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Trapped atoms are among the most promising platforms for quantum technologies. They play a
remarkable role in quantum simulation as well as high-precision quantum metrology, which exploits
the quantum coherence of a single electronic or motional degree of freedom of an atom or an ensemble.
However, future high-precision quantum metrology will require the use of entangled states of several
degrees of freedom. Here we propose a protocol capable of generating high-NOON states where the
entanglement is shared between the motion of a trapped atom and an electromagnetic cavity mode,
a so-called ‘hybrid’ configuration. We explore the feasibility of the proposal in a platform consisting
of an optically trapped neutral atom excited to its circular-Rydberg-state manifold, coupled to the
modes of a high-Q microwave cavity. This compact hybrid architecture has the advantage that it
can couple to signals of very different nature, which modify either the atom’s motion or the cavity
modes. Moreover, the exact same setup can be used right after the state-preparation phase to
implement the interferometer required for quantum metrology.

I. INTRODUCTION

Trapped neutral atoms are at the forefront of quantum
technological applications. They are currently the main
platform for quantum simulation [1-9] and find appli-
cations in many other quantum information processing
tasks [10-12]. Furthermore, trapped atoms play a no-
table role in metrological applications [13, 14], thanks to
their robust quantum coherence, high controllability, and
strong coupling with external fields. For example, an op-
tical lattice loaded with Strontium-87 forms the basis for
the most precise clock built to date [15, 16].

However, moving forward in the field of quantum
metrology will require exploiting more than just the
quantum coherence of a single degree of freedom. Indeed,
it is by now well established that distributing entangle-
ment among several degrees of freedom can bring sensi-
tivities all the way down to the ultimate Heisenberg limit
[13, 17, 18]. On this regard, NOON states of two oscilla-
tors and GHZ states of N two-level systems are among
the most promising entangled states. GHZ states have
enjoyed a more successful experimental life, with states
up to N = 20, 14, and 10 generated with atomic arrays
[19], ion chains [20], and linear optics [21], respectively.
However, their use in quantum metrology requires the
coherent manipulation of the large number of two-level
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systems, as well as their common coupling to the signal
one wants to measure. In contrast, NOON states require
the manipulation of just two harmonic modes (and only
one of them has to couple to the signal), and are there-
fore more desirable in general. Unfortunately, high-NOON
states have been traditionally more elusive. In the pho-
tonic case, the largest NOON state to date has N = 5
[22]. In the case of motional states of trapped atoms,
a big step forward has been recently achieved with the
generation of an N = 9 state of two motional modes of a
single ion [23].

If trapped atoms are to come ahead also in this new
‘entangled metrological era’, we will need to design fur-
ther practical protocols for the generation of high-NOON
states, either between atomic degrees of freedom, or be-
tween an atom and some other system, in what are
dubbed ‘hybrid’ configurations, which might lead to more
flexible and versatile meters.

Here we show that a single Rydberg atom tightly
trapped by an optical field within a microwave cavity
will open the door to the possibility of generating such
states. This architecture combines the best of two worlds.
On the one hand, in an atomic fly-through configuration
[24, 25], these systems have been crucial for the field
of cavity quantum electrodynamics: high-Q supercon-
ducting cavities and microwave transitions between Ryd-
berg states have provided access to the deep-strong cou-
pling regime of light-matter interactions. On the other
hand, the tight confinement induced by optical fields [4—
8,19, 26-41] allows applying to neutral atoms all the well-
established toolbox developed for trapped ions [42, 43],
arguably among the most versatile quantum systems, al-



FIG. 1. Energy level scheme of a three-level atom interacting
with the cavity modes. The first transition is used to im-
plement a hybrid beam splitter when |Ag| > A1 = v. The
second transition is used to implement a hybrid controlled-m
operation when |As| is large, or a swap operation (through a
resonant Jaynes-Cummings interaction) when it is zero. Here
we assume that the detunings A; 2 are tunable at real time,
as explained in the text.

lowing for the engineering of a large variety of effective
interactions between motional, electronic, and photonic
degrees of freedom. In this letter we exploit the com-
bined outstanding properties of these two scenarios to
introduce a practical protocol for the generation of hy-
brid high-NOON states of an atom and a cavity mode,
in a compact architecture that can serve directly as the
interferometer required for quantum metrology [17].

Our protocol is inspired by the so-called “magic” beam
splitter [44], which uses N-photon input states, beam
splitters, controlled-m phase gates, and on/off detectors
as resources. Here we show that a trapped three-level
atom interacting with two cavity modes provides all the
required ingredients for the realistic implementation of a
similar protocol, which we introduce in three steps. First,
we propose an implementation of a hybrid beam splitter
(HBS) between a cavity mode and a motional mode of
the atom, with transmissivity and relative phase fully
controllable via the amplitude of an external field and
the interaction time. Hence, we call this a ‘temporal
analog’ of a HBS. We then show that a second internal
transition can be used to generate strong hybrid cross-
Kerr effective interactions between the cavity and the
atom’s motion, which implement the required controlled-
phase gate. These operations are then combined with
other standard ones and with the possibility of creating
high-N Fock states in the atom’s motion [45-48] or in
the microwave mode [49-52], to show that three internal
levels, together with a simple design of external drives
and cavity interactions, suffice to implement a temporal
analog of a magic beam splitter.

At the end we briefly comment on specific metro-
logical applications, emphasizing that our hybrid NOON
states provide a switchable photonic/mechanical archi-
tecture that is sensitive to signals of very different na-
ture. Moreover, the hybrid Mach-Zehnder interferome-
ter required for quantum enhanced metrology [17] can

be implemented directly with the same tools introduced
for the NOON state generation.

II. TEMPORAL ANALOG OF A HYBRID
BEAM SPLITTER

Let us consider an atom of mass m cooled to the ground
state of a harmonic optical trap with trapping frequency
v (we consider an isolated motional mode) [8, 28, 30,
31]. We assume that the atom has been excited to a
long-lived circular Rydberg state [8, 24], and consider
the transition between two of such internal states |g) and
le1) with frequency difference wy. The atom is inside a
microwave cavity, and hence interacts with its standing-
wave modes, of which we consider here a specific one with
frequency wi. The cavity field is pumped by a coherent
microwave source at frequency wy, (see the energy level
scheme in Fig. 1). In a picture rotating at this frequency,
the Hamiltonian reads [53]

H = twa'a + iAo {61 + hAbib (1)
—h(E%by + EbY) + hg(2)(61by + 61b)),

where by and a annihilate, respectively, cavity photons
and motional quanta (phonons), 61 = |g)(e1| is the low-
ering operator of the internal transition, £ is the strength
of the pump, which is detuned by A; = w; —w,, from the
corresponding frequency, ¢(&) = Qsin(nd + ®), where Q
is the atom-cavity coupling strength (vacuum Rabi fre-
quency), # = a + af, and ® = wyx¢/c, where x¢ is the
position of the atom relative to a node of the standing
wave. 7 is the Lamb-Dicke parameter, given by the ratio
between the zero-point spatial fluctuations of the atom in
the trap and the mode wavelength. Since we work with
microwave modes, the bare n is exceedingly small [54—
64], but it can be greatly enhanced via state-dependent
optical traps [65-68], as we will discuss in the final sec-
tion.

We consider the large-atomic-detuning limit (|Ag| >
Q,|Aq],v), where the internal levels can be adiabatically
eliminated [69]. In Appendix A we show that this leads
to an effective Hamiltonian

Hon = hwalat+-h[Ay—go(a+a)])bl by —h(E*b+EDT), (2)

where we have defined go = 7Q?/2A¢, and have assumed
that the atom is located in between a node and an anti-
node (® = 7/4), which maximizes this effective coupling.
This Hamiltonian is equivalent to that found in cavity
quantum optomechanics [70].

Including optical and motional damping at rates v and
T, respectively, the master equation governing the evolu-
tion of the system can be written as

dp {HOM

dt - ih 7ﬁ:| + ’yDbl [pA] + FDa[ﬁL (3)



with dissipator Dy[p] = 2JpJt — pJiJ — JtJp. As we
show in Appendix B, the classical limit predicts a coher-
ent state with amplitudes « and 8 for the motional and
optical modes, satisfying

& = —(T' +iv)a +igo|B)?, (4a)
B =—[y+iA —igo(a+ a®)]B +iE. (4Db)

We will work under conditions leading to a steady state
& = golB2/(v —iT) and B = €/[A1 — go(a + a7) — i7].
Next, we consider small quantum fluctuations around it,
by moving to a picture displaced to the classical solution
and considering only terms in the master equation bilin-
ear in annihilation and creation operators, see Appendix
B. In this picture, the transformed state evolves accord-
ing to Eq. (3), but replacing the effective Hamiltonian

by
I:ILIN = hl/CALTCALﬁ’hAllA)J{IA)l — hgo(fl+dT)(B*i)1 +BZA)J{) (5)

As we show in Appendix B, this ‘linearization’ is valid
provided that |3| or v/go are much larger than /N,
where N characterizes the photon number (b1b;) in the
displaced picture (which we anticipate matches the size
of the NOON state).

Finally, choosing a detuning A; = v, and working in
the v > go| 3| regime, this Hamiltonian takes the form

Hps = hw(ata + blby) — hgo(Babl + B*athy),  (6)

within the rotating-wave approximation. The corre-
sponding time evolution operator corresponds to a HBS
operation whose mixing angle § = go|3|t and phase
arg{3} (assumed 7/2 in order to simplify upcoming
derivations without loss of generality) can be controlled
via the interaction time and the pump amplitude &.
Note, however, that the performance is limited by the
coherence time of the system, which we can estimate as
v~1, typically much shorter than T'~! [8, 24]. Later we
show that Rydberg atoms trapped in microwave cavities
allow for coherence times compatible with the mixing an-
gle 8 = /4 required in our proposal.

III. TEMPORAL ANALOG OF A HYBRID
CONTROLLED-PHASE GATE

We consider now the interaction between the atom and
a second cavity mode with frequency ws, closer to reso-
nance with a transition to a different excited state |es),
but still detuned by As (see Fig. 1). The Hamiltonian
takes the form (1), which assuming the atom to be lo-
cated at the anti-node of the cavity mode (® = 7/2),
leads to

H = hwala + hAgblby 4+ hQ cos(nz) (63by 4 62b5),  (7)

where in this case we are in a picture rotating at the
frequency of the internal transition, and by and &5 refer to

FIG. 2. Schematic representation of the protocol for the
generation of NOON states. a refers to the atom’s motion,
subindices {1,2} to the cavity modes, B to a 50/50 beam
splitter, C to a controlled-, J to a swap, and R to a w/4
pulse. A final measurement of the internal state of the atom
(lg) or |e2)) creates the desired NOON state.

the corresponding cavity mode and internal transition. In
Appendix A we show that working in the v > [As] > Q
regime, the adiabatic elimination of the internal levels
leads to the effective hybrid cross-Kerr interaction [71]

Hex = hwata + hAgblby — higexatablbs. (8)

where g.x = 272Q?/A,. In this case, the time-evolution
operator is equivalent to a controlled-phase operation,
where one mode feels a phase shift that depends on the
number of photons of the other. The cross-phase shift
gext can be controlled in this case through the interaction
time. A 7 shift requires g.x > <, whose feasibility is
proven later.

IV. HIGH-NOON STATE GENERATION
PROTOCOL

Our proposal is shown in Fig. 2, which is closely in-
spired by the so-called magic beam splitter [44]. In order
to understand its principle of operation, let us first con-
sider a situation without the controlled-m operation C'
(yellow box in the figure), and follow the paths 1 and a,
which run along a Mach-Zehnder interferometer. With
no more elements in the paths, the combination of the
beam splitters acts as a swap gate between the modes.
Hence, starting with a Fock state with IV phonons for def-
initeness (but the protocol works as well starting with N
photons instead), the state |0)1|N), turns into |N)1|0),
(subindex a refers to the motional Fock states, while
subindices {1,2} refer to the cavity modes). The situ-
ation is radically different when a m phase shift is per-
formed on path a in between the beam splitters, which
completely cancels the effect of the latter. In such case,
the input state remains unchanged. Hence, if one was
able to engineer a balanced superposition of 0 and
phase shifts, the output state would turn into a super-
position of [N)1|0), and |0)1|N),, that is, a NOON state.
This is exactly what is accomplished by the controlled-7
operation with mode 2 (assumed in a superposition of 0



and 1 photons), together with the subsequent operations
involving the second internal atomic transition. A final
measurement revealing the state of the atom decides the
relative phase between the |[N)1|0), and |0)1|N), states
forming the NOON state. In the remaining of this section
we explain all these steps in detail. In the next section
we will then comment on the experimental requirements
and their feasibility.

Recall that a balanced beam splitter acts as the unitary
B = explr(ath, — abl)/4], which transforms the opera-
tors as BaBT = (by 4+ @)/v2 and Bby BT = (by — a)/V/2.
Hence, applied to the initial state |0)1|N)4(|0)2+[1)2)|g)
(we omit normalizations in the following to ease the no-
tation), we obtain

(b +ah)N10)110)a(10)2 + [1)2)]g), (9)

Next we apply the controlled-m with unitary c =
exp(imbibyata), which turns the state into

(b1 +a")N10)110)4/0)2l9) + (6] —a") N |0)1]0)a[)2lg), (10)

taa _iata R
where we have used ei™@ dge—ima'a — _g

beam splitter B then turns the state into
10)1]N)al0)2l9) + (=N [N)1[0)a|1)2]g).  (11)

Finally, we apply two operations that involve the internal
levels. First, an excitation-swap between the second cav-
ity mode and the correspondlng transition, with unitary
J = exp|— ’Lﬂ'(b;O'g + by61)/2], which effects the trans-
formations J|0)2|g) = |0)2]g) and J|1)|g) = —i|0)s|e).
Then, we apply a 7/4 pulse on the internal transition,
with corresponding unitary R = exp|[r (6] — 63)/4], and
lg) + le) and Rle) = |e) — |g)-

A further

transformations R|g) =
These turn the state into

INOON)[0)2[g) + INOON_)[0)2]e), (12)

where we have defined the hybrid NOON states
INOONL) = [0)1|N)q + i(=1)N|N)1|0),. Tt is then clear
that a final measurement of the atomic state will project
the atom and the first cavity mode into a [NOON4) state
depending on the outcome.

V. EXPERIMENTAL CONSIDERATIONS
AND FEASIBILITY

Let us now comment on the experimental steps and
corresponding requirements. We start with some general
considerations, and then discuss specific parameters.

As we made obvious from the notation, the beam split-
ters B and controlled-m C operations are implemented
through cavity modes 1 and 2, respectively, following
the methods presented in the first sections. The rest
of operations are standard [24]: the swap J is effected
by letting a resonant Jaynes-Cummings (JC) interaction

4

RQU(G3by + G2b5) run over a time 7/2Q, while R is ob-
tained by driving the second transition with a coherent
microwave 7 /4 pulse. The crucial point is that, since the
operations are applied sequentially, we need to be able to
switch on and off the corresponding interactions at will.
Following [72], here we suggest to do so by modifying the
corresponding atom-cavity detunings Ay and As in real
time. Specifically, the frequency of the atomic transition
can be tuned in situ and fast through either the DC Stark,
Zeeman, or ponderomotive shifts generated, respectively,
by external electrostatic [24, 72], magnetostatic [42, 73],
or optical [36] fields.

Another crucial piece is the preparation of the ini-
tial states. Specifically, in order to generate high-NOON
states, we need to initialize either the cavity mode 1 or
the atoms’s motion in a Fock state with large N. While
this has been demonstrated for both alternatives, the rel-
atively strong coherent background f required for the
beam-splitter operation makes it challenging to adapt
the protocols established for microwave cavities, where
photonic Fock states up to N = 7 have been stabilized
via quantum feedback techniques [49-51]. Fortunately,
the (comparatively small) steady-state amplitude & of
the trapped atom poses no problem, since it just defines
a new stationary equilibrium position, but no oscillation.
Moreover, Fock states of trapped ions up to N = 16 were
demonstrated in trapped ions more than twenty years ago
[45], proving that this is a very mature field (see [46-48]
for more modern and elaborated experiments). The cor-
responding protocols exploit the fact that the interaction
between motion and internal states can be alternated be-
tween JC and anti-JC at will, what makes them directly
applicable to our proposal, where this is equally possible.
As for the preparation of cavity mode 2 in a superposition
of 0 and 1 photons, it can be easily performed following
techniques that have become standard in the field of cav-
ity quantum electrodynamics [24]. For example, one can

apply the inverse of the RJ sequence that we perform at
the end of our protocol: starting from the atom in the
ground state, a 7/4 pulse is applied, followed by a swap of
the internal excitation to the cavity field. Note that this
state preparation stage must come only once the system
relaxes to the steady state after application of the mi-
crowave drive, and under large detuning conditions such
that no other process acts during this time.

Finally, the measurement of the internal atomic state
can be performed following standard techniques in the
field of trapped atoms and ions [42]. Hence, together with
the previous discussion, this shows that all the pieces re-
quired for the implementation of the high-NOON protocol
presented above are in principle available.

Let us now move on to the feasibility for concrete ex-
perimental parameters. The most demanding operation
is the controlled-7, which requires the conditions v >
|Ag| > Q together with gex = 27*Q%/|Az| > 7 in order
to ensure that the coherence time is large enough to im-
plement a 7 shift. Taking cavity frequencies and quality
factors around 27 x 50GHz [24, 72] and 5x 10° [52, 72], re-



spectively, we obtain v = 27w x 10Hz. On the other hand,
typical vacuum Rabi couplings for transitions between
circular Rydberg states are around 2 = 27 x 50KHz
[24, 72]. We then assume |Ay| = 10§, and a trapping fre-
quency v = 10|Az| = 27 x 5MHz (values just two orders
of magnitude below this have been demonstrated already
[8, 41], and no fundamental limitation exists to bring
them even higher, as shown in [38]). As for the Lamb-
Dicke parameter, we assume the value n = 0.1, which is
currently available with the aid of state-dependent trap-
ping potentials [65-68]. Putting all these estimates to-
gether, we obtain gk = 10+, as required.

The rest of operations are less demanding. The ef-
fective beam splitter Hamiltonian requires |Ag| > v >
gomax{V/N,|B|}, together with go|3| > . Taking
|Ap| = 10v, we obtain gy = 27 x 5Hz. The number of
intracavity photons |3|? generated by the coherent mi-
crowave pump, is then bounded by (v/go)? = 102 >
1812 > (v/g0)? = 4. Choosing it between, e.g., 500 and
10000 (photon numbers easily generated with coherent
pumps), we remain safely within the desired regime. As
for the swap operation, we simply need € > max{vy, .},
where I', refers to the spontaneous emission rate asso-
ciated to the internal transition. For circular Rydberg
states, the latter is typically even smaller than v [8, 24],
and hence we are deep into the required regime.

We have also analyzed the resilience of our proposal to
parameter fluctuations. We have considered fluctuations
in the beam splitter and controlled-m parameters, find-
ing analytic expressions for the fidelity, see Appendix C
for details. As a figure of merit, we find fidelities above
90% up to N = 40 for a 1% standard deviation in the
parameters.

VI. DISCUSSION AND CONCLUSIONS

Our compact architecture offers unique opportunities
from a metrological standpoint. Its hybrid character
makes it a versatile sensor, sensitive to signals that cou-
ple either to the cavity or to the atom’s motion. Specif-
ically, right after generating the NOON state, the same
setup can be used to implement the temporal analog of
the Mach-Zehnder interferometer required for metrology
[17]): a hybrid beam splitter interaction is implemented
for the required time following our proposal, after which
the atom or the cavity is coupled to the signal we wish
to measure (which introduces a measurable phase differ-
ence between them), and then decoupled again from the
signal before the optimal retrieval measurement scheme
is applied [17, 18].

In conclusion, we have shown that an architecture
based on trapped atoms excited to circular Rydberg
states and coupled to the modes of a microwave cavity
will be ideal for the compact implementation of a versa-
tile quantum metrological system, where the state prepa-
ration and sensing stages occur within the same device.
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Appendix A:
Adiabatic elimination of the internal levels

In this appendix we provide a detailed elimination of
the internal levels. We will proceed in the Schrodinger
picture, using the method based on projection operators.
Hence, we first introduce the general method, which we
then particularize to the two relevant internal transitions.

1. General procedure: Projection operator method

Let us introduce in general the method based on pro-
jection operators. Consider a closed system evolving
according to a Hamiltonian H, so that its state [i(t))
satisfies the Schrodinger equation ihdy|i(t)) = H|y(t)).
The idea of the method relies on the fact that we can
divide the Hilbert space into a relevant sector (whose
effective dynamics we want to describe) and an irrele-
vant one (whose dynamics is trivial, typically because it
stays unpopulated). We then define the projector oper-
ator P = P2 which projects onto the relevant subspace,
and its complement @Q = 1 — P. Applying the latter onto
the Schrodinger equation, we get

i00,Qlu (1)) = QAP+ QI (1) (Ala)
—@ﬁéﬁb»+@ﬁﬁ¢@x
Q1) = MMl (0)) (A1D)
b [ AP 1),

Naturally, we assume that the system is in the relevant
subspace initially, so that Q|¢(0)) = 0. Hence, projecting
the Schrodinger equation in the relevant subspace, we
then obtain

0Pl (1)) = PAP(E) + PAQI (1)) (A2)

= PHP|y(t)) + /Ot %Pﬁe@m/%ﬁﬁw(t — 7)),

where we have made the integration variable change ' =
t—T.



With full generality, we can decompose the Hamilto-
nian as H = HO + H1, where Ho contains all the terms
that do not connect the relevant and irrelevant subspaces
(PHoQ = 0 = QHyP), while H; gathers the rest of the
terms. Note that we can even assume without loss of gen-
erality that PH, P 1P = 0, that is, the ‘interaction’ Hamil-
tonian H1 does not connect states within the relevant
subspace. It is always possible to ensure such a property,
for if that’s not the case, we just need to redefine Hy and
Hj as HO+PH1P and H1—PH1P respectively. Effective
theories are meaningful whenever one can treat H, asa
perturbation with respect to Ho. Hence, in the following
we consider only terms up to order two in Hy in (A2). In

order to do this, we use [¢(t — 7)) = e‘HT/ih|1/J(t)> and
the property PHOQ =0= QHO
write (A2) as

, which allows us to

ihd, Ply(t)) = PHP(t) (A3)

t
dT ~ - Ar A A A A
+/ %PHleQHT/IhQHl_Pe_HT/Ih|’(/J(t)>
0 1

t

PPN AT ~ ~ 7 ir oa N BN

- [PHP + [ P e B p] Plug)
o 1

where in the last step we have made many simplifications.

First, we have neglected the H; terms coming from the

exponentials, since the expression is already quadratic in

H; without counting these terms. We have also made use
of [P HO} =0= [Q HO] which follows dlrectly from 0 =

PHyQ - QHoP = PHo(1 - P)— (1- P)Ho P = [P, Hy),
and can be used to prove the property
eQHoT/ih i 1 ( ) QH QH QI;[ (A4)
A o Hop.. 0

k times

i I LAY N T
£ 5 G @ -
k=0 T

Finally, we have used PH,Q = Pﬁ[l(l — P) = PH,, and
similarly Qf[ P = H,P. The term inside the brackets
in (A3) can then be interpreted as an effective Hamilto-
nian in the relevant subspace, which we can write in the
compact form

t
X . dr ~ . -~ R
Hoa(t) = PHyP + / %PHlHl(T)P, (A5)
0
with
H (1) = efor/ih fr, o=Hor/ih, (A6)

This provides the final expression we will work with.

Note that (A5) is not Hermitian, which seems to be
at odds with the fact that we interpret it as an effec-
tive Hamiltonian. In addition, (A5) is time dependent,
even if the original Hamiltonian was time independent.
However, in many situations it indeed occurs that (A5)
becomes approximately Hermitian and time independent
under the same physical conditions that allow us to split
the Hilbert space into relevant and irrelevant subspaces.
We will see this in the examples that we treat next.

2. Elimination of |e;):
Effective optomechanical interaction

Let us apply the general framework presented above
to the elimination of the first transition of the atom pre-
sented in the main text, described by the Hamiltonian
(1) that we reproduce here for convenience

h(E*by + EBY)
(A7)

H = twa'a + hAg6 161 + A bTD, —
+hig(2)(61by + 61b1),

with g(z) = Qsin(nz + ®). Assuming that |Ag| >
Q,|A1|,v,|€], with the atom starting in the ground state
lg), we expect the excited state |e1) to remain unpopu-
lated. Hence, the Hilbert space is naturally devided into
a relevant one described by the projector P = |g){(g| and
an irrelevant one with projector Q = 1—|g)(g| = |e1){e1].
Similarly, using the notation of the previous section, the
Hamiltonian is naturally split into

Ho = twa'a + iAo {61 + hAéle, (A8a)
N . R R £ R R E*
Hy = hg(2) [ai <01 + A) + 61 (ci + A)} . (A8D)

1 1

where, for convenience, we have defined the displaced
photonic operator ¢; = by — E/A; (hence this Hamil-
tonian defers from the previous one by a constant shift
|2/ Ay, irrelevant for the system dynamics). Taking into
account that

eﬁof/iha_le—ﬁor/ih onr&l (AQa)
ef{o-r/ih&effig-r/ih _ eiuré, (A9b)
eﬁor/ihéle—ﬁgf/ih _ emlréh (A9c)

we then have
H(r) = flor/ih f1, e~ for/ih (A10)

= hgli(r)]e "0 6] < Bate) 4 Ag) +H.c.,
1

with Z(7) = €®7a + e~*7a'. The second order term of
the effective Hamiltonian (A5) then reads



where we have performed an intermediate approximation
neglecting the oscillations at frequencies v and |A1] in the
time integral, compatible with the fact that the oscilla-
tions at |Ag| are much faster (this step is not critical,
that is, we can perform the required time integrations
including all time scales, but it simplifies the derivation
enormously, and leads to the same final result in the con-
sidered regime). The time dependence of (A1l) can be
neglected within a rotating-wave approximation as long
as |Ag| > Q.

Next we use n < 1 to expand the coupling term as
9%(2) = D?sin*(n2 + @) ~ Q2 [sin®(®) + nisin(2®)/2].
Choosing ® = 7/4 as mentioned in the main text, we
then obtain the final effective Hamiltonian

0?2 + Q%%

Hog = hwata+h (A1 - A

> blby —h(E*by+EDD),

(A12)
which matches the optomechanical Hamiltonian (2) in-
troduced in the main text. Note that there we made the
simplification |A;| > Q2/2|A¢|, which is usually very
well satisfied.

3. Elimination of |e):
Effective cross-Kerr interaction

We apply now the method to the second transition of
the ion. The corresponding Hamiltonian is described by
(7), that is,

H = hvata+ hAgblby + B cos(n2) (65by + 62b3). (A13)
J

t t
/ dlpﬁlfll ()P = —ihQ? cos(m%)l;;l;g/ dr cos[nz(7)]e*27|g) (g
0 0

ih
1— eiAzT 2

2ivt
" 9

~ hY? Cos(m%)i);f)g (1- n%ﬁ&)

1

_
A, 2

where in the last approximation we have made use of the
regime v > |Ag| > , which allows us to neglect all
terms except the one presented at the end. Combining
this with the zeroth order term, and keeping terms up to

1
Ag +2Va

In this case we assume that v > |As| > Q. Hence, for
an atom starting in the ground state |g), we expect again
the excited state |es) to remain unpopulated. There-
fore, the projector onto the relevant subspace reads again
P =g)(g|, so that Q = |e2){ez|. We now split the Hamil-
tonian into

HO = hl/CALTd + hAQlA);lA)Q, (A14a)
Hy = 12 cos(n@) (63by + 62b5). (A14b)

Taking into account that
eﬁ“/mfrge*ﬁ”/ih = 09, (Al5a)
eI:IOT/iﬁde—f{UT/ih — eiu7&7 (A15b)
eﬁor/ihi)Zefﬁor/ih _ eiAg'rl;Q’ (A15C)

we then have

(1) = efor /i fy o= Hor/in (A16)

= hQ cos[ni(7)]e®2761by + H.c.

Before proceeding, it is now convenient to use the n < 1
expansion

cos[nz ()] = 1 — n*z%(1)/2 (A17)
~1— 772de o 772 (e2iu7&2 + 6721’117'&'&) /2’

so that the second order term of the effective Hamiltonian
(A5) can be written as

(A18)

2 2ivt 2
n°1l—e . e 25t5)>
ST a,w” ] Mgl ~ BZ baba (1= ata) ool

[

second order in 1 we obtain the effective Hamiltonian
R Q2 R 2 202 i
Heg = hwa'a + hA, <1 + AQ) blby — h%b;bﬁa,

2
(A19)
which matches the cross-Kerr Hamiltonian (8) intro-



duced in the main text, once 2%/A% is neglected in the
parenthesis.

Appendix B:
Linearization of the optomechanical interaction

In this appendix we explain in detail the process of
linearizing the master equation (3), which we reproduce
here for convenience

dp ﬁOM . R ~
- = D, I'D B1
= o] e mp o @)
with
;L)M =va'a+[Ar — god]blby — (€%by + EBD), (B2a)
Dylp| =2JpJt = JtJp— pJtJ. (B2b)

1. The classical limit

Linearization consists in considering small quantum
fluctuations around the classical state of the system.
Hence, we first consider here the classical limit, which
in this case is obtained by assuming that the state is a
product of coherent states for both modes: |a) ® |3),
where alo) = aja) and by|8) = B|3). The master equa-
tion can then be turned into an evolution equation for
the coherent amplitudes «(t) and (t). Let us find such
equation.

In order to do this, it is convenient to first note that
the evolution equation of the expectation value of any
operator A can be written as

Applying this expression to the operators a and by, and
using the fact that coherent states are their eigenstates,
we easily find the evolution equations

& = f(F+iy)a+z’gO|B|2,
B =—[y+iAi —igo(a+a*)]B + €.

(B4a)
(B4b)

These evolution equations possess stationary states (& =

0 = B) defined by

a = gol B/ (v —iT) = go|BI* /v,
B=¢/[A—go(@+a") —in] ~E/v,

(B5a)
(B5b)

where in the last step we have made use of the regime
Ay = v > max{go|A|,7, T} that we showed in the main
text to be required for an appropriate beam splitter
operation. This solution must be stable against per-
turbations in order for linearization to work. Writing
a(t) = a+ da(t) and B(t) = B+ §8(t) in (B4), and
keeping terms to first order in the fluctuations, we get

oo I —v 0 igOBj igoB_ oo
d | 6a* | _ 0 —TI'+iv —igo* —igof3 dar* (B6)
dt | oB igof igoB  —v — A1 + 2igoRe{a} 0 op
6p* —igoB8* —igoB* 0 —v +iA; — 2igoRe{a} op*
T —iv 0 igoB*  igofB S
N 0 —T'+iv —igeB* —igof oa*
igof3 igo8  —vy —iv 0 6B |’
—igof*  —igoB” 0 -y +iv op*
M
[
where in the last step we have made use of the regime is stable.
Ay = v > go|f| and (B5). The solution will be stable
whenever the fluctuations decay towards zero, which in
turn happens only if the eigenvalues of M, known as lin-
2. Linearization of quantum fluctuations

ear stability matrix, have all negative real part. This is
clearly the case for gy = 0. On the other hand, the terms
proportional to go|3| < v are just a small perturbation
which is readily shown to not be able to make the sys-
tem unstable. Hence, in conclusion, under our operating
conditions it is ensured that the stationary solution (B5)

In order to introduce the linearized approximation for
quantum fluctuations, we move to a picture displaced
to the classical steady state presented above. Defining
the displacement D(a, B) = exp(aa + 8b; — H.c.) which



transforms the bosonic operators as DtaD = a + a and

DD = by + B, the transformed state p = Dmf) is
easily shown to evolve according to the master equation
dp [H _ ~ ~

— == D, I'D B
P T RN AL R
with
H v At (G i
— =vala + Aq1biby — goZ(Bb] + B7b1 +b1b1), (B8)
with A; = Ay — go(@+ a*). In this picture, the optome-

chanical interaction has a different form. It contains the
bilinear term go&(Bb] + 3*by) that we introduced in the
text, in addition to the original term gomblbl. It is clear
that the later will be negligible whenever |3]2 > (blb;).
But there is one more way in which it can become negli-
gible: since & oscillates at frequency v, the rotating-wave
approximation will suppress it whenever v > go@li)l)l/ 2,
Under any of these conditions, the Hamiltonian can then
be approximated by only its bilinear term, as we provided
in (5) in the main text. Moreover, working in the regime
Ay = v > max{go|B|,7,T} (required for a proper beam
splitter operation) allowed us to made the approximation
A, ~ A, in the main text.

Appendix C: Effect of parameter fluctuations

Here we explain in detail how we have analyzed the ef-
fect of parameter fluctuations in our protocol. Note that
in order to simplify the expressions and derivations, here
we use different conventions as compared to the main
text. In particular, we use a different sign convention for
the beam splitter operation, and we start from a state
with N photons instead of N phonons. Of course, none
of these choices affects the final conclusion.

The basic idea is that, instead of considering ideal op-
erations, we consider a beam splitter By = eXp[A(dl;J{ —
a'hy)] and a controlled-0 Cy = exp(ifblbyata) with fluc-
tuating parameters A = w/4 + 6\ and 0 = 7w + §6,
where both fluctuations d\ and §6 are taken as Gaus-
sian stochastic processess. Denoting either of them by
5z (hence z = A, 0), we then have

S { 0 s for n € odd 7 (1)
(n—=1N V" for n € even

where V, is the variance (square of the standard devia-
tion) of the fluctuations, and in the following we denote
stochastic averages by an overbar.

As a proof of principle, we then evaluate the
(stochastically-averaged) fidelity between the ideal and
fluctuating states. In order to simplify the calculation,
we will consider the states right after the controlled-6 op-
eration instead of at the very end of the protocol. In any

case, this will give us a fair idea of the sensitivity of the
protocol to parameter fluctuations. Consider then the
state at this stage of the protocol, which can be written
as

|®xg) = 70 9BAIN)110)a (10)2 + [1)2) (C2)
= 5 (3010 1002+ By o), 112)
where Pg — eifa'a apq
|1r/))\>1a = BX|N>1|O>11 (CS)

The overlap between this state and the ideal one [® /4 )
is then given by

1 N

3 (<¢7r/4|¢A>1a + <¢ﬂ/4|P59|1/J,\>1a) ,
(C4)

Psg. Using (C3), these two

<q)7r/4,7r |(I))\,0> =

where we have used PlPy =
terms are easily rewritten as

Ny N
(Vr/al¥A)1a = Z N ( A > sin® Acos™V K\, (Cha)
k=0
Ny N
(4] Ps6|¥2) 1a Z Noni < i ) €% sin® \cos™ 7R\,
=0
(C5b)

so that

N .
1 + elk59 N . _
(Pr/ax|Pro) = Z EVoR sin® X cos™ 7R \.

k=0
(C6)
On the other hand, the average fidelity can be evaluated
as

F = |<(I>7r/4,7r‘q))\,9>|7 (07)

that is, the average of the absolute value of the overlap.
Let us then now perform the required stochastic averages.
sin™ A cos™ \ = 2n+mln Z Z

First, let us note that
m
(i) (%)
1=0I'=

17r(n+m—2l—2l )/46—(n+m—2l—2l')2\/}\/2

(C8)

n m

X e

expressions that we prove at the end of the section.
Hence, we can write
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FIG. 3. Fidelity of the state generated by our protocol as a function of the NOON size N, and for different values of the standard
deviation of the beam splitter and controlled-7 parameters: 1% (blue), 2% (orange), 3% (yellow), 5% (green), 15% (grey), and

50% (purple), from top to bottom.

1) () iy S

=0 l'=

expression that can be evaluated very efficiently in any
computer.

In Fig. 3 we plot the fidelity (C7) as a function of
N for different values of the standard deviation of the
parameters. As mentioned in the main text, for 1% stan-
dard deviation, the fidelity stays above 90% for values
as large as N = 40. Note that the standard deviation is
the square root of the variance, and hence, M% means
Vo = (1072M7)? and V) = (1072M7/4)2.

Let us now prove expressions (C8). In the case of the
first one, we simply expand the exponential in tailor se-

J

1
2n+ml'n

1 n m
= g 2 2 (-

1=01'=0

sin”™ A cos™ \ = (eir — e=iA)" (eir 4 e=iA)™

N
Z 2\/12W < ) (1 +m) sin® X cosV—F )

N—

n
2n+mln Z Z

(C9)

( ) ( NZT k ) i (N=21=21') /4, —(N—21-21')V}, /2

k _
N N—k m(N—21—2l")/4 —k*Vo/2\ ,—(N—21—2l')?Vy /2
ZZQ1+3N/2k(k>( >< ) /(1—|—e €/>6( )2Va /2.

(

ries and use (C1), leading to

: 1 = = (2=
einz — Z H(ln)kzk _ Z ( ) (,Ln)2l‘/zl

pat =
— 1 2\l7/1 —n?V,/2
:221—“(771 Wih=e (C10)
=0 ’

As for the second expression, it is also easy to prove by
writing the trigonometric functions in terms of complex
exponentials and using the previous expression:

( ) (TZT’L ) eilntm=21=2)X  (C11)

I=01'=

)l < 711 ) ( Tlf/L ) eiw(n+m—2[—2l’)/4e—(n+m—2l—2[’)2V>\/2.
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