (first step) and a MZI-based A-
AD channel (second step). After the angular rotation θ1(η1)
made by UHWP , the undamped (damped) light exits the SI
through its bottom (top) output mode |0〉e (|1〉e). The an-
gular rotation θ2(η2) made by U ′

HWP sends the damped light
back to |0〉e. A tilting glass G provides the relative phase
δe = ±π/2, which is required for interference at the last BS.
Another G and a thick compensation-glass CG are used to
compensate relative time delays between |0〉e and the |H〉s
after θ2(η2), while |V 〉s is filtered out from ancilla-system co-
incidences in the nested MZI.

1. First step: Markovian evolution

As we said before, we can implement the AD channel
by means of a Sagnac interferometer (see Fig. (1), lower
left corner of panel b). The associated unitaries read

U
(s,e)
SI (θ1) = UPBS

(
U

(s,e)
HWP0(θ1)

)
UPBS,

U
(s,e)
HWP0(θ1) = Hs(0)⊗ |1〉e〈1|+Hs(θ1)⊗ |0〉e〈0| ,

UPBS = |H〉s〈H| ⊗ Ie + |V 〉s〈V | ⊗ σ
x
e , (13)

where U
(s,e)
HWP0 corresponds to the action of the HWPs on

each path of the SI, and UPBS corresponds to the action of
the polarizing beam-splitter. Here, σxe is Pauli’s x-matrix
acting on the path qubit. Hs(θ) is the unitary that rep-
resents the action of the half-wave plate on the system
(polarization) qubit: Hs(θ) = cos(2θ)σzs + sin(2θ)σxs .

The total unitary that acts on the three qubits: ancilla,
system and e-path, is given by

U
(a,s,e)
SI (θ1) = Ia ⊗ U (s,e)

SI (θ1). (14)

Unitary U
(a,s,e)
SI (θ1) acts on the input state ρ(a,s,e)(t0) =

ρ(a,s)(t0) ⊗ |0〉e 〈0|, with ρ(a,s)(t0) = 1
2 (|HH〉 +

|V V 〉)(〈HH|+ 〈V V |). For t0 ≤ t ≤ t1, we have then

ρ(a,s)(θ1) = Tre

[
U

(a,s,e)
SI (θ1)ρ(a,s,e)(t0)(U

(a,s,e)
SI (θ1))†

]
(15)

=
1

2


cos2 (2θ1) 0 0 − cos (2θ1)

0 sin2 (2θ1) 0 0
0 0 0 0

− cos (2θ1) 0 0 1

 .

From the eigenvalues of ρ(a,s) and its associated diag-

onal matrix ρdiag(a,s) we obtain, as per equation (1),

Crec(θ1) =
1

log 16

{
ln 4− 2 cos2(2θ1) ln[

cos2(2θ1)

2
]

+ (3 + cos(4θ1)) ln[
3 + cos(4θ1)

4
]
}
. (16)

The values taken by Crec(θ1) in the range 0 ≤ θ1 ≤ π/4
correspond to a Markovian process (Nrec = 0), according
to the quantifier given by equation (3).

Written in terms of η1 = sin2(2θ1), the density opera-
tor ρ(a,s) reads

ρ(a,s)(η1) =
1

2

 1− η1 0 0
√

1− η1
0 η1 0 0
0 0 0 0√

1− η1 0 0 1

 . (17)

As for the density matrix of the system, ρs = Tra(ρ(a,s)),
it is given by

ρs(η1) =
1

2

(
1− η1 0

0 1 + η1

)
. (18)

This ρs corresponds, as it should, to the evolution of
ρs(0) = 1

2 Is under the AD channel.

2. Second step: non-Markovian evolution

In the second step we perform two-qubit, ancilla-
system tomography of state ρa,s(θ2) by coincidence mea-
surements in detectors D0 and D2. Photon beams lead-
ing to detector D1 are blocked. What remains after
the SI is therefore a Mach-Zehnder-type setup (see Fig.
(1), middle part of panel b). As we said before, the
upper branch of this interferometric arrangement has a
HWP oriented to θ2, followed by an additional structure
that consists of two PBSs and two mirrors. They serve
the purpose of increasing the optical path for vertically-
polarized photons by more than the photon’s coherence
length, which in our case was experimentally estimated
to be 10µm. The above mechanism is equivalent to en-
larging the Hilbert space by including the photon detec-
tion time (d-qubit) as an additional environment space.
Unlike the vertical polarization in the upper branch, the
horizontal one and any polarization in the lower branch
are temporally balanced by the help of a HWP oriented
to 0◦, together with compensation glasses for additional
adjustments of the path lengths. Hence, only the hor-
izontal polarization in the upper branch can contribute
to the coherent coincidences together with the ancillary
photons. It is by this polarization-dependent coincidence
detection that we implement the A-AD channel.

The unitary action of the Mach-Zehnder (MZ)-type

setup is given by U
(s,e,d)
MZ (θ2) = U

(e)
BSU

(s,e,d)
HWPc(θ2), where

U
(e)
BS = Is ⊗

1√
2

(σxe + σze )⊗ Id (19)
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corresponds to the action of the beam-splitter on the e-
qubit, leaving the s and d qubits unchanged, while

U
(s,e,d)
HWPc(θ2) = U (s,e,d)

c U
(s,e)
HWP (θ2) (20)

is a unitary operator that acts on the three qubits: the
system-qubit (s), the path environment-qubit (e) and the
detection-qubit (d).

The unitary U
(s,e,d)
HWPc in equation (20) is a product of

two unitaries:

U
(s,e)
HWP (θ2) =

[
Hs(0)⊗ |0〉e〈0|+ eiδHs(θ2)⊗ |1〉e〈1|

]
⊗ Id

U (s,e,d)
c = |V 〉s〈V | ⊗ |1〉e〈1| ⊗ σ

x
d

+ |H〉s〈H| ⊗ |1〉e〈1| ⊗ Id
+Is ⊗ |0〉e〈0| ⊗ Id. (21)

U
(s,e)
HWP (θ2) acts on the s and e qubits, leaving d un-

changed. Depending on the path, |0〉e or |1〉e, the s-
qubit is submitted to a polarization transformation by
the HWP’s unitary Hs(θ2), or else it is left unchanged by
Hs(0), whose corresponding HWP is set on the branch
belonging to qubit |0〉e to compensate the optical-path
increment associated to the other HWP. The second ac-
tion of U

(s,e,d)
HWPc(θ2) is made by U

(s,e,d)
c , which belongs

to the additional setup on the upper branch of the MZ
interferometer. Here, vertically polarized photons |V 〉s
traveling along path |1〉e are submitted to a change from
path |0〉d to |1〉d, by σxd . Horizontally polarized photons
|H〉s traveling along path |1〉e are left unchanged, as it is
also the case with photons traveling along path |0〉e, the
lower branch of the MZ interferometer.

In order to include the ancilla, we extend U
(s,e,d)
MZ (θ2)

to U
(a,s,e,d)
MZ (θ2) = Ia ⊗ U

(s,e,d)
MZ (θ2). Finally, the uni-

tary transformation that is performed by the whole setup
reads

U
(a,s,e,d)
T (θ1, θ2) = U

(a,s,e,d)
MZ (θ2)

(
U

(a,s,e)
SI (θ1)⊗ Id

)
,

(22)

where U
(a,s,e)
SI (θ1) has been defined in equation (14).

The input state of the total system is

ρ
(in)
(a,s,e,d)(0) = |ψ〉(a,s)〈ψ| ⊗ |0〉e〈0| ⊗ |0〉d〈0| ,

|ψ〉(a,s) =
1√
2

(|H〉a |H〉s + |V 〉a |V 〉s) . (23)

The output state is then given by

ρ
(out)
(a,s,e,d)(θ1, θ2) = U

(a,s,e,d)
T ρ

(in)
(a,s,e,d)(0)

(
U

(a,s,e,d)
T

)†
.

(24)
By tracing out the d-qubit from the above output state,

we obtain ρ
(out)
(a,s,e) = Trd

(
ρ
(out)
(a,s,e,d)

)
. This state is sub-

mitted to a coincidence measurement at detectors D0

and D2. Qubit |1〉e corresponds to the path leading to
D2. Accordingly, we obtain the reduced, un-normalized
ancilla-system state by projecting on |1〉e and tracing out

the e-qubit: ρ̃
(out)
(a,s) = Tre

(
ρ
(out)
(a,s,e) |1〉e〈1|

)
. The normal-

ized ancilla-system state that describes our measurement
results is thus given by

ρ
(out)
(a,s) =

ρ̃
(out)
(a,s)

Tra,s

(
ρ̃
(out)
(a,s)

) . (25)

This is the sate we use to calculate Crec(ρ(a,s)) and Nrec

(see Eqs. (1) and (3)). Written in terms of the damp-
ing parameters ηi=1,2, the ancilla-system output density
matrix reads

ρ
(out)
(a,s) =

1

2− 2 cos(δ)
√

(1− η1) η1η2


1− 2 cos(δ)

√
(1− η1) η1η2 − η1 (1− η2) 0 0

√
1− η1 − eiδ

√
η1η2

0 η1 (1− η2) 0 0
0 0 0 0√

1− η1 − e−iδ
√
η1η2 0 0 1

 .

(26)

Setting δ = π/2 and tracing over the ancilla, we get

the system state ρ
(out)
s = Tra

(
ρ
(out)
(a,s)

)
that was previously

announced in equation (9):

ρ(out)s =
1

2

(
1− η1 (1− η2) 0

0 1 + η1 (1− η2)

)
. (27)

This is our sought-after result. The output system-state
corresponds to having evolved ρs(0) = 1

2 Is by an A-AD

channel. Indeed, ρ
(out)
s above can be obtained from state

ρs of equation (18) through the replacement of η1 by
η1(1 − η2). Keeping η1 fixed, while letting η2 go from
zero to one, we get an A-AD evolution.

In Fig. (2) we show the theoretically calculated

Crec(ρ
(out)
(a,s) ) for values of η1,2 in the range [0, 1], i.e, for

θ1,2 in the range [0, π/4], and δ = π/2 (see Eq. (26)).
For fixed values of θ2 we see a coherence decrease that
depends on θ1, while for any fixed θ1 6= 0 we see a co-
herence revival when θ2 grows up. This full control of
coherence allows us to recover the initial bipartite state
and its associated polarization coherence during the evo-
lution. We should stress that any of the two output ports
of the final BS can be used for this purpose.
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FIG. 2. Theoretically calculated Crec(ρa,s(t2)) for both the
damping angle θ1 and the anti-damping angle θ2 varying in
the range [0, π/4].

III. EXPERIMENTAL SETUP AND RESULTS

In our setup, polarization-entangled photon pairs
are created by spontaneous parametric down-conversion
(SPDC) in two barium-beta-borate (BBO) crystals hav-
ing their optical axes oriented perpendicular to one an-
other and being pumped with a CW laser diode (400
nm, 0.7 nm linewidth, 37.5 mW), as shown in Fig. (1a).
The entangled s and a photons have a wavelength of 800
nm. The a-photon is directly sent to a tomography stage
composed by a quarter wave plate (QWP), a half wave
plate and a consecutive polarizing beam splitter, while
the s-photon is injected into the bulk-optics setup before
entering another complementary tomography stage [27].
Photons are collected with multi-mode fiber optics and
registered within a coincidence window of 10.42 ns by
synchronized avalanche photo-detectors (APDs).

The input state ρ
(in)
(a,s) = |ψ〉(a,s)〈ψ| was produced with

the required purity, as can be seen in Fig. (3), which
shows the result of a tomographic characterization. The

purity of ρ
(in)
(a,s) was better than 92% in each experimental

run. To achieve this purity, we set a HWP and a tilted
QWP before the BBO crystals, so as to produce states
of the form |ψ〉(a,s) = cos θ|H〉|H〉+ exp(iφ) cos θ|V 〉|V 〉.
By rotating and tilting the QWP, we could achieve the

required purity of ρ
(in)
(a,s), as tested by standard two-qubit

tomography assisted by maximum-likelihood estimation
[27]. This method proved to perform better than an al-
ternative one, in which we employed a calcite crystal and
a Glan-Thompson prism.

As for the first step of the evolution, we implemented
it by means of a displaced Sagnac interferometer (SI)
(see Fig. (1b)). The s-photon of the initial, bipartite
state |ψ(t0)〉a,s = 1√

2
(|H〉a |H〉s + |V 〉a |V 〉s) propagates

along the upper input mode, which represents the en-
vironment ground state |0〉e. Whence, the |H〉 (|V 〉)
component of the s-photon circulates in the clockwise
(counter-clockwise) trajectory inside the SI. Following

FIG. 3. Measured density matrix of the initial state ρ
(in)

(a,s).

The targeted state is a pure, maximally entangled one:
|ψ〉(a,s)〈ψ|. Measured purity is better than 92%.

[26], we implemented the AD channel by an angular rota-
tion θ1(η1) = 1

2 arccos(−
√

1− η1) of the half wave plate
(HWP) that intersects the clockwise trajectory. Another
HWP, set to θ0 = 0, is placed in the counter-clockwise
trajectory to compensate the relative time-delay. This
HWP introduces only a relative phase-shift of π between
H and V polarization states. Undamped light exits the
SI – after having followed the counter-clockwise path –
through the horizontal (lower) output mode of the SI’s
polarizing beam splitter (PBS). This mode corresponds
to |0〉e, while the complementary, vertical (upper) output
mode is associated to |1〉e. Thereafter, we perform the
first-step’s two-qubit tomography of qubits s and a [27].
This involves coincidence measurements at detectors D0

and D1 (see Fig. (1)). Fig. (4) shows our measurements
of Crec for the first step, during which the Markovian
evolution takes place. It corresponds to coincidence mea-
surements at detectors D0 and D1. Only the Sagnac part
of the arrangement was involved. Here, Crec goes from
one (for θ1 = 0) to zero (for θ1 = π/4). The three BSs
that follow the SI – two at the lower branch and one
at the upper branch – have the sole purpose of allow-
ing us to perform coincidence measurements at detectors
D0 and D1 first, and at D0 and D2 afterwards, without
mounting and demounting the required setups. In this
way, having fixed all optical components, we just block
the unrequired photon beams.

The setup that implements the second step of the pro-
cess is essentially a MZI with time-delay for one po-
larization. The lower branch has a HWP set to 0◦,
while at the upper branch there is a second HWP set
at θ2 = 1

2 arccos(−
√

1− η2), allowing tuning the damp-
ing factor η2 of the A-AD channel. The upper branch
of the MZI subdivides into two orthogonally polarized
modes of a nested structure. Its vertically polarized path
is longer than the horizontally polarized one by more
than the photon’s coherence length, and its time-delay is
not balanced with respect to the lower branch. Then, ver-
tically polarized photons cannot interfere with the lower
branch when MZI closes, but only the horizontally po-
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FIG. 4. Experimental results of Crec(ρa,s) at the first step of
the evolution. We exhibited coherence loss by varying θ1 so
as to scan Crec(ρa,s) over a wide range of values, between one
and zero. Error bars come from the standard deviation over
ten measurements.

larized photons. This mechanism prevents any coherent
contribution to the coincidence detections between the
vertically polarized photons of the upper branch and the
ancillary ones.

In Fig. (5), upper panel, we show our experimental
results for Crec, in two damping regimes. These corre-
spond to fixing θ1 first at π/4 (solid curve) and then at
π/8 (dashed curve). The solid curve for Crec starts at
zero, which is the end value of the Markovian regime,
and then it goes up to one, thereby recovering the start-
ing value of the Markovian process. Hence, the solid
curve in Fig. (5), upper panel, can be seen as a contin-
uation of Fig. (4). By adding further Markovian and
non-Markovian steps, we would witness a periodical pro-
cess. It is worthwhile to notice that there is another
periodical process that we can obtain by using just the
Sagnac part of our setup. Indeed, if we increase θ1 be-
yond π/4 in Crec(θ1) of Fig. (4), we get exactly the solid
curve of Fig. (5), upper panel. This corresponds to a
case in which the s-qubit and the e-qubit periodically
exchange one excitation. In such a case, the e-qubit is no
longer modeling a reservoir, but some two-state system.
A possible physical scenario, which is modeled by this
setup, could be for instance an ideal cavity containing
a two-level atom and a single-mode photon. η1 would
then correspond to a time parametrization of the type
η1 = sin2(ωt), instead of a parametrization of the type
η1 = 1−e−γt, which corresponds to an environment hav-
ing infinite modes, among which one excitation (|1〉e) is
distributed [26]. Of course, it is an inherent feature of
our setup that it leads to periodic processes, because we
produce them with rotatory elements, the wave plates.
It is by parameterizing the quantum channels in terms of
transition probabilities, ηi=1,2, that we can address decay
processes as well as oscillatory exchanges of excitations.

Even though the parameters ηi are inherently periodic
in our setup, i.e., ηi = sin2(2θi), we can model the two
types of processes by properly delimiting the range in
which those parameters should vary [26].

In Fig. 5, lower panel, we finally show the associated
values of Nrec for the non-Markovian regimes we have
explored. As we can see, the higher the damping θ1, the
higher the accessible degree of non-Markovianity.
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FIG. 5. Experimental results of Crec(ρa,s) and Nrec(ρa,s(t2)).
We scanned θ2 while the damping parameter was fixed to
θ1(η1 = 1) = π/4 and θ1(η1 = 1/2) = π/8 in the dashed and
solid curves, respectively. Error bars come from the standard
deviation over ten measurements.

Despite the usual experimental imperfections, our re-
sults were in good agreement with theoretical predictions.
This was mainly due to the purity we could achieve for
the initial states, as well as to the overall low error sen-
sitivity of our protocol. As already pointed out, purity
of the initial states was better than 92% in each experi-
mental run. Another figure of merit, even though under
the previously mentioned provisos [22], is fidelity. We
obtained F = | 〈ψexp|ψ(t0)〉(a,s) |

2 = 0.955± 0.001.
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IV. CONCLUSIONS

In this work, we have shown the feasibility of an
all-optical setup that simulates open quantum sys-
tem dynamics containing Markovian and non-Markovian
regimes. We implemented an ancilla-system compound
state that allowed us to diagnose non-Markovianity in a
relatively simple way. Indeed, by starting with a maxi-
mally entangled ancilla-system state, it is possible to em-
ploy an easily calculable quantifier of non-Markovianity,
to which one has direct experimental access. This quanti-
fier is based on the relative entropy of coherence. Besides
its usefulness in quantum information science, this mea-
sure appears to be a versatile tool for the study of open
quantum systems.

Our approach provides additional tools for the study
of non-Markovian processes and complements other stud-
ies. Indeed, the AD-channel has been recently employed
to study non-Markovianity in an experiment that sim-
ulates a single-photon setting by using an intense laser
beam [28]. The simulated AD-channel corresponded in
this case to the damped Jaynes-Cummings model, which
in the non-Markovian regime exhibits coherence revivals.
This is in accordance with our findings, if we extend the
range covered by the damping parameter η2. Another ex-
periment related to ours was reported in Ref. [29]. In this
case, the AD process affects a two-level system that is in
contact with a reservoir modeled with harmonic oscilla-
tors. Non-Markovianity is diagnosed in terms of entan-
glement of formation (EOF) and the corresponding dy-
namics is experimentally simulated by mapping the time
evolution to the orientation of a HWP in an interferomet-
ric arrangement. In this case, a non-monotonic behavior
of the EOF shows up in the non-Markovian regime.

In contrast with the above cases, our implementation
of the system-environment interaction contains a genuine
stochastic feature. This feature comes into play through
the coupling between photon polarization and spatial de-
grees of freedom, by which some system photons – those
vertically polarized – are stochastically excluded from op-
tical interference and so from contributing to the coher-
ence revival of the final state with respect to the input
one. This polarization-dependent action of the environ-
ment on the system somewhat resembles the implemen-
tation of system-environment interactions in purely de-
phasing processes. In these implementations, the photon
polarization represented the system, while the environ-
ment’s role was played by the photon frequency distribu-
tion. By making the latter depend on the polarization
state, it was possible to generate non-Markovian regimes.

Our results show that we can achieve full coherence re-
covery under suitable conditions. This hints at the pos-
sibility of information protection or recovery when deal-
ing with open quantum systems. It is an as yet unan-
swered question how to translate protocols such as those
reported in this work, into protocols that are well suited
for dealing with information-carrying quantities. In any
case, the concrete realization of Markovian and non-
Markovian regimes helps broadening our understanding
of the dynamics of open quantum systems.
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[17] Á. Cuevas, A. Geraldi, C. Liorni, L. D. Bonavena, A. De
Pasquale, F. Sciarrino, V. Giovannetti, and P. Mataloni,
Sci. Rep.9, 3205 (2019).
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