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Recent investigations by Fuchs et al. [Nat. Phys. 11, 964 (2015)] revealed an anomalous frequency
shift in non-linear Compton scattering of high-intensity X-rays by electrons in solid beryllium. This
frequency shift was at least 800 eV to the red of the values predicted by analytical free-electron
models for the same process. In this paper, we describe a method for simulating non-linear Compton
scattering. The method is applied to the case of bound electrons in a local, spherical potential to
explore the role of binding energy in the frequency shift of scattered X-rays for different scattered
angles. The results of the calculation do not exhibit an additional redshift for the scattered X-rays
beyond the non-linear Compton shift predicted by the free-electron model. However, it does reveal
a small blue-shift relative to the free electron prediction for non-linear Compton scattering. The
effect of electron-electron correlation effects is calculated and determined to be unlikely to be the
source of the redshift. The case of linear Compton scattering from a photoionized electron followed
by electron recapture is examined as a possible source of the redshift and ruled out.

I. INTRODUCTION

Since, the discovery of Compton scattering 90 years
ago, various measurements have been carried out to con-
firm the results to a higher accuracy and to probe the
finer details of the Compton spectrum [1, 2]. This has
given rise to the study of Compton profiles which provide
extensive information about the momentum distribution
of the electrons involved in the scattering [3, 4]. Comp-
ton profiles have also proven useful as an experimental
check on the accuracy of the ground state wave function
of electrons in momentum space obtained through theo-
retical methods. A number of applications in areas from
material science to astrophysics have been born out of
these studies [5, 6].
In this paper, non-linear Compton scattering refers to

the process where two incoming photons interact with
an electron leading to one outgoing photon. Non-linear
Compton scattering was first described by Brown and
Kibble [7] in 1964 where they developed an analytical
QED framework to model the non-linear scattering [8] of
photons by a free electron. In their work, they showed
that when non-linear Compton scattering occurs, for the
non-relativistic case, the frequency of the scattered pho-
ton can be obtained by the usual Compton expression,
provided, you replace the incoming frequency by twice
that value. Including relativistic effects in the calcula-
tion gives rise to ponderomotive forces on the electron.
At extremely high intensities (electric field >10000 a.u.
for X-rays), the ponderomotive effects lead to the elec-
tron behaving as if it had a smaller mass and thus pro-
ducing a bigger redshift for the scattered photons. It was
more than two decades before experiments could study
non-linear X-ray-matter interactions, but the arrival of
X-ray free-electron lasers [9, 10] has made considerable
progress [11, 12] possible.
More recently, Fuchs et al. [13] carried out an ex-

periment to investigate non-linear X-ray matter interac-
tions with the Linac Coherent Light Source at the SLAC
National Accelerator Laboratory. They used a high-

intensity X-ray free-electron laser to study non-linear
scattering from solid beryllium. While non-linear Comp-
ton scattering had been earlier observed [14], Fuchs et
al. [13] found a non-linear Compton signal that was sub-
stantially redshifted from the value predicted by Brown
and Kibble [7]. To explain this additional redshift(∼800
eV), they proposed that the bound nature of the beryl-
lium electrons could be responsible. This argument was
analyzed by Krebs et al. [15]. They solved the TDSE to
simulate the non-linear X-ray scattering, with the bound
electrons being modelled by a potential based on the
Hartree-Fock-Slater model. Their calculations did not
reveal any anomalies with respect to the free-electron re-
sults.

In this paper, we re-examine the additional frequency
shift in Fuchs et al. [13]. We use a numerical approach
different from that of Ref. [15] and study the effect of
binding energy, electron-electron correlation, and photo-
ionization on the non-linear Compton spectrum. We were
able to obtain convergent results for both the differential
cross section and the average scattered photon momen-
tum for both linear Compton and non-linear Compton
scattering. While we mainly agree with the results of
Krebs et al. [15], our calculations reveal a small blue-shift
in the frequency of the scattered photon with respect to
the free-electron results. Following this, we explore two
possible alternate causes for the redshift. First, we con-
sider the role of electron-electron correlation effects on
the scattering profile. Second, we examine the possibility
of a semi-Compton process to give rise to the anomalous
redshift.

For free-electrons, we performed calculations where the
electron part of the wave function was restricted to 2D
but for most of the bound electron calculations, the elec-
tron was fully 3D. For a given number of dimensions,
the calculations for a bound electron involves less time
and space computationally than their free-electron coun-
terparts. It should be noted that a 2D model is quite
adequate to describe both linear and non-linear Comp-
ton scattering but the exact factors required to calculate
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the differential cross length is not well defined. The 3D
simulations lead to results with no adjustable parame-
ters.
The model’s validity is demonstrated by reproducing

the differential cross length of X-ray scattering from a
free-electron from a QED-2+1 scheme, which is a 2D
analogue of the Klein-Nishina formula [16, 17]. Another
way the validity of the model is tested is by comparing it
with the non-linear Compton differential cross section of
Brown and Kibble [7] for small binding energy. Finally
the model is applied to the X-ray scattering scenario in
Fuchs et al. [13] to study both the Compton and non-
linear Compton scattering from a bound electron. In our
calculations, we consider a range of binding energy for
the bound electrons from 0.4 a.u. to 6 a.u. This range of
binding energy is relevant for Be because, the atomic Be
has an ionization potential of 0.34 a.u. and that of Be2+

is 5.6 a.u.
Unless otherwise stated, atomic units will be used

throughout this paper.

II. METHODS AND MODELLING

The first step in our approach is to model the initial
state of the electron. For the free-electron case, we use a
Gaussian wave-packet as the initial state. Recently, Pan
and Gover [18] while analyzing spontaneous and stim-
ulated emissions found that the size of the initial wave
packet has non-trivial effects on the spectrum of the out-
going photons. These effects appear when the outgoing
photons are in a coherent state and not a Fock state.
However for the scattering problem under consideration,
the size of the Gaussian wave packet is not significant.
For the bound electron case, we treat the electron as

an atomic single electron and model the rest of the atom
with an effective time-independent, local potential. We
solve the time-independent Schrödinger equation to ob-
tain the ground-state spatial wave function. For this, we
use the relaxation method; propagating the Schrödinger
equation in imaginary time until only the ground state
remains. The ground-state wave function, thus obtained,
was the initial state of the bound electrons in our calcu-
lations.
With the appropriate initial wave function, we can

compute the time-dependent wave function for the elec-
tron in a classical field by numerically solving the time-
dependent Schrödinger equation(TDSE). To model the
scattered photon, we employ lowest order perturbation
theory and solve for the case of a single outgoing photon.
We obtain the scattering probability for different angles
which is used to calculate the differential cross section as
a function of angle.
The non-relativistic treatment of the electron implied

by the TDSE should be accurate enough for the condi-
tions below. Consider the case of non-linear Compton
scattering of a photon of w = 340 a.u. from a free elec-
tron. Even for the case of back scattering, the electron

would at most gain approximately 1.2 keV of energy from
the photon [Eq. (22)]. From the experiment by Fuchs et
al. [13], we expect an additional kinetic energy gain of
approximately 1 keV. Together, that would still give a
Lorentz factor(γ) of only 1.004 which is well within the
non-relativistic regime. As a check on the approxima-
tion, we consider the lowest order relativistic correction
to the Schrödinger equation in Sec. II B and demonstrate
that it hardly changes the overall results.

A. Deriving the non-homogeneous Schrödinger
equation

We model the vector potential by treating the incom-
ing EM wave classically and quantizing the scattered
wave [19]:

Â = AC + ÂQ. (1)

Here, Â is the total vector potential. The quantities AC

and ÂQ refer to the classical vector potential and the
quantized vector potential respectively. The quantized
vector potential is given by [19],

ÂQ =

√

2π

V

∑

k,ǫ

1√
ωk

[

ǫeik·r âk,ǫ + ǫ
∗e−ik·râ†k,ǫ

]

(2)

The symbols ǫ and k refer to the unit polarization vector
and wave vector of the photon respectively with k ·ǫ = 0.

Here, ωk = |k| c. The operators â†k,ǫ and âk,ǫ can create

or annihilate a photon in mode (k, ǫ) respectively. The
V in the pre-factor refers to the volume of the region
used to quantize the electromagnetic field modes. The
quantity r is the position vector and c is the speed of
light in vacuum which is approximately 137.036 in a.u.
It is to be noted that the final results are independent
of the quantization volume V , because we consider the
limit of an infinite volume.
The classical vector potential is modelled as a laser

pulse with linear polarization. We choose the coordinate
system such that the electric field only has a y-component
and the X-ray pulse propagates in the x-direction. Our
choice for this is given by the vector potential,

AC =
EC

ωin

cos

[

ωin(t−
x

c
)

]

exp

[

(−2 ln 2(t− x
c
)2)

t2wid

]

ŷ

(3)
Here EC , ωin, refers to the amplitude and the angular
frequency of the incoming electric field respectively and
twid indicates the FWHM of the pulse intensity. It is to
be noted that AC is a function of x and t only.
For the light-matter interaction, the Hamiltonian [20]

is,

Ĥ =
(P̂ + Â)2

2
+ V (x̂) +

∑

k,ǫ

ωkâ
†
k,ǫâk,ǫ (4)
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Note that the exact form of the potential energy V (x̂)
is discussed in Sec. III. We use Eqs. (1), (2) and (4)

and separate out the terms with and without ÂQ. The

terms with ÂQ are part of the perturbative correction.
In this paper, we retain only the terms of first order in
ÂQ. One reason for this is that the higher order terms,
give rise to two scattered photons and the Lamb shift,
both of which are beyond the scope of this paper. Thus,
our unperturbed Hamiltonian is,

Ĥ(0) =
(P̂ +AC)

2

2
+ V (x̂) +

∑

k,ǫ

ωkâ
†
k,ǫâk,ǫ (5)

The perturbation term is,

Ĥ(1) = (P̂ +AC) · ÂQ (6)

The wave function is expanded in the Fock basis based
on the number of scattered photons. Therefore our wave
function ansatz is as follows,

|ψtotal〉 = ψ(0)(r, t) |0〉+
∑

k,ǫ

ψ
(1)
k,ǫ(r, t)e

−iωktâ†k,ǫ |0〉 (7)

where |0〉 refers to the vacuum state of the photon in Fock
space. The ansatz is adequate because the first term de-
scribes an electron interacting with a classical EM field
without any scattered photons. The wave function of
this electron is given by ψ(0)(r, t). The second term de-
scribes the presence of a scattered photon. The quantity

ψ
(1)
k,ǫ(r, t) is the probability amplitude at time t, for a

photon to scatter into momentum k and polarization ǫ

and the electron to be found at position r.
Given the Hamiltonian and the wave function ansatz,

we proceed with the TDSE retaining only the terms up to
first order in perturbation and separating out the equa-
tions based on the number of scattered photons. For no
scattered photons,

i
∂ψ(0)

∂t
− ĤCψ

(0) = 0 (8)

where,

ĤC = Ĥ(0) −
∑

k,ǫ

ωkâ
†
k,ǫâk,ǫ (9)

Note that ĤC appears in Eq. (8) because ψ(0) is defined
as the wave function of an electron interacting with a
classical EM field. For 1 scattered photon we get,

i
∂ψ

(1)
k,ǫ

∂t
− ĤCψ

(1)
k,ǫ =

√

2π

V ωk

e−ik·reiωkt

× ǫ
∗ · (P̂ +AC)W (t)ψ(0)

(10)

where,

W (t) = e−( t

τ
)8 (11)

The windowing function, W(t), adiabatically turns on
the in-homogeneous term in Eq. (10) only for the dura-
tion of the incident laser pulse, twid. This is done to find
the ground state of the electron-photon coupled system.
This also prevents the unphysical emission of photons,
that would occur if the interaction between the electron
and quantized photons was instantaneously turned on.
Note that the function should be smooth to avoid en-
countering the Gibbs Phenomenon [21]. The choice of τ
is determined by the duration of the pulse. The results of
the calculation do not depend on τ as long as τ > 3.2 twid

approximately. Another competing consideration is that,
τ should be as small as possible to ensure that we only
need to solve the TDSE for a short duration. In our
calculations we chose τ ∼ 3.2 twid. The results do not
depend on the specific choice of the windowing function
as long as it is a smooth function which attains a value
of 1, only during the duration of the incoming pulse.
A modification of the procedure developed in this sub-

section is considered in Sec.III C where the results of a
two-electron calculation is discussed to probe electron-
electron correlation effects in 2D.

B. Relativistic Correction - (P + A)4 terms

Here, we demonstrate how a relativistic correction
may be implemented. We do this by considering the
next higher order term in mechanical momentum and re-
deriving the expressions in Eqs. (8) and (10). A careful

consideration of the non-commuting terms in (P̂ + Â)4

is required to derive the new equations. For no scattered
photons,

i
∂ψ(0)

∂t
− ĤCψ

(0) = − 1

8c2
(P̂ +AC)

4ψ(0) (12)

For 1 scattered photon,

i
∂ψ

(1)
k,ǫ

∂t
− ĤCψ

(1)
k,ǫ =− 1

8c2
(P̂ +AC)

4ψ
(1)
k,ǫ

+

√

2π

V ωk

ǫ
∗ ·

[

e−ik·reiωkt(P̂ +AC)

− 1

2c2
eiωktĜ

]

ψ(0)

(13)

where,

Ĝ =
[

e−ik·r(P̂ +AC)
3
]

+
[

(P̂ +AC)
3e−ik·r

]

+
[

(P̂ +AC)
2e−ik·r(P̂ +AC)

]

+
[

(P̂ +AC)e
−ik·r(P̂ +AC)

2
]

(14)

The above equations are a simple way in which rela-
tivistic corrections can be implemented. An alternative,
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more sophisticated approach would be to use the rela-
tivistic Schrödinger equation [22]. However, there is no
need for such an approach given the results in Sec. III A.
If the fields were a few orders of magnitude higher, there
would be a need for a more sophisticated treatment of
relativistic corrections [23].

C. Differential cross section

The probability for a photon to scatter with momen-
tum k and polarization ǫ is

Pk,ǫ =

∫

v

ψ
(1)
k,ǫ

∗

ψ
(1)
k,ǫd

nr (15)

Here dnr refers to the volume element in n dimensions.
The method described in Sec. II A automatically leads

to a spread in the scattered photon momentum because
the incoming field is not strictly monochromatic but
rather a pulse. The amount of the spread in scattered
photon momentum is determined by the width of the
chosen laser pulse. Since there is a momentum spread
in the scattered X-ray, the differential cross section for
a given scattering angle is a summation over all possible
magnitudes of scattered photon momentum. The total
1-photon cross section in 3D is given by,

σ(1) =
∑

k,ǫ

Pk,ǫ

(number of photons/area)
(16)

where [19] ,

∑

k

−→ V

(2π)3

∫

d3k (17)

and,

number of photons

area
=

∫

Idt

ωin

(18)

Here I refers to the intensity of incoming field. It is
to be noted that the incoming pulse is assumed to be
quasi-monochromatic. This leads to the definition of dif-
ferential cross section:

dσ

dΩ

(1)

=
V ωin

(2π)3

∫
∑

ǫ

Pk,ǫk
2dk

∫

Idt
(19)

Here V is the quantization volume. There exists a factor
of 1/V in Pk,ǫ which cancels out the V in the numera-
tor. Note that ωin refers to the angular frequency of the
incoming electric field [Eq. (3)].
The 2-photon cross section in 3D has been defined in

multiple ways [24, 25]. Here we define it so that the SI
units would be m2/(W/m2).

σ(2) = ωin

∑

k,ǫ

Pk,ǫ

∫

I2dt
(20)
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Figure 1. Scattering probability Pk,ǫ as a function of scattered
photon momentum k for non-linear Compton calculations in
2D for an angle of 120 and 150 degrees respectively for a free-
electron. The red points indicate the results of the numerical
calculation and the blue line indicates a Gaussian fit. The
calculations were performed over an equal number of k values
on either side of the theoretical value. Note that the peaks are
at the expected non-linear Compton momentum [Eq. (22)].
This calculations was done with EC = 107 a.u. , ωin = 340
a.u. and twid = 0.125 a.u.

Therefore the differential cross section would be,

dσ

dΩ

(2)

=
V ωin

(2π)3

∫
∑

ǫ

Pk,ǫk
2dk

∫

I2dt
(21)

In both the 1-photon and 2-photon differential cross-
sections, we calculate these integrals with respect to k2dk
by doing a Gaussian fit for the plots of Pk,ǫ vs k and then
performing an integral of the Gaussian function. The dif-
ferential cross sections obtained from the 3D calculations
do not have any adjustable parameters.

The exact factors to obtain the differential cross length
from the scattering probability in 2D are not well defined.
Therefore, we obtain this factor by scaling our differential
cross sections to get an overall fit with the analytical free
electron results [7, 16].
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D. Solving TDSE

We solve the TDSE using a Cartesian co-ordinate sys-
tem with the wave function represented on a grid of
points. The values of the grid parameters are specified in
Sec. II E. For the kinetic energy operator in the Hamil-
tonian, we use a three-point central difference formula.
The TDSE for ψ(0)(r, t) [Eq. (8)] is solved using the
leap-frog method [26]. We choose the leap-frog method
for two reasons: first, it preserves unitarity and second,
it leads to converged results which is discussed in detail
in Sec. II E. The leap-frog method involves computing
the wave function which is two time-steps ahead of the
current wave function, using the wave function at the cur-
rent time-step and the wave function at the intermediate
time. The second order Runge-Kutta method is used to
obtain the value of the wave function at the first time-
step which is required for the leap-frog approach. At ev-

ery time instance, we simultaneously solve for ψ
(1)
k,ǫ(r, t)

for a range of scattered photon momenta centered around
the Compton momentum or the Brown and Kibble pre-
diction [Eq. (22)] for the linear Compton or non-linear
Compton respectively. The plot of Pk,ǫ [Eq. (15)] as a
function of scattered photon momentum k is a Gaussian
curve[see Fig. 1] to a good approximation.
In all our calculations unless otherwise stated, we use

electric field EC = 107 a.u. and angular frequency ωin =
340 a.u. for the incident laser pulse. In SI units, these
values correspond to an electric field of ∼ 5 x 1013 V/m
and an intensity of∼ 3 x 1024 W/m2. The chosen angular
frequency corresponds to an incoming photon energy of
about 9.25 keV. These values belong to the range used
in the experiment by Fuchs et al. [13].

E. Grid and other numerical parameters

In our calculations, convergence is measured in two
ways, by calculating the area under Pk,ǫ vs k plots and
by calculating the change in the peak position of the scat-
tering probability. For all the calculations except Sec.
III C, the change in this area with respect to change in
grid-spacing or grid-size were under 2%. The change in
the peak position of scattering probability with respect
to change in grid-spacing or grid-size was under 0.5% .
For the 2D free-electron calculations, a grid size of 400

X 400 with a grid-spacing of 0.1 a.u. in both x,y direc-
tions resulted in converged results. For the 3D calcula-
tions with Z=1, Z=2 a grid range of 400 x 400 x 400
with a grid spacing of 0.1 a.u. resulted in converged re-
sults. For Z=4 a grid range of 229 X 229 X 229 with a
grid-spacing of 0.07 units resulted in converged results.
The primary source of error in scattered photon mo-

mentum arises from the kinetic energy operator. The
leading order error term is proportional to the square
of the grid-spacing. For the case of non-linear Comp-
ton scattering from a bound electron at an angle of 130
degrees and for a grid-spacing of 0.07 a.u., the error is

 0

 4

 8

12

16

 0  30  60  90  120  150  180

d
λ(1

) /d
θ 

(1
0

−
5
 a

.u
.)

θ (degrees)

Figure 2. Comparison of differential cross length as a func-
tion of angle subtended by the detector with the analogue of
Klein-Nishina formula for 2D [16] for linear Compton scatter-
ing. The red points are the results of the numerical calculation
and the blue line represents the results from the analytical ex-
pression [16]. The results of the numerical calculations in 2D
were scaled by a single factor. This factor was chosen such
that, overall, the numerical results fit well with the analyti-
cal results. The above calculations were done with the same
parameters as Fig. 1.

of the size of about 3% of the non-linear Compton shift.
This error is much smaller than the size of the anomalous
shift observed in Ref. [13] which is about 100% of the
Compton shift. In Sec. III B, we take our estimate for
scattered photon momentum, k below this 3% error by
using Richardson’s extrapolation to eliminate the leading
order error term.
For twid, we use a range of 0.1 - 1 a.u. which corre-

sponds to a pulse of duration ∼ 10−18s. The use of such a
short pulse is justified because the results for differential
cross section are found to be independent of the choice
of twid. A small change in peak scattered momentum is
observed for different pulse widths. The magnitude of
this change is less than about 1% of the momentum shift
observed by Fuchs et al. [13]. Also, for the chosen range
of twid, there is no reflection of the wave function from
the walls, as the distance travelled by the wave packet of
the electron is much smaller than the size of the grid.

III. APPLICATION

A. Free-electron Case

We apply the method developed in Sec. II, to a free
electron interacting with a laser pulse in 2D and compare
the results of our calculation with the equivalent of the
Klein-Nishina formula in 2D [16]. Note that the Klein-
Nishina formula and its analogue in 2D are derived for
monochromatic radiation. Since we employ a pulse, we
evaluate the integral D =

∫
∑

ǫ

Pk,ǫkdk to find a quantity

proportional to the differential cross length for a given in-
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Figure 3. Comparison of differential cross section(length)
as a function of scattering angle in 2D with the results of
Brown and Kibble for non-linear Compton scattering. The
blue points indicate the non-relativistic results obtained us-
ing Eqs. (8) and (10). The black squares were obtained using
the approach from Sec. II B. The orange line indicates the
result from Brown and Kibble. The results of the numerical
calculations in 2D were scaled by a single factor. This fac-
tor was chosen such that overall the numerical results fit well
with the analytical results. The above calculations were done
with the same parameters as Fig. 1.

tensity and incoming frequency. We compute this quan-
tity D for different angles and compare this with the
differential cross length from the QED-2+1 scheme [16]
and the differential cross section from Brown and Kib-
ble [7]. From this point in our discussions, we will refer
to D as differential cross length for convenience keeping
in mind that the calculation has been scaled to match
the analytical result.
We plot the differential cross length we obtained for

linear Compton as a function of angle and the results
from QED-2+1 [16] in Fig. 2. Upon comparison, we find
that our calculated differential cross length agrees well
with the free-electron analytical results.
Next, we compare the calculated 2D differential cross

length (see Fig. 3) for non-linear Compton scattering
with the analytical expression from Brown and Kibble [7].
We also evaluate the differential cross lengths using the
relativistic corrections developed in Sec. II B for com-
parison. The procedure for scaling the differential cross
length used previously, is employed here as well. Ac-
cording to Brown and Kibble [7], for non-linear Compton
scattering, the frequency of the scattered photon using a
non-relativistic approximation is given by,

ω =
nωin

1 + nα2ωin(1− cosθ)
(22)

Here, n determines the order of the process, for exam-
ple n = 1 for Compton scattering. The discussions in
this paper are restricted to processes where n ≤ 2. The
symbols ω, ωin refers to the angular frequency of the
scattered photon and incoming photon respectively and
α is the fine-structure constant.

2.6

3.1

3.6

4.1

4.6

 2.37  2.39  2.41  2.43  2.45

C
o
m

p
to

n
 l
in

e

A
c
tu

a
l 
P

e
a
k

1
0

3
 P

k
,ε

k (a.u.)

Figure 4. The above plot was computed by solving the prob-
lem in 2D for Z = 4, a = 0.1 a.u., with a binding energy(BE)
of 5.9593 a.u. at an angle of 130 degrees and twid = 1.
It reveals the Compton defect in linear Compton scattering.
The red vertical line and the blue vertical line indicates the
expected peak (non-relativistic) and the actual peak respec-
tively in the scattered photon momentum k. The red points
indicate the results of the numerical calculation and the blue
curve indicates a Gaussian fit.

It is important to note that the expression for differ-
ential cross section by Brown and Kibble was derived in
3D, but our calculations are for differential cross length
in 2D. Upon comparison, we find that that our results are
in good agreement with the Brown and Kibble results up
to a constant factor. There is also no significant change
(see Fig. 3) in the agreement with Brown and Kibble’s
result because of the relativistic correction discussed in
Sec. II B. Brown and Kibble had arrived at their results
by solving the Dirac equation but our agreement with
their results justifies the approximation with the TDSE.
It was found that the scattering probability for non-

linear Compton exhibits a second-order dependence on
the intensity of incoming EM field as expected and the
scattering probability for Compton scattering exhibits a
first-order dependence on the intensity of the incoming
EM field. This behaviour was observed over at least 3
orders of magnitude (up to 1000 a.u.) in the electric
field.

B. Bound electron case

Here we consider the case of bound electrons because of
its relevance to Fuchs et al. [13]. Unlike the calculations
for a free electron, here we adopt a 3D approach for the
most part. It is to be noted that a 3D calculation can be
done with relative ease for the case of a bound electron,
as the grid needed for convergent solutions is smaller.
Hence, it involves less memory and time computationally
when compared to the case of a free electron.
While the method developed in Sec. II allows for flex-

ibility with respect to the choice of potential, to keep
things simple a softcore Coulombic potential of the fol-
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Figure 5. The above plot was computed by solving the prob-
lem in 2D at an angle of 130 degrees for Z = 4, a = 0.1 a.u.
leading to a binding energy of 5.9593 a.u. The red points
indicate the results of the numerical calculation and the blue
curve indicates a Gaussian fit. It reveals an analogue of the
Compton defect in non-linear Compton scattering. The red
vertical line and the blue vertical line indicates the expected
peak (non-relativistic) and the actual peak respectively in the
scattered photon momentum k. Here, twid = 1 .
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Figure 6. Scattering profile for Compton scattering for a
bound electron in 3D at an angle of 60 degrees with twid = 0.1.
The bound state of the electron is characterised by parame-
ters Z = 4, a = 0.1 a.u. leading to a BE of 3.9496 a.u. The
red points indicate the results of the numerical calculation
and the blue line indicates a Gaussian fit.

lowing form is chosen:

V (r) =
−Z

√

x2 + y2 + z2 + a
(23)

Here, Z is equal to the effective nuclear charge seen by the
electron in atomic units. By varying this, we can model
the scattering from bound electrons of different binding
energy(BE). The parameter a is included to avoid the
singularity [27–30] at the origin. While it is preferable
to minimize the value of this parameter, there are con-
straints that arise from the grid-spacing.
With this potential, we proceed as per Sec. II and

obtain the scattering probability, Pk,ǫ. From the scatter-
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the calculations, the bound nature of electron doesn’t appear
to have altered the peak scattered momentum from the free
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The red points indicate the results of the numerical calcula-
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formula. The above calculations were done with the same pa-
rameters as in Fig. 6. All numerical calculations in 3D were
done with no adjustable parameters.

ing probability calculations for non-linear Compton scat-
tering for different bound state parameters, two things
should be noted. First, there is a momentum shift, albeit
an insignificant one when compared to the shift measured
by Fuchs et al [13]. Second, Ref. [13] measured a redshift
while the simulations show a blue-shift. While the addi-
tional shift in Compton wavelength has been well docu-
mented and studied [31, 32], interestingly we find that a
similar shift occurs in non-linear Compton as well.
We calculate the differential cross section for Comp-

ton and non-linear Compton as a function of angle for a
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Figure 9. Comparison of the differential cross section as a
function of scattering angle for non-linear Compton scat-
tering from bound electrons with the Brown and Kibble’s
free-electron result. The bound electron is characterised by
parameters Z = 4 and a = 0.1 a.u. with a BE of 3.9496. The
red points are a result of the numerical calculations in 3D
while the blue line indicates the results of Brown and Kibble.
The above calculations were done with the same parameters
as Fig. 7. All numerical calculations in 3D were done with
no adjustable parameters.

bound electron. When we compare the calculated linear
Compton differential cross section with the Klein-Nishina
formula [17], we find excellent agreement despite it being
a bound electron. Upon comparing the non-linear Comp-
ton differential cross section with Brown and Kibble’s
result [7], we find a general agreement. However, the cal-
culated differential cross section for angles between 120
degrees and 150 degrees exhibit about 10 percent discrep-
ancy. A part of this discrepancy arises from the fact that
the Brown and Kibble formula used was non-relativistic
and therefore is missing factors of ( ωk

ωin
). The differential

cross section for Compton scattering from Kibble and
Brown is also missing these factors which were included
in the Klein-Nishina formula. Therefore, it is difficult
to determine the amount of error that originates from
the numerical calculation and the amount that originates
from the electrons being bound. These calculations were
done for a range of values for Z and a and the results
were found to be approximately the same.

It is to be noted that the results of Krebs et al. [15] are
in terms of double differential cross section and their dou-
ble differential cross section has an extra frequency fac-
tor. Upon finding the area under their curve for double
differential cross section by approximating it as a Gaus-
sian and after accounting for differences in frequency, we
find that our results are of the same order as theirs and
agree to within a factor of ∼2. This comparison is ap-
proximate because the estimate for the area is crude due
to the limited number of data points in the results of
Ref. [15].

For all the calculations, the polarization of the scat-
tered photon was in the same plane as that of the plane

of polarization of the incoming photons. When the po-
larization of the scattered photon was chosen to be per-
pendicular to the plane of polarization of the incoming
photons, the scattering probabilities were found to be
more than 6 orders of magnitude smaller, for the case of
non-linear Compton scattering.

For calculating the additional shifts(defect) in k, we
first numerically calculate the average k instead of ob-
taining the peak momentum from the Gaussian fit. When
the polarization of scattered photon is in the plane of po-
larization of the incoming photons,

kavg =

∑

k

kPk

∑

k

Pk

(24)

Here kavg is the estimate for the scattered photon mo-
mentum that we use to calculate the defect, with respect
to the theoretical non-relativistic free electron predic-
tion for both linear and non-linear Compton scattering.
Because the X-rays in the calculation have a Gaussian
time dependence, the final momentum distribution is the
convolution of the infinite resolution distribution with a
Gaussian. The average of the final k is unchanged by the
convolution because the Gaussian is a symmetric function
while the peak value does slightly shift with the twid. In
the calculations here, the scattering probability falls off
slower than a Gaussian distribution for k values far from
that for free electron linear and non-linear Compton scat-
tering which leads to small shifts. The underlying cause
for this lies in the nature of the Compton profile of the
bound electron. Following this, Richardson’s extrapola-
tion method [26] is used to obtain an estimate for the
defect in scattered photon momentum after accounting
for the numerical error from the grid-spacing to the lead-
ing order. For the cases of Z = 1, 2, 3 and 4 with a =
0.1, the defects were found to be of the size of ∼ 10−3

a.u. in k which corresponds to an energy of about a few
eV. It was found that the size of the defect increases with
the binding energy of the electron. The defect was also
found to be independent of the incident field over the
range 1-110 atomic units of electric field amplitude.

Let kfinal and kinitial be the peak scattered momen-
tum of the outgoing Xray photon and the peak momen-
tum of the incoming Xray photons respectively. For the
case of non-linear Compton scattering from a free elec-
tron at an angle of 120 degrees, kfinal − kinitial ∼ - 0.25
a.u. From the experiment [13], kfinal − kinitial ∼ - 0.5
a.u. From our bound electron calculations, we find that
kfinal−kinitial ∼ - 0.25 a.u. but there is a small blueshift
correction to this which is of the size ∼ + 10−3 a.u. From
these results, it is evident that the bound nature of the
electron cannot explain the anomalous shift observed in
Ref. [13].
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C. Electron-electron correlation effects

We examine if electron-electron interaction effects
could contribute to the redshift in the non-linear Comp-
ton scattering. This can be done by a simple extension
of the procedure developed in Sec. II. The Hamiltonian
is modified to include the mechanical momentum from
each electron and an interaction potential is introduced.

The modified Hamiltonian is given by,

Ĥ =
(P̂1 + Â(r1))

2

2
+

(P̂2 + Â(r2))
2

2
− V (r1)− V (r2)

+
1

√

(x1 − x2)2 + (y1 − y2)2 + a

+
∑

k,ǫ

ωkâ
†
k,ǫâk,ǫ

(25)

Here r1 and r2 refer to the position vectors of the elec-
trons and V (r1) and V (r2) is the 2D equivalent of the
expression in Eq. (23). The wave function ansatz re-

mains the same except that the quantities ψ(0) and ψ
(1)
k,ǫ

are now functions of both r1 and r2 along with time t.
With this approach, the calculations have to be re-

stricted to 2D because of the time and space required
to handle the problem computationally. Restricting the
calculation to 2D is reasonable given that there was not
any significant difference in the 2D and 3D results from
Sec. III A and Sec. III B respectively.
The same numerical procedure discussed in Sec. II D is

used to obtain the scattering probability Pk,ǫ as a func-
tion of scattered photon momentum k. A comparison
of the calculation with and without the electron-electron

interaction does not indicate any significant change [Fig.
10].
This calculation is performed with a grid-spacing of

0.14 a.u. and therefore it is not converged to the same
extent as the previous calculations. In single bound elec-
tron calculations in 2D and 3D, there is no substantial
change in the nature of our results as the grid-spacing
is decreased from 0.2 to 0.07 atomic units. We extrapo-
late from this trend and argue that the electron-electron
correlation effects are unlikely to be cause of the redshift
observed in the experiment by Fuchs et al. [13].

D. Semi-Compton process

We consider a process where a bound electron absorbs
an incoming photon and the now-ionised electron scat-
ters another incoming photon inelastically to give rise to
a photon of frequency ∼ 2ωin. The electron ends up be-
ing re-captured by the atom during the process. This
process should manifest itself in the calculations if the
grid-spacing was decreased enough to access the energy
range in the continuum of the ionised electron. When the
bound electron absorbs a photon, it gains a momentum
of ∼ 26 a.u. This would not be represented in a grid with
a spacing of 0.1 a.u., hence we consider a grid-spacing of
0.02 a.u.
We resort to a 2D calculation to probe such a fine grid.

The calculations do not reveal any significant difference
in the scattering profile. We also consider the effect of
binding energy on this scattering profile by decreasing
the parameter a in the potential. We do not find any
significant effect beyond the Compton defect discussed in
Sec. III B which is atleast 2 orders of magnitude smaller
than the shift observed by Fuchs et al. [13].

IV. CONCLUSION AND SUMMARY

We described a method to numerically calculate the
linear and non-linear Compton effect for free or bound
electrons. The results from the calculation can be used
to determine whether the bound nature of the electrons
caused the anomalous frequency shift observed in the ex-
periment by Fuchs et al. [13]. To justify the approxi-
mations we compared our free-electron results with the
analytical expressions available for differential cross sec-
tions of Compton [16, 17] and non-linear Compton scat-
tering [7]. We found excellent agreement in those cases.
We employed a Coulombic interaction potential to

model bound electrons and obtained their differential
cross sections for Compton and non-linear Compton scat-
tering. Despite the electrons being bound, the calcula-
tions for the differential cross section agreed with the
Brown and Kibble results. The calculations did not ex-
hibit a redshift in the wavelength of the scattered photon,
in disagreement with the experiment [13] but in agree-
ment with the calculations of Krebs et al. [15]. For bound
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electrons, we also found the small expected blue shift in
the case of Compton scattering and interestingly a blue
shift in the case of non-linear Compton scattering as well.
Our calculations support the conclusion in Ref.[15] that it
is not the bound character of the electron that is causing
the anomalous frequency shift seen in Fuchs et al. [13].

The role of electron-electron correlation effects on the
redshift was explored by doing a two-electron calculation
in 2D. The results of the calculation did not indicate the
presence of the redshift in Ref. [13]. Following this, we
considered the case of a semi-Compton process where lin-
ear Compton-scattering occurs off of an ionised electron
with the electron getting re-captured. This could give
rise to a photon of frequency of ∼ 2ωin. A calculation
accounting for this process, did not exhibit a redshift sim-
ilar to the one observed in the experiment by Fuchs et

al. [13]. No calculations have yet been able to reproduce
the shift observed in Ref. [13].
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