

CHORUS

This is the accepted manuscript made available via CHORUS. The article has been published as:

Attosecond-pulse metrology based on high-order harmonic generation

T. S. Sarantseva, M. V. Frolov, N. L. Manakov, A. A. Silaev, A. A. Romanov, N. V. Vvedenskii, and Anthony F. Starace

Phys. Rev. A **101**, 013402 — Published 3 January 2020

DOI: [10.1103/PhysRevA.101.013402](http://dx.doi.org/10.1103/PhysRevA.101.013402)

HHG-based attosecond pulse metrology

T. S. Sarantseva, ^{1, 2} M. V. Frolov, ¹ N. L. Manakov, ¹ A. A. Silaev, ^{1, 2, 3} A. A. Romanov, $^{1, 2, 3}$ N. V. Vvedenskii, $^{1, 2, 3}$ and Anthony F. Starace

1 Department of Physics, Voronezh State University, Voronezh 394018, Russia

² Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod 603950, Russia

 $\frac{3}{10}$ University of Nizhny Novgorod, Nizhny Novgorod 603950, Russia

⁴Department of Physics and Astronomy, University of Nebraska, Lincoln, NE 68588-0299, USA

(Dated: November 22, 2019)

An all-optical method to retrieve the temporal intensity profile of an extreme ultraviolet (XUV) attosecond pulse is proposed based on XUV-assisted high-order harmonic generation (HHG) by an intense infrared (IR) pulse. For a harmonic located on the XUV-induced high energy plateau (beyond the IR HHG plateau), the measured harmonic yield as a function of the time delay between the XUV and IR pulses is shown to accurately map the temporal intensity profile of the XUV pulse. Single- and two-color-orthogonal linearly-polarized IR pulses are used to demonstrate the method.

9 I. INTRODUCTION

 Observations of ultrafast electron dynamics on few- femtosecond and attosecond time scales have become ac- cessible by means of pump-probe experiments with iso- lated attosecond pulses (IAPs) [\[1](#page-7-0)[–6\]](#page-7-1). There are two available sources for IAPs: high-order harmonic gener- ation (HHG)-based IAP with relatively small outcome pulse energy and duration of tens attosecond [\[7,](#page-7-2) [8](#page-7-3)] and free electron laser (FEL)-based IAP with higher out- come pulse energy and duration up to hundreds attosec- ond [\[9](#page-7-4), [10\]](#page-7-5). It should be emphasized a great advance of HHG-based sources in the enhancement of output inten-²¹ sity by breaking the limit of 10^{14} W/cm² [\[11](#page-7-6)[–14](#page-8-0)] and thus become competitive to FEL-based sources. The tempo- ral characterization of an IAP typically employs attosec- $_{24}$ ond streaking [\[15](#page-8-1), [16](#page-8-2)], i.e., measurement of the photo- electron spectrum produced by the IAP and a few-cycle mid-IR pulse as a function of the time delay between the two pulses. Methods used to completely character- ize the temporal intensity and phase of an IAP include FROG-CRAB [\[17](#page-8-3)], PROOF [\[18](#page-8-4)], iPROOF [\[19](#page-8-5)], VT- GPA [\[20](#page-8-6)], ML-VTGPA [\[8](#page-7-3)], PROBP [\[21\]](#page-8-7), and PROBP-31 AC $[22]$. All of these methods (except for $iPROOF$ $[19]$) are based on the strong-field approximation for calcu- lation of the photoelectron spectrum produced by the probe pulse at each step of the iterative reconstruc- tion procedure. Although attosecond streaking methods are well established for reconstruction of IAP envelopes 37 and even their carrier-envelope phases [\[23\]](#page-8-9), photoelectron measurements are characterized by smaller detection effi- ciencies and lower signal-to-noise ratios than photon mea- surements. Hence, a few all-optical methods for charac- terization of an IAP have been proposed, including SEA-42 and XUV-SPIDER $[24]$, two in situ methods $[25, 26]$ $[25, 26]$, and 43 recently developed double-blind holography method [\[27\]](#page-8-13).

⁴⁴ In this paper we propose an all-optical method for *di*- rect measurement of the temporal envelope of an IAP [produced by any source of an intense extreme ultravi-

 trum produced by an IR laser pulse and a time-delayed XUV IAP. The method requires the detection of the har- monic signal in the energy region beyond the IR-driven plateau cutoff as a function of the time delay between the IR pulse and the IAP. Our analysis, which is based on an analytical parametrization of the HHG amplitude and 55 numerical solution of the 3D time-dependent Schrödinger equation (TDSE), shows that the harmonic yield as a function of time delay mimics the square of the IAP en- velope, thereby providing a direct method for extracting the temporal envelope of the XUV IAP.

This paper is organized as follows. In Sec. [II](#page-1-0) we discuss adiabatic results for the HHG amplitude in a strong IR field assisted by a weak IAP. We investigate factorization of HHG amplitude in XUV-assisted channel in terms of laser factor and photorecombination amplitude and sug- gest retrieval procedure for IAP envelope from analysis of harmonic yield as a function of time delay between IR and XUV pulses. In Sec. [III](#page-3-0) we analyze the accuracy of suggested procedure by comparison of our analytical re- sults with results obtained by numerical solution of the 3D TDSE for two configurations of IR pulse: (i) single- color IR pulse and (ii) two-color IR pulse with orthogo- naly polarized components. Our results are summarized τ_3 in Sec. [IV.](#page-6-0) In [A](#page-6-1)ppendix A we present explicit form of laser factor for HHG amplitude in terms of ionization and recombination times. In Appendix [B](#page-7-7) we provide mathematical justification for the uncertainty in recom- π bination times. Atomic units (a.u.) are used throughout this paper unless specified otherwise.

II. THEORETICAL BACKGROUND

A. Factorization of XUV-assisted HHG amplitude **for the short IAP**

 olet (XUV) radiation] without the necessity for an iter-⁸⁴ fication of ionization step in the three-step scenario of ative reconstruction procedure. It involves HHG spec-⁸⁵ HHG [\[28\]](#page-8-14) and consists in replacing of tunneling ioniza-82 The XUV field can modify IR-driven HHG process in two alternative ways. The first way comprises modi-

⁸⁷ second way is realized by absorbtion of XUV photon at ¹²⁷ potential $\mathbf{A}_{IR}(\xi)$, ⁸⁸ the moment of recombination [\[33\]](#page-8-17). In the latter case, the HHG spectrum produced by an intense IR pulse assisted by a weak (perturbative) XUV pulse includes additional plateaus extending beyond the usual HHG plateau pro- duced by the intense IR pulse alone. These new plateaus stem from the additional channels made possible by the ¹²⁸ In the quasiclassical approximation, the atomic factor ⁹⁴ XUV pulse; e.g., absorption of an XUV photon at the $_{129} a_0(\Omega_h)$ can be presented in terms of real electron tra- moment of IR-field-driven electron recombination results ¹³⁰ jectories [\[34](#page-8-18)[–36\]](#page-8-19), in the formation of a two-plateau HHG spectrum with cutoff energies separated by the energy of the XUV pho-ton [\[33\]](#page-8-17).

⁹⁹ As shown in Ref. [\[33\]](#page-8-17), the XUV-assisted HHG ampli-100 tude for the case of *monochromatic* XUV field can be fac-¹⁰¹ torized as the product of a laser-induced factor, $\tilde{a}_1(\Omega_h)$, ¹⁰² describing tunneling and propagation in the intense IR ¹⁰³ field, and a two-photon (or Compton) recombination am-¹⁰⁴ plitude, $f_{\text{rec}}^{(1)}(E_1)$, corresponding to absorption of an XUV ¹⁰⁵ photon and emission of a harmonic photon of frequency $106 \Omega_h$

$$
\tilde{\mathcal{A}}_1(\Omega_h, \Omega) = F_\Omega \tilde{a}_1(\Omega_h) f_{\text{rec}}^{(1)}(E_1),\tag{1}
$$

 107 where F_{Ω} is the strength of the XUV field, $E_1 = \Omega_{h} - I_p$ 108Ω is the returning electron energy in the single-photon $_{109}$ XUV channel, I_p is the ionization potential of the atomic μ ^{[1](#page-2-0)10} target, and Ω is the carrier frequency of the XUV field¹. 111 The laser-induced factor $\tilde{a}_1(\Omega_h)$ describes the ioniza-¹¹² tion and propagation steps of the three-step HHG sce-¹¹³ nario. For monochromatic XUV field, it mimics the be-¹¹⁴ havior of $a_0(\Omega_h)$ (i.e., the laser-induced factor for the 115 IR field alone), $\tilde{a}_1(\Omega_h) = a_0(\Omega_h - \Omega)$ [\[33\]](#page-8-17). In the low-¹¹⁶ frequency approximation within time-dependent effective 117 range (TDER) theory, the factor $a_0(\Omega_h)$ can be presented ¹¹⁸ as a two-fold integral over the times t' and t associated ¹¹⁹ with ionization and recombination times in the three-step ¹²⁰ HHG scenario [\[33](#page-8-17)],

$$
a_0(\Omega_h) = \frac{\mathcal{C}_0}{\sqrt{2\pi i}} \frac{1}{2\pi} \int_{-\infty}^{\infty} dt \int_{-\infty}^{t} dt' \frac{e^{i\Omega_h t - iS(t, t')}}{(t - t')^{3/2}}, \quad (2)
$$

 121 where C_0 is the dimensionless asymptotic coefficient in ¹²² field-free wave function of a bound s-state at large dis-¹²³ tances, $S(t, t')$ is the classical action,

$$
S(t, t') = I_p(t - t') + \frac{1}{2} \int_{t'}^{t} \mathbf{P}^2(\xi; t, t') d\xi,
$$
 (3)

¹²⁴ and $P(\xi; t, t')$ is instantaneous (at the moment ξ) mo-¹²⁵ mentum of an electron moving along closed trajectory in

⁸⁶ tion by the XUV single-photon ionization $[29-32]$. The 126 the time interval (t',t) in the IR laser field with vector

$$
\boldsymbol{P}(\xi; t, t') = \frac{1}{c} \left[\mathbf{A}_{\text{IR}}(\xi) - \frac{1}{t - t'} \int_{t'}^{t} \mathbf{A}_{\text{IR}}(\xi') d\xi' \right]. \tag{4}
$$

$$
a_0(\Omega_h) = \sum_j Q_j a_0^{(j)}(\Omega_h),\tag{5}
$$

¹³¹ where $a_0^{(j)}(\Omega_h)$ is the TDER partial laser factor for the j-¹³² th closed classical electron trajectory in the IR field and ¹³³ Q_i is the Coulomb factor, which extends the TDER re-¹³⁴ sults to the case of real atomic systems [\[37\]](#page-8-20). Explicit form ¹³⁵ of the factors $a_0^{(j)}$ and Q_j can be found in Appendix [A.](#page-6-1) ¹³⁶ In order to generalize these results to the case of a

¹³⁷ short XUV pulse, we employ the following form for the ¹³⁸ electric field vector of an XUV pulse,

$$
\boldsymbol{F}_{\text{XUV}}(t-\tau) = \hat{\mathbf{z}} F_{\text{XUV}} f_{\text{XUV}}(t-\tau) \cos\left[\Omega(t-\tau)\right], \quad (6)
$$

$$
f_{\text{XUV}}(t-\tau) = \int_{-\infty}^{\infty} \widehat{f_{\text{XUV}}}(\Omega') e^{-i\Omega'(t-\tau)} d\Omega', \quad (7)
$$

¹³⁹ where F_{XUV} , Ω , τ , and $f_{\text{XUV}}(t)$ are respectively the ampli- tude, carrier frequency, time delay, and temporal enve- lope of the XUV pulse. We assume the Fourier-transform ¹⁴² $\widetilde{f}_{\text{XUV}}(\Omega')$ has a pronounced maximum near $\Omega' = 0$. Than ¹⁴³ replacing $F_{\Omega} \to F_{\text{XUV}} \widehat{f_{\text{XUV}}} (\Omega') e^{i(\Omega' + \Omega)\tau}$ in Eq. [\(1\)](#page-2-1) HHG amplitude for the short XUV pulse can be found as a Fourier-transform of the "monochromatic" amplitude $\mathcal{A}_1(\Omega_{\rm h}, \Omega)$,

$$
\mathcal{A}_1(\Omega_h) = \int_{-\infty}^{\infty} F_{\text{XUV}} \widehat{f_{\text{XUV}}}(\Omega') e^{i(\Omega' + \Omega)\tau} \times \tilde{a}_1(\Omega_h - \Omega') f_{\text{rec}}^{(1)}(E_1 - \Omega') d\Omega'.
$$
\n(8)

¹⁴⁷ If the frequency profile of the XUV pulse, $\widehat{f}_{\text{XUV}}(\Omega')$, has ¹⁴⁸ a distinct maximum near $\Omega' = 0$ and the two-photon ¹⁴⁹ recombination amplitude is a smooth function of the ab-¹⁵⁰ sorbed photon energy, so that

$$
|f_{\text{XUV}}(t-\tau)f_{\text{rec}}^{(1)}(\Omega_{\text{h}}-I_{p}-\Omega)| \gg \left| \frac{df_{\text{XUV}}}{dt} \frac{\partial f_{\text{rec}}^{(1)}}{\partial \Omega} \right|, \quad (9)
$$

¹⁵¹ one can evaluate the integral in Eq. [\(8\)](#page-2-2) by replacing the $152 \Omega'$ -dependent recombination amplitude by its value at ¹⁵³ the carrier frequency of the XUV pulse, i.e., at $\Omega + \Omega' =$ 154Ω . This approximation results in the factorization of the ¹⁵⁵ HHG amplitude for a short time-delayed XUV pulse in ¹⁵⁶ terms of a two-photon recombination amplitude and a

 $^{\rm 1}$ It should be noted that although the analytical results for XUVassisted laser factor were reported only for the case of a linearly polarized monochromatic IR field, the explicit form of the IR vector potential $\mathbf{A}_{IR}(t)$ was not used explicitly in the derivations presented in Ref. [\[33](#page-8-17)]. Thus the results of Ref. [\[33](#page-8-17)] are valid also for a short IR pulse.

¹⁵⁷ laser-induced factor,

$$
\mathcal{A}_{1}(\Omega_{h}) = F_{XUV} e^{i\Omega\tau} a_{1}(\Omega_{h}) f_{rec}^{(1)}(E_{1}),
$$
\n
$$
a_{1}(\Omega_{h}) = \frac{\mathcal{C}_{0}}{\sqrt{2\pi i}} \frac{1}{2\pi} \int_{-\infty}^{\infty} dt \int_{-\infty}^{t} dt' \frac{e^{i(\Omega_{h}-\Omega)t - i\mathcal{S}(t,t')}}{(t-t')^{3/2}}
$$
\n
$$
\times \int_{-\infty}^{\infty} \widehat{f_{XUV}}(\Omega') e^{-i\Omega'(t-\tau)} d\Omega',
$$
\n(11)

 $_{158}$ where the last integral in (11) is the temporal profile (7) of the XUV pulse. Thus, the final form of the laser- induced factor for the short IR and XUV pulses within TDER theory is

$$
a_1(\Omega_h) = \frac{\mathcal{C}_0}{\sqrt{2\pi i}} \frac{1}{2\pi} \int_{-\infty}^{\infty} dt \int_{-\infty}^{t} dt' \frac{e^{i(\Omega_h - \Omega)t - i\mathcal{S}(t, t')}}{(t - t')^{3/2}} \times f_{\text{XUV}}(t - \tau),
$$
\n(12)

 \sum_{162} where $\mathcal{S}(t, t')$ is given by Eq. [\(3\)](#page-2-4). Comparing Eqs. [\(2\)](#page-2-5) $_{163}$ and [\(12\)](#page-3-2) and taking into account Eq. [\(5\)](#page-2-6), the laser factor $a_1(\Omega_h)$ within the quasiclassical approximation may be ¹⁶⁵ presented in terms of $a_0^{(j)}(\Omega_h - \Omega)$ as follows:

$$
a_1(\Omega_h) = \sum_j Q_j a_0^{(j)} (\Omega_h - \Omega) f_{\text{XUV}} (t_r^{(j)} - \tau), \quad (13)
$$

¹⁶⁶ where $t_r^{(j)}$ is recombination time for the *j*th classical tra-167 jectory. Explicit form of the laser factor $a_1(\Omega_h)$ indicates that HHG yield on the XUV-induced plateau is maxi- mized for time delay coinciding with recombination time of electron in IR field, while in previous studies of XUV- assisted HHG [\[29](#page-8-15)[–32\]](#page-8-16), the time delay was tuned to the ionization time, which ensured maximal effects of IAP on harmonics generated in the IR plateau.

¹⁷⁴ Since our basic result [\(13\)](#page-3-3) was obtained within qua-¹⁷⁵ siclassical approximation, we provide an estimate for ¹⁷⁶ the accuracy of this approximation, which assumes: (i) ¹⁷⁷ Smooth behavior of $f_{\text{rec}}^{(1)}(E_1)$ as a function of Ω [see ¹⁷⁸ discussion of Eq. [\(9\)](#page-2-7)]; and (ii) The applicability of ¹⁷⁹ the classical trajectories approximation. The condition 180 (ii) gives a restriction on the temporal profile $f_{\text{XUV}}(t)$, ¹⁸¹ i.e., the characteristic time scale of the XUV envelope, ¹⁸² | $f_{\text{XUV}}/(df_{\text{XUV}}/dt)$ |, at the recombination time $t_r^{(j)} - \tau$ ¹⁸³ should exceed the uncertainty in the recombination time $t_r^{(j)}$. This uncertainty can be estimated using the time-185 energy uncertainty principle, $\delta \mathcal{E} \delta t \sim 1$. If $\mathcal{E}(t)$ is the clas-¹⁸⁶ sical dependence of the electron energy (in the field of the ¹⁸⁷ IR pulse) on the recombination time [\[28](#page-8-14)], its variation is ¹⁸⁸ given by the first derivative, $\delta \mathcal{E} = \mathcal{E}(t) \delta t \approx F_{\text{IR}}^2 \delta t / (4\omega)$ for ¹⁸⁹ harmonics in the middle part of the HHG plateau, and by 190 the second derivative, $\delta \mathcal{E}(t) = \mathcal{E}(t) \delta t^2 / 2 \approx F_{IR}^2 \delta t^2 / 6$, for 191 cutoff harmonics [since $\dot{\mathcal{E}}(t)$ tends to zero there] [\[34,](#page-8-18) [35\]](#page-8-21). ¹⁹² Thus, according to the uncertainty principle, we find,

$$
\delta t = [1/\dot{\mathcal{E}}(t_r^{(j)})]^{1/2} \approx \sqrt{4\omega/F_{\text{IR}}^2}, \quad \dot{\mathcal{E}}(t_r^{(j)}) \neq 0, \text{ (14a)}
$$

$$
\delta t = [1/\ddot{\mathcal{E}}(t_r^{(j)})]^{1/3} \approx (6/F_{\text{IR}}^2)^{1/3}, \quad \dot{\mathcal{E}}(t_r^{(j)}) = 0, \text{(14b)}
$$

193 where F_{IR} and ω are the characteristic peak field strength ¹⁹⁴ and carrier frequency of the IR pulse. (See Appendix [B](#page-7-7) ¹⁹⁵ for more details.)

¹⁹⁶ B. Retrieval procedures

 197 Using (13) , the yield of harmonics on the XUV-induced ¹⁹⁸ plateau, $\mathcal{Y}_1(\Omega_h, \tau)$, is given by,

$$
\mathcal{Y}_1(\Omega_{\rm h}, \tau) = |\mathcal{A}_1(\Omega_{\rm h})|^2 \propto \sum_j |a_1^{(j)}|^2 f_{\rm XUV}^2(t_r^{(j)} - \tau)
$$

+
$$
\sum_{j,j',j \neq j'} a_1^{(j)} \left[a_1^{(j')}\right]^* f_{\rm XUV}(t_r^{(j)} - \tau) f_{\rm XUV}(t_r^{(j')} - \tau) (15)
$$

¹⁹⁹ where $a_1^{(j)} \equiv a_0^{(j)}(\Omega_h - \Omega)$. The interference term [second ²⁰⁰ line of Eq. [\(15\)](#page-3-4)] can be omitted if: (i) The duration of $_{201}$ the IAP, T_{XUV} , is much smaller than the minimum differ- $\sum_{z=0}^{\infty}$ ence in recombination times, $T_{\text{XUV}} \ll \min(|t_r^{(j)} - t_r^{(j')}|)$; or ²⁰³ (ii) The harmonic yield for a given energy Ω_h is due to a ²⁰⁴ single closed classical trajectory. This suggests two alter-²⁰⁵ native procedures for retrieval of the IAP pulse envelope 206 by measuring the HHG yield vs. time delay $τ$:

²⁰⁷ Procedure (i): Choose a harmonic Ω_h associated with ²⁰⁸ two or more well-separated electron trajectories. The ²⁰⁹ harmonic yield as a function of time delay τ will then ²¹⁰ comprise a sequence of bursts at the recombination $t_r^{(j)}$, separated by the time differences between ²¹² recombination events, each of whose shapes replicates ²¹³ $f_{\text{XUV}}^2(t_i^{(j)} - \tau)$. The relative height of each burst is given ²¹⁴ by $|a_1^{(j)}|^2$. To reconstruct the IAP temporal envelope, ²¹⁵ one should normalize all bursts to unity and then over-²¹⁶ lap the different scaled yields in order to form a single ²¹⁷ burst replicating square of the XUV pulse envelope with ²¹⁸ higher accuracy than for a single jth burst alone.

Procedure (ii): Choose a harmonic Ω_h associated with ²²⁰ a single electron trajectory with recombination time $t_r^{(0)}$. ²²¹ The harmonic yield vs. time delay τ will then mimic the ²²² square of the XUV pulse envelope, $f_{\text{XUV}}^2(t_r^{(0)} - \tau)$.

²²³ III. NUMERICAL RESULTS

 We now proceed to illustrate retrieval procedures *(i)* $_{225}$ and *(ii)* by accurately calculating the XUV-assisted HHG spectrum for the hydrogen atom for two cases: a single- color linearly polarized IR pulse; and a two-color IR pulse with linearly polarized, orthogonal components.

²²⁹ A. Single-color IR field

For a single-color, linearly polarized IR pulse, we rep-²³¹ resent the electric field of the pulse as,

$$
\boldsymbol{F}_{\text{IR}}(t) = \hat{\boldsymbol{z}} F_{\text{IR}} f_{\text{IR}}(t) \cos \omega t, \qquad (16)
$$

FIG. 1. (a) HHG yield for a 5-cycle IR pulse field [\(16\)](#page-3-5), with $T_{\text{IR}} = 20$ fs and $\omega = 1$ eV, and a Gaussian XUV pulse [\(17\)](#page-4-0), with frequency $\Omega = 41$ eV, $T_{\text{XUV}} = 202$ as, and $\tau = 10.95$ fs. The IR and XUV pulse peak intensities are the same: $I_{IR} = I_{XUV} = 2 \times 10^{14} \text{W/cm}^2$. Vertical dashed and dotdashed lines indicate the harmonic energies $\Omega_h = 130$ eV and the HHG yield in (a).

²³² where its envelope is $f_{\text{IR}}(t) = \sin^2(\pi t/T_{\text{IR}})$ for $0 < t < T_{\text{IR}}$ $_{233}$ and zero otherwise, T_{IR} is its total duration. The XUV $_{234}$ pulse is parameterized according to Eq. (6) .

²³⁵ Numerical calculations were carried out for a five-cycle ²³⁶ IR pulse $(T_{\text{IR}} = 20 \text{ fs})$ with peak intensity $I_{\text{IR}} = 2 \times$ ²³⁷ 10¹⁴ W/cm², $\omega = 1$ eV, and an XUV pulse with $\Omega =$ ²³⁸ 41 eV, $I_{\text{XUV}} = 2 \times 10^{14} \text{ W/cm}^2$ for (i) a Gaussian envelope,

$$
f_{\text{XUV}}(t-\tau) = f_G(t),
$$

\n
$$
f_G(t) = \exp\left[-\frac{2\ln 2 (t-\tau)^2}{T_{\text{XUV}}^2}\right],
$$
\n(17)

²⁴⁰ of the intensity, FWHM) of $T_{\text{XUV}} = 202$ as and 303 as ²⁹⁶ based on cutoff harmonic has much smaller accuracy than $_{241}$ (two- and three-cycle pulses); and (ii) for a tailored pulse $_{297}$ Procedure (i) based on plateau harmonic. ²⁴² with envelope given by two shifted Gaussian functions,

$$
f_{\text{XUV}}(t-\tau) = f_G(t-\tau_-) + 2f_G(t-\tau_+)/3, \qquad (18)
$$

²⁴³ where $\tau_{\pm} = \pm 4\pi/\Omega$. For the single-color, linearly polar- ized IR field, the 3D TDSE was solved for the Coulomb potential by expanding the wave function in spherical harmonics [\[38](#page-8-22)].

 $_{247}$ In Fig. [1\(](#page-4-1)a) we present the HHG spectrum for a Gaus-²⁴⁸ sian XUV pulse [\(17\)](#page-4-0) with $T_{\text{XUV}} = 202$ as and a time ²⁴⁹ delay $\tau \approx 10.95$ fs. As shown in Fig. [1,](#page-4-1) the XUV field ²⁵⁰ induces a second plateau. To retrieve the XUV pulse ²⁵¹ envelope, we choose two harmonic spectrum energies, ³⁰⁴ where $\beta = 0.8$ is the field strength ratio for the second $252 \Omega_h = 130 \text{ eV}$ and $\Omega_h = 153 \text{ eV}$ (see Fig. [1\)](#page-4-1). In principle, sos and first harmonics. In this case any harmonics in the $_{253}$ for $\Omega_h = 130$ eV two (long and short) trajectories, whose so middle part of the plateau can be used to map the XUV 254 recombination times differ by ≈ 0.8 fs, may contribute. 307 pulse envelope. The characteristic resolution time for $_{255}$ However, as is seen from Fig. [1\(](#page-4-1)b), only single trajec- $_{308}$ harmonics in the middle part of the plateau is determined $_{256}$ tory contributes for $\Omega_h = 130$ eV because the duration $_{309}$ by both the intensity and the frequency of the IR field,

²⁵⁷ of XUV pulse is much less than 0.8 fs. For $\Omega_h = 153 \text{ eV}$ a ²⁵⁸ single trajectory contributes, since its energy lies beyond ²⁵⁹ the XUV-induced plateau cutoff.

 $\Omega_h = 153$ eV. (b) Color-coded time-frequency distribution of $_{281}$ for the XUV pulse duration given by the "resolution" ²⁶⁰ In Fig. [2\(](#page-5-0)a) we present the harmonic yield for $\Omega_h =$ 130 eV for a Gaussian XUV pulse envelope [\(17\)](#page-4-0) as a ²⁶² function of time delay, $\tau - \tau_0$, where $\tau_0 \approx 11.15$ fs is τ_0 the return time for the extreme closed classical trajectionthe return time for the extreme closed classical trajec- tory contributing to the formation of the cutoff harmonic. There are two bursts, separated by the difference in re- combination times for short and long trajectories. The relative heights of the two bursts are given by the corre-²⁶⁸ sponding magnitudes $|a_1^{(j)}|^2$ for the long and short trajec- $_{269}$ tories. To retrieve the XUV pulse envelope, we use Pro- $_{270}$ cedure (i) and scale both bursts to the same height [see the gray solid circles in Fig. $2(a)$ $2(a)$] and then overlap the burst on the right to the one on the left (see the parallel arrows pointing left). As a result, the set of transferred points (blue circles) and the points for the first pulse (red triangles) perfectly reproduce the original shape of the XUV pulse envelope. Note that the accuracy of this retrieval method decreases as the XUV pulse duration approaches the difference between recombination times of short and long trajectories (which increases with in- creasing wavelength of IR pulse); it also has a lower limit $_{282}$ time, δt [cf., Eq. [\(14a\)](#page-3-6)].

239 with XUV pulse durations (full-width at half maximum 295 for a single-color IR pulse single-trajectory *Procedure (ii)* 283 In Figs. $2(b)$ $2(b)$ and $2(c)$ we present the dependence of ²⁸⁴ the harmonic yield on the time delay $\tau - \tau_0$ for the har-²⁸⁵ monic $\Omega_h = 153$ eV and XUV pulses [\(17\)](#page-4-0) and [\(18\)](#page-4-2) re-286 spectively, with $T_{\text{XUV}} = 303$ as. For XUV pulses with $_{287}$ T_{XUV} = 303 as, the harmonic yield as a function of time ²⁸⁸ delay accurately reproduces the square of the XUV pulse ²⁸⁹ envelope, $f_{\text{XUV}}^2(t)$, for both symmetric and asymmetric 290 XUV IAPs. For shorter IAPs (e.g., $T_{\text{XUV}} = 202$ as), how-²⁹¹ ever, the retrieved envelope is much broader than that ²⁹² of the XUV pulse owing to the comparable magnitudes ²⁹³ of the XUV pulse duration and the "resolution" time, ²⁹⁴ $\delta t \approx 246$ as, for the cutoff harmonic [cf., Eq. [\(14b\)](#page-3-6)]. Thus

²⁹⁸ B. Two-color IR field with orthogonal polarizations

 Procedure (ii) can work, however, by using an alter- native IR field waveform that supports only a single- trajectory contribution to the HHG spectrum. Such a waveform is realized for a two-color field with linearly polarized, mutually perpendicular components [\[39,](#page-8-23) [40\]](#page-8-24),

$$
\boldsymbol{F}_{\text{IR}}(t) = F_{\text{IR}} f_{\text{IR}}(t) [\hat{\mathbf{z}} \cos \omega t - \beta \hat{\mathbf{x}} \sin 2\omega t], \qquad (19)
$$

FIG. 2. An illustration of retrieval Procedure (i) (a) and Procedure (ii) (b,c). Red lines with triangles: TDSE results for dependence of HHG yield for harmonic energy $\Omega_h = 130$ eV (a) and $\Omega_h = 153$ eV (b,c) on the time delay $\tau - \tau_0$ (where $\tau_0 = 11.15$ as) between the single-color IR pulse [\(16\)](#page-3-5) and Gaussian XUV pulse [\(17\)](#page-4-0) with $T_{\text{XUV}} = 202$ as (a) and 303 as (b) and XUV pulse [\(18\)](#page-4-2) with $T_{\text{XUV}} = 303$ as (c). Blue solid curves show original XUV pulse envelopes. Dashed grey curve with circles in (a): scaled dependence of HHG yield on the time delay; *blue solid circles*: shifted data points (see text) for details). Carrier frequencies and intensities of the IR and XUV pulses are the same as in Fig. [1.](#page-4-1)

 $\delta t \approx \sqrt{4\omega/F_{\text{IR}}^2}$. Since the frequency of the IR field is small, the resolution of the retrieval Procedure (ii) for the two-color IR field [\(19\)](#page-4-3) increases in comparison with $_{313}$ that for the single-color case (16) .

 314 To demonstrate the *Procedure (ii)* retrieval accuracy ³¹⁵ for the two-color IR pulse [\(19\)](#page-4-3), we calculate the XUV-316 assisted HHG spectrum for a carrier frequency $\omega = 1$ eV ³¹⁷ and peak intensity $I_{IR} = 2 \times 10^{14} \text{ W/cm}^2$. Unlike the ³¹⁸ case of a single-color linearly polarized IR pulse, we solve ³¹⁹ the 3D TDSE in Cartesian coordinates by a split-step ³²⁰ method with a fast Fourier transform [\[40,](#page-8-24) [41\]](#page-8-25). To speed ³²¹ up the computations, rather large spatial steps were used ³²² (0.325 a.u.). Therefore, in order to obtain the correct H 323 atom binding energy, $I_p = 13.65$ eV, we employed a soft-324 Coulomb potential, $U(r) = -\alpha \text{sech}^2(r/a) - \tanh(r/a)/r$ 325 with $\alpha = 0.3$ and $a = 2.17$ [\[40,](#page-8-24) [41\]](#page-8-25). The characteris-³²⁶ tic resolution time interval [\(14a\)](#page-3-6) for the above IR pulse 327 parameters is $\delta t \approx 123$ as. The HHG spectrum for the 328 above-specified IR pulse and a two-cycle Gaussian XUV above-specified IR pulse and a two-cycle Gaussian XUV 329 pulse [\(17\)](#page-4-0) with time delay $\tau_0 = 10.73$ fs (correspond-³³⁰ ing to the recombination time for the harmonic with 331 energy 130 eV) is shown in Fig. [3\(](#page-5-1)a). The harmonics ³³² involving the absorption of the XUV photon lie in the 333 energy range 120 eV Ω_h <150 eV [see Fig. [3\(](#page-5-1)b)]. We ³³⁴ choose two harmonics from the middle of this interval 335 (see Fig. [3\)](#page-5-1) to retrieve the XUV pulse envelope.

338 In Fig. [4](#page-5-2) we present the dependence of the harmonic $\frac{1}{355}$ ferent harmonics similarly to the *Procedure* (i) of over-339 yield on the time delay $\tau - \tau_0$ for two harmonics from 356 lapping different trajectory bursts for the same harmonic 340 the plateau region in Fig. [3\(](#page-5-1)a), $\Omega_h = 130 \text{ eV}$ and $\Omega_h = 357 \text{ [as shown in Fig. 2(a)].}$ $\Omega_h = 357 \text{ [as shown in Fig. 2(a)].}$ $\Omega_h = 357 \text{ [as shown in Fig. 2(a)].}$

FIG. 3. (a) HHG spectrum for a two-color IR field [\(19\)](#page-4-3) with $\beta = 0.8$ and 2-cycle XUV pulse [\(17\)](#page-4-0) ($T_{\text{XUV}} = 202$ as). Carrier frequencies and intensities are the same as in Fig. [1.](#page-4-1) Vertical dashed lines indicate the energy positions $\Omega_h = 130$ eV and $\Omega_h = 134$ eV. (b) Color-coded time-frequency distribution of the HHG yield for the same parameters as in (a).

FIG. 4. Dependence of HHG yields on time delay $\tau - \tau_0$ (where $\tau_0 = 10.73$ fs) for harmonic energies (a) $\Omega_h = 130$ eV and (b) $\Omega_h = 134$ eV in the XUV-assisted HHG spectrum in Fig. [3.](#page-5-1) Intensities and carrier frequencies are the same as in Fig. [1.](#page-4-1) The XUV pulse duration is $T_{\text{XUV}} = 202$ as. Red lines with triangles: retrieved square of the XUV pulse envelope; solid blue lines: square of the original XUV pulse envelope.

341 134 eV; $\tau_0 = 10.73$ fs is the return time for the shortest 342 electron trajectory for the harmonic with $\Omega_h = 130$ eV. One observes good agreement between the retrieved and original XUV pulse envelopes. Note that the position of 345 the maximum for the retrieved pulse for $\Omega_h = 134$ eV in Fig. [4\(](#page-5-2)b) is shifted by 50 as with respect to that for $\Omega_h = 130$ eV in Fig. [4\(](#page-5-2)a). This shift stems from the difference in recombination times for these two harmon- ics. Thus, the retrieval *Procedure (ii)* using a two-color IR pulse [\(19\)](#page-4-3) allows one to measure the difference in re- combination times for the harmonics on an attosecond timescale, thereby providing an alternative procedure for recollision time measurements (cf. Ref. [\[42](#page-8-26)]). Note also that one can overlap the scaled harmonic bursts for dif-

³⁵⁸ IV. CONCLUSION

 To conclude, we have proposed an all-optical method for reconstruction of an XUV IAP envelope from analysis of XUV-assisted harmonic yields beyond the IR-induced HHG plateau as a function of time delay between IR and XUV pulses. The resolution of the method depends on the position of harmonic in HHG spectrum: for harmon- ics on the slope of an XUV-induced plateau, the resolu- tion is determined only by the intensity of the IR field, while for harmonics in the middle part of the plateau, the resolution increases with decrease of the IR pulse carrier frequency. In addition, the proposed method makes pos- sible a direct mapping of electron recombination time difference and relative contribution of closed classical trajectories to the HHG yield as functions of the har- monic energy. Finally, we notice that experimental real- ization of proposed retrieval schemes requires accounting of medium effects [\[43](#page-9-0)[–45\]](#page-9-1), which can be minimized, so that the HHG yield can be reduced to a single atom re- sponse [\[46](#page-9-2), [47\]](#page-9-3). This makes possible realization of in situ $\frac{1}{378}$ methods [\[25](#page-8-11), [26](#page-8-12)], measurement of ionization and recom-
 $\frac{412}{12}$ where the propagation factor, $a_j^{(\text{prop})}$ bination times [\[42\]](#page-8-26), and realization of proposed retrieval procedures due to uniformity of nonlinear dynamics and 381 propagation effects for harmonic with frequency $\Omega_{h}-\Omega$ in 382 IR-plateau region and XUV-induced harmonic Ω_h , which ³⁸³ is given by the same factors $a_0^{(j)}$ [see Eqs. [\(5\)](#page-2-6) and [\(13\)](#page-3-3)].

³⁸⁴ ACKNOWLEDGMENTS

 This work was supported in part by the Ministry of Ed- ucation and Science of the Russian Federation through Grant No. 3.1659.2017/4.6, the Russian Science Foun- dation through Grant No. 18-12-00476 (numerical cal- culations), and by the U.S. National Science Foundation through Grant No. PHY-1505492 (A. F. S.). T. S. S. ac- knowledges support of the Foundation for the Advance-ment of Theoretical Physics and Mathematics "Basis".

³⁹³ Appendix A: Explicit Expressions for the Adiabatic ³⁹⁴ Approximation Result for the Laser-Induced Factor

 $\frac{395}{2}$ The integrals in Eqs. [\(2\)](#page-2-5) or [\(12\)](#page-3-2) can be evaluated us-³⁹⁶ ing the adiabatic (or low-frequency) approximation of ³⁹⁷ Ref. [\[36](#page-8-19)]. In this approximation, the analytical result 398 for the factors $a_0(\Omega_h)$ and $a_1(\Omega_h)$ can be presented in ³⁹⁹ terms of real classical trajectories, Eqs. [\(5\)](#page-2-6) and [\(13\)](#page-3-3), defined by the corresponding real initial (ionization), $t_i^{(j)}$ ⁴⁰⁰ fined by the corresponding real initial (ionization), $t_i^{(j)}$, ⁴⁰¹ and return (recombination), $t_r^{(j)}$, times [\[36](#page-8-19)]. These times ⁴⁰² are solutions of a system of transcendental equations,

$$
\mathbf{K}'_j \cdot \dot{\mathbf{K}}'_j = 0,\tag{A1a}
$$

$$
\frac{\mathbf{K}_j^2}{2} = E_1 - \Delta \mathcal{E}_j,\tag{A1b}
$$

⁴⁰³ where

$$
\Delta \mathcal{E}_j = -\frac{{\bm{K}'}_j^2 + \kappa^2}{2\Delta t_j} \left[\frac{2\frac{{\bm{K}_j} \cdot {\bm{K}_j'}}{\Delta t_j} - {\bm{F}_j'} \cdot ({\bm{K}_j} - {\bm{K}_j'})}{ {\bm{F}_j'}^2 - {\bm{K}_j'} \cdot \dot{\bm{F}_j'} } \right], \text{(A2)}
$$

404 and E_1 is returning electron energy $[E_1 = \Omega_h - I_p]$ for 405 $a_0(\Omega_h)$ and $E_1 = \Omega_h - I_p - \Omega$ for $a_1(\Omega_h)$, $\Delta t_j =$ 406 $t_r^{(j)} - t_i^{(j)}, \; \kappa \; = \; \sqrt{2 I_p}, \; \bm{K}_j' \; \equiv \; \bm{P}(t_i^{(j)}; t_r^{(j)}, t_i^{(j)}), \; \bm{K}_j' \; \equiv \;$ $\partial\bm{P}(t_{i}^{(j)};t_{r}^{(j)},t_{i}^{(j)})/\partial t_{i}^{(j)},\;\;\bm{K}_{j}\;\equiv\;\bm{P}(t_{r}^{(j)};t_{r}^{(j)},t_{i}^{(j)}),\;\;\bm{F}_{j}^{\prime}\;\equiv\;$ 408 $\bm{F}_{\rm IR}(t_i^{(j)}),\ \dot{\bm{F}}_j'\,\equiv\,\dot{\bm{F}}_{\rm IR}(t_i^{(j)}),\ \bm{F}_{\rm IR}(t)\,=\,-\partial \bm{A}_{\rm IR}(t)/\partial (ct).$ As ⁴⁰⁹ shown in [\[36](#page-8-19)], $a_0^{(j)}(\Omega_h)$ [and corresponding $a_1^{(j)}(\Omega_h)$ = ⁴¹⁰ $a_0^{(j)}(\Omega_{\rm h}-\Omega)$ has an explicit form in terms of real classi-⁴¹¹ cal times $t_r^{(j)}$ and $t_i^{(j)}$,

$$
a_0^{(j)}(\Omega_h) = a_j^{(\text{tun})} a_j^{(\text{prop})}(\Omega_h), \tag{A3}
$$

⁴¹² where the propagation factor, $a_j^{(prop)}$, is given by,

$$
a_j^{\text{(prop)}}(\Omega_h) = i \frac{e^{-iS(t_r^{(j)}, t_i^{(j)}) + i\Omega_h t_r^{(j)}}}{\Delta t_j^{3/2} \sqrt{\mathbf{K}_j \cdot \mathbf{K}_j}}, \tag{A4}
$$

⁴¹³ where $\dot{K}_j \equiv \partial P(t_r^{(j)}; t_r^{(j)}, t_i^{(j)})/\partial t_r^{(j)}$; and where the tunneling factor, $a_i^{\text{(tun)}}$ ⁴¹⁴ neling factor, $a_j^{(tun)}$, is given by,

$$
a_j^{(\text{tun})} = \frac{\mathcal{C}_0}{\pi} \sqrt{\frac{\kappa}{2}} \frac{e^{-\frac{\kappa_j^3}{3\mathcal{F}_j}}}{\sqrt{\varkappa_j \mathcal{F}_j}},
$$
(A5)

⁴¹⁵ where

$$
\mathcal{F}_j = \sqrt{\boldsymbol{F'}_j^2 - \boldsymbol{K}'_j \cdot \dot{\boldsymbol{F}}'_j}, \quad \varkappa_j = \sqrt{2I_p + {\boldsymbol{K}'_j}^2}.
$$

416 The Coulomb factor, Q_j , in Eqs. [\(5\)](#page-2-6) and [\(13\)](#page-3-3) consists ⁴¹⁷ of two factors [\[37\]](#page-8-20),

$$
Q_{j} = Q_{\text{stat}}^{(j)} R^{(j)},
$$
\n
$$
Q_{\text{stat}}^{(j)} = \left(\frac{2\kappa^{3}}{F_{j}'}\right)^{Z/\kappa}, \quad F_{j}' = \sqrt{F_{j}'}^{2},
$$
\n
$$
R_{j} = \left[\frac{2F_{j}'}{\mathcal{F}_{j}\left(\sqrt{1 + \frac{K_{j}^{'2}}{\kappa^{2}} + \frac{2}{\sqrt{3}}\sqrt{1 - \frac{F_{j}^{'2}}{4F_{j}^{2}}}}\right)}\right]^{Z/\kappa},
$$
\n(A6)

 (a) ₄₁₈ where Z is the charge of the residual atomic core.

⁴¹⁹ Appendix B: Derivation of quantum uncertainties $_{420}$ [Eqs. [\(14a\)](#page-3-6) and [\(14b\)](#page-3-6)]

 The adiabatic approach is justified by the smoothness of the pre-exponential factors compared to the rapidly oscillating exponential function in Eq. [\(12\)](#page-3-2). In particu-⁴⁴⁰ the action tends to zero, so that the integration in [\(12\)](#page-3-2) lar, the characteristic time scale of the XUV envelope, ⁴⁴¹ must be treated in an alternate way [\[35\]](#page-8-21). In this case, $_{425}$ $|f_{\text{XUV}}/(df_{\text{XUV}}/dt)|$, at the time $t_r^{(j)} - \tau$ should exceed the $_{442}$ the vicinity of the extreme recombination time is given ⁴²⁶ vicinity of the recombination time $t_r^{(j)}$, which gives the main contribution to the integral in Eq. (12) . This vicin- ity, δt , is determined by the second derivative of the ac-⁴²⁹ tion $S(t, t')$ at the recombination time $t_r^{(j)}$,

$$
\delta t = \left[\frac{1}{2} \frac{\partial^2 S(t_r^{(j)}, t_i^{(j)})}{\left(\partial t_r^{(j)}\right)^2} \right]^{-1/2}, \quad \text{(B1) \text{444 W}}
$$

⁴³⁰ where

$$
\frac{\partial^2 S(t_r^{(j)}, t_i^{(j)})}{\left(\partial t_r^{(j)}\right)^2} = \mathbf{K}_j \cdot \dot{\mathbf{K}}_j = \alpha_j F_{\text{IR}}^2/\omega. \tag{B2}
$$

431 The parameter α_j differs only slightly from one trajec- α_j larized IR pulse and a two-color IR pulse with linearly ⁴³² tory to another; its value lies in the interval 0.45 - 0.55 ⁴⁴⁸ polarized, mutually perpendicular components. Setting 433 for both a linearly polarized IR pulse and a two-color ϵ_{49} $\delta_j \approx 1$, Eqs. [\(B3\)](#page-7-11) and [\(B4\)](#page-7-10) give Eq. [\(14b\)](#page-3-6) of the main ⁴³⁴ IR pulse with linearly polarized, mutually perpendicular ⁴⁵⁰ text.

435 components. Setting $\alpha_j \approx 0.5$, Eqs. [\(B1\)](#page-7-8) and [\(B2\)](#page-7-9) give 436 Eq. [\(14a\)](#page-3-6) of the main text for δt , which may be inter-⁴³⁷ preted as a quantum uncertainty in the recombination ⁴³⁸ time.

Near the high-energy cutoff, the second derivative of ⁴⁴³ by the third derivative of the action,

$$
\delta t = \left[\frac{1}{6} \frac{\partial^3 S(t_r^{(j)}, t_i^{(j)})}{\left(\partial t_r^{(j)}\right)^3} \right]^{-1/3},
$$
\n(B3)

here

$$
\frac{\partial^3 S(t_r^{(j)}, t_i^{(j)})}{\left(\partial t_r^{(j)}\right)^3} = \boldsymbol{K}_j \cdot \ddot{\boldsymbol{K}}_j + \dot{\boldsymbol{K}}_j^2 = \delta_j F_{\text{IR}}^2,\tag{B4}
$$

⁴⁴⁵ where $\ddot{K_j} \equiv \partial^2 P(t_r^{(j)}; t_r^{(j)}, t_i^{(j)}) / (\partial t_r^{(j)})^2$. In Eq. [\(B4\)](#page-7-10), 446 the spreading factor, δ_i , is ≈ 1 for both a linearly po-

- ⁴⁵¹ [1] M. Hentschel, R. Kienberger, Ch. Spielmann, G. A. Rei-⁴⁵² der, N. Milosevic, T. Brabec, P. Corkum, U. Heinz-⁴⁵³ mann, M. Drescher, and F. Krausz, Attosecond metrol-⁴⁵⁴ ogy, [Nature \(London\)](https://doi.org/10.1038/35107000) 414, 509 (2001).
- 455 [2] A. L. Cavalieri, N. Müller, Th. Uphues, V. S. Yakovlev, 484 456 A. Baltuška, B. Horvath, B. Schmidt, L. Blümel, 485 ⁴⁵⁷ R. Holzwarth, S. Hendel, M. Drescher, U. Kleineberg, ⁴⁵⁸ P. M. Echenique, R. Kienberger, F. Krausz, and ⁴⁵⁹ U. Heinzmann, Attosecond spectroscopy in condensed ⁴⁶⁰ matter, [Nature \(London\)](https://doi.org/doi:10.1038/nature06229) 449, 1029 (2007).
- 461 [3] G. Sansone, F. Kelkensberg, J. F. Pérez-Torres, 490 ⁴⁶² F. Morales, M. F. Kling, W. Siu, O. Ghafur, ⁴⁶³ P. Johnsson, M. Swoboda, E. Benedetti, F. Fer-⁴⁶⁴ rari, F. L´epine, J. L. Sanz-Vicario, S. Zherebtsov, ⁴⁶⁵ I. Znakovskaya, A. L'Huillier, M. Y. Ivanov, M. Nisoli, 466 F. Martín, and M. J. J. Vrakking, Electron local- 495 ⁴⁶⁷ ization following attosecond molecular photoionization, ⁴⁶⁸ [Nature \(London\)](https://doi.org/10.1038/nature09084) 465, 763 (2010).
- ⁴⁶⁹ [4] M. Schultze, M. Fieß, N. Karpowicz, J. Gagnon, ⁴⁷⁰ M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, ⁴⁷¹ Y. Komninos, T. Mercouris, C. A. Nicolaides, R. Pa-472 zourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, 501 ⁴⁷³ R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Gouliel-⁴⁷⁴ makis, F. Krausz, and V. S. Yakovlev, Delay in Photoe-475 mission, Science **328**[, 1658 \(2010\).](https://doi.org/10.1126/science.1189401)
- ⁴⁷⁶ [5] E. Goulielmakis, Z.-H. Loh, A. Wirth, R. Santra, ⁴⁷⁷ N. Rohringer, V. S. Yakovlev, S. Zherebtsov, T. Pfeifer, ⁴⁷⁸ A. M. Azzeer, M. F. Kling, S. R. Leone, and
- ⁴⁷⁹ F. Krausz, Real-time observation of valence electron mo-

tion, [Nature \(London\)](https://doi.org/10.1038/nature09212) $466, 739$ (2010).

- ⁴⁸¹ [6] F. Calegari, D. Ayuso, A. Trabattoni, L. Belshaw, ⁴⁸² S. De Camillis, S. Anumula, F. Frassetto, L. Poletto, 483 A. Palacios, P. Decleva, J. B. Greenwood, F. Martín, and M. Nisoli, Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses, Science 346 , 336 (2014) .
- ⁴⁸⁶ [7] J. Li, X. Ren, Y. Yin, K. Zhao, A. Chew, Y. Cheng, E. Cunningham, Y. Wang, S. Hu, Y. Wu, M. Chini, and Z. Chang, 53-attosecond X-ray pulses reach the carbon ⁴⁸⁹ K-edge, [Nat. Commun.](https://doi.org/10.1038/s41467-017-00321-0) 8, 186 (2017).
	- [8] T. Gaumnitz, A. Jain, Y. Pertot, M. Huppert, I. Jordan, F. Ardana-Lamas, and H. J. Wörner, Streaking of 43-attosecond soft-X-ray pulses generated by a passively CEP-stable mid-infrared driver, Opt. Express 25[, 27506 \(2017\).](https://doi.org/10.1364/OE.25.027506)
- [9] Z. Tibai, Gy. Tóth, M. I. Mechler, J. A. Fülöp, G. Almási, and J. Hebling, Proposal for carrier-⁴⁹⁷ envelope-phase stable single-cycle attosecond ⁴⁹⁸ pulse generation in the extreme-ultraviolet range, [Phys. Rev. Lett.](https://doi.org/10.1103/PhysRevLett.113.104801) **113**, 104801 (2014).
- ⁵⁰⁰ [10] A. Mak, G. Shamuilov, P. Sal´en, D. Dunning, J. Hebling, ⁵⁰¹ Yu. Kida, R. Kinjo, B. W. J. McNeil, T. Tanaka, ⁵⁰² N. Thompson, Z. Tibai, G. T´oth, and V. Goryashko, ⁵⁰³ Attosecond single-cycle undulator light: a review, ⁵⁰⁴ [Rep. Prog. Phys.](https://iopscience.iop.org/article/10.1088/1361-6633/aafa35) 82, 025901 (2019).
- [11] P. Tzallas, E. Skantzakis, L. A. A. Nikolopoulos, G. D. ⁵⁰⁶ Tsakiris, and D. Charalambidis, Extreme-ultraviolet pumpe-probe studies of one-femtosecond-scale electron dynamics, Nat. Phys. **7**[, 781 \(2011\).](https://doi.org/10.1038/nphys2033)
- 509 [12] E. J. Takahashi, P. Lan, O. D. Mücke, Y. Nabekawa, 573 and K. Midorikawa, Attosecond nonlinear optics using gigawatt-scale isolated attosecond pulses, [Nat. Commun.](https://doi.org/10.1038/ncomms3691) 4, 2691 (2013).
- [13] P. A. Carpeggiani, P. Tzallas, A. Palacios, D. Gray, F. Mart´ın, and D. Charalambidis, Disclosing intrin- sic molecular dynamics on the 1-fs scale through extreme-ultraviolet pump-probe measurements, 517 Phys. Rev. A **89**[, 023420 \(2014\).](https://doi.org/10.1103/PhysRevA.89.023420)
- [14] B. Senfftleben, M. Kretschmar, A. Hoffmann, M. Sauppe,
- J. T¨ummler, I. Will, T. Nagy, M. J. J. Vrakking, 520 D. Rupp, and B. Schütte, Highly nonlinear ioniza- tion of atoms induced by intense high-harmonic pulses, [arXive:1911.01375 \(2019\).](https://arxiv.org/abs/1911.01375)
- 523 [15] J. Itatani, F. Quéré, G. L. Yudin, M. Yu. Ivanov, F. Krausz, and P. B. Corkum, Attosecond Streak Cam-era, [Phys. Rev. Lett.](https://doi.org/10.1103/PhysRevLett.88.173903) 88, 173903 (2002).
- [16] M. Kitzler, N. Milosevic, A. Scrinzi, F. Krausz, and T. Brabec, Quantum Theory of Attosecond XUV Pulse Measurement by Laser Dressed Photoionization, [Phys. Rev. Lett.](https://doi.org/10.1103/PhysRevLett.88.173904) 88, 173904 (2002).
- 530 [17] Y. Mairesse and F. Quéré, Frequency-resolved optical gating for complete reconstruction of attosecond bursts, $_{532}$ Phys. Rev. A 71[, 011401\(R\) \(2005\).](https://doi.org/10.1103/PhysRevA.71.011401)
- [18] M. Chini, S. Gilbertson, S. D. Khan, and Z. Chang, Characterizing ultrabroadband attosecond lasers, Opt. Express 18[, 13006 \(2010\).](https://doi.org/10.1364/OE.18.013006)
- [19] G. Laurent, W. Cao, I. Ben-Itzhak, and C. L. Cocke, Attosecond pulse characterization, Opt. Express 21[, 16914 \(2013\).](https://doi.org/10.1364/OE.21.016914)
- [20] P. D. Keathley, S. Bhardwaj, J. Moses, G. Laurent, 540 and F. X. Kärtner, Volkov transform generalized pro- 604 jection algorithm for attosecond pulse characterization, New J. Phys. 18[, 073009 \(2016\).](https://doi.org/10.1088/1367-2630/18/7/073009)
- [21] X. Zhao, H. Wei, Y. Wu, and C. D. Lin, Phase-retrieval algorithm for the characterization of broadband single attosecond pulses, Phys. Rev. A 95[, 043407 \(2017\).](https://doi.org/10.1103/PhysRevA.95.043407)
- [22] W.-W. Yu, X. Zhao, H. Wei, S.-J. Wang, and C. D. Lin, Method for spectral phase retrieval of single attosec-548 ond pulses utilizing the autocorrelation of photoelectron streaking spectra, Phys. Rev. A 99[, 033403 \(2019\).](https://doi.org/10.1103/PhysRevA.99.033403)
- [23] C. Liu, M. Reduzzi, A. Trabattoni, A. Sunilku- mar, A. Dubrouil, F. Calegari, M. Nisoli, and G. Sansone, Carrier-Envelope Phase Effects of a Sin- gle Attosecond Pulse in Two-Color Photoionization, [Phys. Rev. Lett.](https://doi.org/10.1103/PhysRevLett.111.123901) 111, 123901 (2013).
- [24] E. Cormier, I. A. Walmsley, E. M. Kosik, A. S. Wyatt, L. Corner, and L. F. DiMauro, Self-Referencing, Spec- trally, or Spatially Encoded Spectral Interferometry for the Complete Characterization of Attosecond Electro-559 magnetic Pulses, [Phys. Rev. Lett.](https://doi.org/10.1103/PhysRevLett.94.033905) **94**, 033905 (2005).
- [25] N. Dudovich, O. Smirnova, J. Levesque, Y. Mairesse, M. Yu. Ivanov, D. M. Villeneuve, and P. B. Corkum, Measuring and controlling the birth of attosecond XUV pulses, Nat. Phys. 2[, 781 \(2006\).](https://doi.org/10.1038/nphys434)
- [26] K. T. Kim, C. Zhang, A. D. Shiner, S. E. Kirk- wood, E. Frumker, G. Gariepy, A. Naumov, D. M. Villeneuve, and P. B. Corkum, Manipulation of quan- tum paths for space-time characterization of attosecond pulses, Nat. Phys. 9[, 159 \(2013\).](https://doi.org/10.1038/nphys2525)
- [27] O. Pedatzur, A. Trabattoni, B. Leshem, H. Shal- moni, M. C. Castrovilli, M. Galli, M. Lucchini, E. M˚ansson, F. Frassetto, L. Poletto, B. Nadler,
-

dovich, Double-blind holography of attosecond pulses, [Nat. Photon.](https://doi.org/10.1038/s41566-018-0308-z) **13**, 91 (2019).

- [28] P. B. Corkum, Plasma Perspective on Strong-Field Mul-tiphoton Ionization, [Phys. Rev. Lett.](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.71.1994) 71, 1994 (1993).
- [29] K. J. Schafer, M. B. Gaarde, A. Heinrich, J. Biegert, and U. Keller, Strong field quan- tum path control using attosecond pulse trains, [Phys. Rev. Lett.](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.92.023003) 92, 023003 (2004).
- [30] J. Biegert, A. Heinrich, C. P. Hauri, W. Kor- nelis, P. Schlup, M. P. Anscombe, M. B. Gaarde, K. J. Schafer, and U. Keller, Control of high- order harmonic emission using attosecond pulse trains, [J. Mod. Opt.](https://doi.org/10.1080/09500340500167669) 53, 87 (2006).
- [31] G. Gademann, F. Kelkensberg, W. K. Siu, P. Johnsson, M. B. Gaarde, K J Schafer, and M. J. J. Vrakking, At- tosecond control of electron–ion recollision in high har-monic generation, New J. Phys. 13[, 033002 \(2011\).](https://iopscience.iop.org/article/10.1088/1367-2630/13/3/033002)
- 590 [32] D. Azoury, M. Krüger, G. Orenstein, H. R. Lars- son, S. Bauch, B. D. Bruner, and N. Dudovich, Self- probing spectroscopy of xuv photo-ionization dynam- ics in atoms subjected to a strong-field environment, [Nat. Commun.](https://doi.org/10.1038/s41467-017-01723-w) 8, 1453 (2017).
- [33] T. S. Sarantseva, M. V. Frolov, N. L. Manakov, A. A. Silaev, N. V. Vvedenskii, and A. F. Starace, XUV- assisted high-order-harmonic-generation spectroscopy, Phys. Rev. A 98[, 063433 \(2018\).](https://doi.org/10.1103/PhysRevA.98.063433)
- [34] M. V. Frolov, N. L. Manakov, T. S. Sarantseva, and A. F. Starace, Analytic formulae for high harmonic generation, J. Phys. B 42[, 035601 \(2009\).](http://iopscience.iop.org/article/10.1088/0953-4075/42/3/035601/meta)
- [35] M. V. Frolov, N. L. Manakov, A. M. Popov, O. V. Tikhonova, E. A. Volkova, A. A. Silaev, N. V. Vvedenskii, and A. F. Starace, Analytic theory of high-orderharmonic generation by an intense few-cycle laser pulse, Phys. Rev. A 85[, 033416 \(2012\).](https://journals.aps.org/pra/abstract/10.1103/PhysRevA.85.033416)
- M. V. Frolov, N. L. Manakov, A. A. Minina, A. A. Silaev, N. V. Vvedenskii, M. Yu. Ivanov, and A. F. Starace, Analytic description of high-order harmonic generation in the adiabatic limit with application to an initial s state in an intense bicircular laser pulse, Phys. Rev. A **99**[, 053403 \(2019\).](https://doi.org/10.1103/PhysRevA.99.053403)
- [37] M. V. Frolov, N. L. Manakov, A. A. Minina, S. V. Popruzhenko, and A. F. Starace, Adiabatic-limit Coulomb factors for photoelectron and high-orderharmonic spectra, Phys. Rev. A **96**[, 023406 \(2017\).](https://journals.aps.org/pra/abstract/10.1103/PhysRevA.96.023406)
- [38] A. A. Silaev, A. A. Romanov, and N. V. Vvedenskii, Multi-hump potentials for efficient wave absorption in the numerical solution of the time-dependent Schrödinger equation, J. Phys. B 51[, 065005 \(2018\).](http://stacks.iop.org/0953-4075/51/i=6/a=065005)
- [39] L. Brugnera, D. J. Hoffmann, T. Siegel, F. Frank, A. Zaïr, J. W. G. Tisch, and J. P. Marangos, Trajec- tory Selection in High Harmonic Generation by Controlling the Phase between Orthogonal Two-Color Fields, [Phys. Rev. Lett.](https://doi.org/10.1103/PhysRevLett.107.153902) **107**, 153902 (2011).
- [40] M. V. Frolov, N. L. Manakov, T. S. Sarantseva, A. A. Silaev, N. V. Vvedenskii, and A. F. Starace, Control of threshold enhancements in harmonic generation by atoms in a two-color laser field with orthogonal polarizations, Phys. Rev. A **93**[, 023430 \(2016\).](https://doi.org/10.1103/PhysRevA.93.023430)
- [41] M. V. Frolov, N. L. Manakov, A. A. Minina, N. V. Vve- denskii, A. A. Silaev, M. Yu. Ivanov, and A. F. Starace, Control of Harmonic Generation by the Time Delay Between Two-Color, Bicircular Few-Cycle Mid-IR Laser Pulses, [Phys. Rev. Lett.](https://doi.org/10.1103/PhysRevLett.120.263203) **120**, 263203 (2018).
- O. Raz, M. Nisoli, F. Calegari, D. Oron, and N. Du-⁶³⁶ [42] D. Shafir, H. Soifer, B. D. Bruner, M. Dagan,
- ⁶³⁷ Y. Mairesse, S. Patchkovskii, M. Yu. Ivanov,
- ⁶³⁸ O. Smirnova, and N. Dudovich, Resolving the
- ⁶³⁹ time when an electron exits a tunnelling barrier, ⁶⁵¹ [46] A. D. Shiner, C. Trallero-Herrero, N. Kajumba, H.-C. ⁶⁴⁰ [Nature \(London\)](https://doi.org/10.1038/nature11025) 485, 343 (2012).
- 641 [43] P. Salières, A. L'Huillier, and M. Lewenstein, 653 ⁶⁴² Coherence Control of High-Order Harmonics, ⁶⁴³ [Phys. Rev. Lett.](https://doi.org/ 10.1103/PhysRevLett.74.3776) 74, 3776 (1995).
- 644 [44] Ph. Balcou, P. Salières, A. L'Huillier, ⁶⁴⁵ Lewenstein, Generalized phase-matching conditions for ⁶⁴⁶ high harmonics: The role of field-gradient forces, ⁶⁴⁷ [Phys. Rev. A](https://doi.org/10.1103/PhysRevA.55.3204) 55, 3204 (1997).
- ⁶⁴⁸ [45] M. B. Gaarde, J. L. Tate, and K. J. Schafer,

Macroscopic aspects of attosecond pulse generation, J. Phys. B 41[, 132001 \(2008\).](https://iopscience.iop.org/article/10.1088/0953-4075/41/13/132001?pageTitle=IOPscience)

- 652 Bandulet, D. Comtois, F. Légaré, M. Giguère, J.-C. Kieffer, P. B. Corkum, and D. M. Villeneuve, Wavelength Scaling of High Harmonic Generation Efficiency, ⁶⁵⁵ [Phys. Rev. Lett.](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.103.073902) 103, 073902 (2009).
- and M. 656 [47] B. E. Schmidt, A. D. Shiner, M. Giguère, Ph. Lassonde, ⁶⁵⁷ C. A. Trallero-Herrero, J.-C. Kieffer, P. B. Corkum, D. M. Villeneuve, and F. Légaré, High harmonic ⁶⁵⁹ generation with long-wavelength few-cycle laser pulses, J. Phys. B 45[, 074008 \(2012\).](https://iopscience.iop.org/article/10.1088/0953-4075/45/7/074008?pageTitle=IOPscience)