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We report a precise determination of the lifetime of the (4p)2P3/2 state of 40Ca+, τP3/2
=

6.639(42) ns, using a combination of measurements of the induced light shift and scattering rate on
a single trapped ion. Good agreement with the result of a recent high-level theoretical calculation,
6.69(6) ns [Safronova et al., PRA 83, 012503 (2011)], but a 6-σ discrepancy with the most precise
previous experimental value, 6.924(19) ns [Jin et al., PRL 70, 3213 (1993)] is found. To corroborate
the consistency and accuracy of the new measurements, relativistically corrected ratios of reduced-
dipole-matrix elements are used to directly compare our result with a recent result for the P1/2

state, yielding a good agreement. The application of the present method to precise determinations
of radiative quantities of molecular systems is discussed.

A. Introduction

The knowledge of radiative lifetimes, transition rates,
dipole-matrix elements and branching ratios in atoms
and molecules is of great importance for, e.g., experi-
ments probing the electroweak force[1–3] in the search
of physics beyond the standard model, for testing and
improving atomic and molecular-structure theories[3, 4],
for the development of atomic clocks[3, 5, 6] and for the
interpretation of astronomical data[7].

Traditionally, measurements of such quantities relied
on atomic beams and short-pulse laser excitations. For
instance, the last experimental evaluation of the radia-
tive lifetime of the (4p)2P3/2 state of 40Ca+ is dated 20
years back[8] and the most precise value was measured
more than 25 years ago[9] using such methods. Mean-
while, advances in experimental technology have enabled
the control of single trapped atomic ions on the quan-
tum level which led to the development of extremely pre-
cise atomic clocks[10, 11] and to a leading technology for
quantum computers[12, 13].

Here, we exploit the high-fidelity control achiev-
able over a single trapped ion to establish a novel
method to measure the lifetimes, transition rates and
reduced-dipole-matrix elements of atomic transitions us-
ing the complementarity of dispersive and absorptive
light-matter interactions and by combining precise ex-
perimental measurements with high-level theoretical cal-
culations. To illustrate our approach, we determine the
lifetime of the P3/2 state in 40Ca+ with high precision to
τP3/2

= 6.639(42) ns.
While our present value is in excellent agreement with

a recent theoretical prediction using a high-precision rel-
ativistic all-order method[4] (6.69(6) ns), it shows a 6-σ
fold discrepancy with the most precise previous value of
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Ref. [9] (6.924(19) ns). Interestingly, a similar discrep-
ancy with these 25-years old results[9] on the one hand
and an agreement with the theoretical calculations[4] on
the other hand was also established in a recent measure-
ment of the lifetime of the (4p) 2P1/2 state of Ca+ [14].

To corroborate the accuracy of the new measurements,
highly precise theoretical ratios of reduced dipole ma-
trix elements[4] were used to compare our result of the
lifetime of the P3/2 state with the recent results on the
P1/2 state [14] with good agreement. Conversely, pre-
cise values of transition properties for a variety of states
can be determined from their measurement for just a
single state using the theoretical reduced-dipole-matrix
elements. Elaborating on this combination of experi-
ment and theory, previous measurements of the radia-
tive branching ratios of the P3/2 [15] and P1/2 [16] states

in Ca+ were compared with excellent agreement and
improved values of the polarizabilities of the (4s)2S1/2,

(3d)2D3/2 and (3d)2D5/2 states of Ca+ are recommended.
The present approach for establishing values of radiative
quantities can readily be generalized to non-atomic sys-
tems. In particular, it opens up new perspectives for pre-
cision measurements on molecules discussed at the end of
this paper.

The use of a combination of absorptive and disper-
sive ion-light interactions to determine dipole-matrix el-
ements and associated values was first demonstrated by
Hettrich et al. [14]. In this work, a different variant of
that technique which was proposed by Gerritsma et al.
[15] and was recently applied by Arnold et al. [17] to
measure the polarizability of Lu+ was used.

B. Experiment

Our measurement scheme is depicted in Fig. 1. A
probe beam detuned from the P3/2 ←D5/2 transition at
854 nm by ∆ (in rad/sec) induces an ac-Stark shift, ∆E,
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FIG. 1. a) Energy diagram illustrating the present experimen-
tal scheme. b) Typical measurement instance of the scatter-
ing rate from the “dark” state to “bright” states. Data errors
(blue) symbols are binomial projection-noise errors. The red
line is a fit to an exponential function. Dashed lines are guides
indicating the measured value of the scattering rate. c) Typ-
ical measurement instance of the ac-Stark shift. Data errors
(probe-beam on - blue; probe-beam off - red) are binomial pro-
jection noise. Lines are fits to Gaussian functions. The dashed
line indicates the measured ac-Stark shift. d) Typical mea-
surement instance of the P3/2 ←D5/2 resonance wavelength.
The blue and red symbols are scattering rate measurements
for ions prepared in the D5/2(m=-5/2) and D5/2(m=+5/2)
states, respectively. Errors are 1-σ confidence intervals of the
exponential fit to data similar to the ones shown in panel (a).
The solid lines are fits to a parabola. The dotted lines indicate
the resonance wavelength of each Zeeman transition.

(in Joules) of magnitude:

∆E/h =
1

2π

Ω2

4∆
. (1)

Here, h is the Planck constant and Ω is the Rabi fre-
quency (in rad/sec). The probe beam also transfers pop-
ulation from the D5/2 “dark” state to the S1/2 and D3/2

“bright” states by photon scattering via the P3/2 state.
The S1/2 and D3/2 states are considered “bright” since
both participate in the closed cycle fluorescence transi-
tion D3/2 ↔P1/2 ↔S1/2. The rate by which population
is transferred is given by:

Γ =
(
AP3/2→S1/2

+ AP3/2→D3/2

) Ω2

4∆2
. (2)

Here, AP3/2→S1/2
and AP3/2→D3/2

are the transition rates

(in s−1) connecting the excited P3/2 state with the

“bright” states. The scattering rate, Γ (in s−1), also
depends on the Rabi frequency which is difficult to de-
termine with high accuracy in an experiment due to its
dependence on the laser intensity and polarization. How-
ever, the ratio of the scattering rate and the light shift

does not depend on the Rabi frequency which allows for
a direct determination of the transition rates without the
need for precise characterization of the probe beam in-
tensity and polarization:

AP3/2→S1/2
+ AP3/2→D3/2

=
∆

2π

Γ

∆E/h
. (3)

Eqs. 1,2 are approximations for the ac-Stark shift and
scattering rate calculated from a second-order perturba-
tion theory. The first approximation, ∆ � Ω, neglects
the line shape near resonance (e.g, the Lorentzian scat-
tering profile. See Appendix I A for more details). The
second, ∆ � ω0, with ω0 the transition’s angular fre-
quency, neglects co-rotating terms when performing the
rotating-wave approximation (Appendix I B). The third
neglects contributions from transitions other than the
P3/2 ←D5/2 (Appendix I C). The last neglects the fi-
nite lifetime of the D5/2 state (Appendix I D). All above
approximations were treated as systematic shifts which
are listed in Table I and discussed in more details in Ap-
pendix I. For the chosen probe-beam detuning and in-
tensity, these approximations hold to a high degree of
accuracy compared to the measurement uncertainty and
other systematic shifts such that they can be neglected.
Further shifts and errors of the measurement will be dis-
cussed later in the text.

Our experimental apparatus consists of a linear Paul
trap for trapping single Ca+ ions at mK temperatures
using Doppler cooling[18]. A narrow-linewidth laser on
the D5/2 ←S1/2 transition at 729 nm was used to pre-
pare the ion in one of the meta-stable Zeeman states
(m=±5/2,±3/2) of the D5/2 electronic state and to per-
form precision spectroscopy on the D5/2 ←S1/2 transi-
tion (see Fig. 1). A probe beam at 854 nm detuned from
the P3/2 ←D5/2 transition was used to induce scattering
from and light shifts of the D5/2 state. The probe beam
was linearly polarized perpendicular to the external mag-
netic field such that it excited mostly ∆m = ±1 transi-
tions. Detection beams at 397 nm and 866 nm which are
in resonance with the D3/2 ↔P1/2 ↔S1/2 cycling tran-
sitions were used to distinguish between “bright” and
“dark” states.

The scattering rate, Γ, was measured by recording the
“dark” population, PD, as a function of the probe time,
t854 (see Fig. 1b). The ion was prepared in the D5/2

state using a π-pulse of the spectroscopy laser followed
by a projection pulse of the detection beams which en-
ables post-selection of experiments starting in the D5/2

state only. The probe beam was then turned on using
an acousto-optic modulator (AOM) 5 µs before start-
ing to measure the D-state population decay in order to
avoid any AOM latency (typically less than 1 µs). Ex-
perimental data was fitted with an exponential function,
exp (−Γ (t854 − t0)), to extract the scattering rate. Here,
t854 is the experiment time and t0 accounts for the fact
that the AOM was turned on before the experiment be-
gan.

The ac-Stark shift, ∆E, was measured by performing
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Rabi spectroscopy on the D5/2 ←S1/2 transition using
the narrow-linewidth spectroscopy laser (see Fig. 1c).
The probe beam was switched on 5 µs before initiating
the spectroscopy pulse to avoid latency effects. The ex-
perimental cycles were interlaced with the probe beam
on and off in order to cancel errors induced by slow
magnetic-field drifts affecting the transition frequency.
The energy shift between the transitions with the probe
beam on and off was determined by comparing the cen-
ters of Gaussian fits for each of the observed lines. Gaus-
sian fits were used since the observed spectroscopic-line
shapes are not transform limited due to decoherence.

The probe-beam wavelength, λ, was monitored by
and locked to a wavemeter (HighFinesse WS-U 30) and
scanned by changing the locking set point. The center
wavelength of the P3/2 ←D5/2 transition, λ0, was found
by scanning the probe-beam wavelength across resonance
using a weak probe-beam power below saturation inten-
sity while measuring the scattering rate from “dark” to
“bright” states (see Fig. 1d). The central wavelength of
the transition was determined by fitting the inverse scat-
tering rate to a second-order polynomial. The resonance
frequency starting from both D5/2(m=±5/2) Zeeman
states was measured to account for Zeeman splittings in a
magnetic field of 4.609(2) Gauss. The magnetic field was
also measured with high precision on the D5/2 ←S1/2

transition using the narrow spectroscopy laser. The
probe-beam detuning, ∆(m) = 2πc (1/λ− 1/λ0(m)),
was determined for each of the Zeeman states.

Eq. 3 was used to determine the transition rates for
each experimental instance. Our measurements of the
scattering rate and the ac-Stark shift were repeated 600
times interlacing between different initial Zeeman states,
m=±5/2,±3/2, of the D5/2 state. Every few hours, the
probe-beam detuning and intensity were changed and the
transition center wavelength was re-measured to reduce
errors due to drifts in the probe-beam frequency. The
scattering rate and ac-Stark shift measurements were
then continued for a few more hours. In total, four dif-
ferent combinations of probe-beam detunings and inten-
sities were measured for a duration of almost 50 hours
(see Fig. 2a).

C. Results

All measurements were averaged to determine the sum
of the transition rates AP3/2→S1/2

+ AP3/2→D3/2
(see Fig.

2b). The total uncertainty of our measurement (0.25%)
includes both the standard error of all individual mea-
surements and the measurement errors arising from the
confidence intervals of the fits (see Table I). The mea-
surements were also averaged separately for each Zeeman
state and each different detuning and intensity setting.

Possible systematic shifts for this type of measurement
are listed in Table I (see Appendix I for detailed discus-
sion and derivation). The most dominant one is the effect
of inelastic Raman scattering[19] that changes the Zee-

man state in the D5/2 manifold before scattering to the
“bright” states (Appendix I E). This event changes the
Rabi frequency during the scattering-rate measurement
and thus shifts the measured value of the scattering rate
(see Eq. 2). On the other hand, inelastic Raman scat-
tering events will not shift the value of the ac-Stark shift
due to the Zeeman selectivity of the narrow spectroscopy
laser.

To evaluate this shift, a numerical calculation of the
dynamical optical Bloch equations (DOBE) describing
our system was performed. The “dark” population de-
cay was determined for different initial Zeeman states of
the D manifold and was found to deviate from a single
exponential decay, as expected due to the small leak into
different Zeeman states of the D manifold. Instead, a
sum of three exponents was used to better describe the
decay owing to the three different Rabi coupling in the
D-manifold. From a fit of all the scattering data the
inelastic Raman scattering shift is extracted (see Table
I). Notably, while the systematic shift is larger than our
measurement uncertainty, it is almost the same for the
±5/2,±3/2 Zeeman states. The Raman inelastic scat-
tering effect was experimentally verified by interlacing
measurements between ±5/2 states to ±1/2 states which
features opposite and distinctively measurable systematic
shifts.

Even after accounting for the inelastic Raman scatter-
ing systematic shift, a discrepancy of 2-σ between the
±3/2 and the ±5/2 measurements still remains. Since
this discrepancy cannot be accounted for, it is added as
an uncertainty of 0.56% which is the dominant contribu-
tion to the error of this measurement.

The second-most dominant shift is due to thermal ef-
fects in the probe-beam AOM (Appendix I G). While
the rise time of the AOM is less than 1 µs, it takes
about 15 µs (1/e) for the AOM to reach stable opera-
tion. For the ac-stark shift measurements, due to a 2
ms D-state repump pulse just before the measurement
starts, the AOM is in steady-state operation and no sys-
tematic shifts were observed experimentally. However,
for the scattering-rate measurements, there is almost a
ms where the probe beam is turned off before the mea-
surement starts. We experimentally verified and quanti-
fied this systematic shift by omitting the first data points
of the scattering from the analysis.

In Fig. 2b, the measured value of the summed tran-
sition rates AP3/2→S1/2

+ AP3/2→D3/2
corrected for all

systematic effect is shown and compared to the non-
corrected value. Our result of AP3/2→S1/2

+AP3/2→D3/2
=

1.4178(89) · 108 s−1 agrees well with a theoretical calcu-
lation (1.407(14) · 108 s−1)[4].

The lifetime of an excited atomic state is given by the
inverse of the sum of the transition rates from that ex-
cited state. For the P3/2 state in Ca+ one gets

τP3/2
=

1

AP3/2→S1/2
+ AP3/2→D3/2

+ AP3/2→D5/2

. (4)

Our measurements determined the sum AP3/2→S1/2
+
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FIG. 2. a) Measurements results of the transition rates AP3/2→S1/2
+ AP3/2→D3/2

prior to systematic shifts corrections. Initial

Zeeman states of the D5/2 state are marked with different colors and symbols (see legend). Dashed lines indicate the re-
measurement of the P3/2 ←D5/2 resonance wavelength and the change of probe-beam detuning and intensity settings. The
first data set (17/5) was taken with less repetitions per data point as compared to the other data sets. Typical error bars
representing 1-σ confidence intervals of the fits of the scattering rate, ac-Stark shift and detuning measurements are given.
The grey area represents the theoretical value and their uncertainty[4]. b) Averaged results of the different Zeeman states
(triangles), laser settings (green squares) and all data (Light blue circle). All results up to this point are prior to systematic
shifts corrections. The error bars are a combination of statistical standard errors and measurement fitting errors. For the result
represented by the black diamond, systematic shifts and additional uncertainties were included (see Table I).

Effect Shift [%] Uncertainty [%]

Statistical standard Error ... ±0.20

Fit error ... ±0.16

Total statistical error ... ±0.25

Line shape < +0.008 ...

Rotating-wave approximation +0.00005 ...

Other lines -0.0003 ...

D5/2 state lifetime -0.04 ...

Detection threshold ... ±0.04

Finite detection time -0.06 ...

AOM thermal effect +0.41 ±0.14

Motion-induced Doppler shifts < −0.0001 ...

Inelastic scattering (mD = ±5/2) +1.29 ...

Inelastic scattering (mD = ±3/2) +1.46 ...

Off-resonant Raman coupling < −0.001 ...

Zeeman states discrepancy ... ±0.56

Total shifts & errors +1.70 ±0.63

TABLE I. Systematic shifts and experimental uncertainties.
The symbol < is used to indicate that the calculated absolute
value of the shift is an upper bound. For shifts with a +(−)
sign, the measured value should be increased (decreased) ac-
cordingly.

AP3/2→D3/2
. The value of AP3/2→D5/2

contributing to
the P3/2 state lifetime can be measured using our tech-
nique by switching to a different probe beam that con-
nects the S1/2 and P3/2 states. Here, however, a high-
precision experimental value for the branching ratio,
RP3/2→D5/2

= 0.0587(2) [15] was used to determine
the recommended value for the total lifetime, τP3/2

=

(1−RP3/2→D5/2
)/(AP3/2→S1/2

+AP3/2→D3/2
) = 6.639(42)

ns. In addition, two different theoretical values for the

FIG. 3. Comparison of different experimental (blue circles)
[8, 9, 21–24] and theoretical (red squares) [4, 20, 25–27] val-
ues for the P3/2 lifetime in 40Ca+ to this work (black di-
amond). Some of the theoretical works (red squares with
no error bars) did not quote errors. For the recommended
lifetime value of this work (black diamond), an experimental
branching value from [15] was used. Calculation of the life-
time from the AP3/2→D5/2

theoretical value of [4] and [20] is

also given (grey diamonds).

value of AP3/2→D5/2
[4, 20] with their respective uncer-

tainties were used to verify our experimental value for
the lifetime. Since the value of AP3/2→D5/2

is one order
of magnitude smaller than AP3/2→S1/2

, even though the
two theories disagree within a few standard deviations,
all calculated lifetime values agree within the uncertainty
limits (see Fig. 3).

The branching ratio, RP3/2→S1/2
= 0.9347(3) [15],

is further used to calculate the transition rate,
AP3/2→S1/2

= RP3/2→S1/2
/τP3/2

, and the reduced dipole
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P1/2 exp. P3/2 P3/2

converted experiment theory

RP3/2→S1/2
0.93463(9) [4, 16] 0.9347(3) [15] 0.9340(9) [4]

RP3/2→D5/2
0.05876(8) [4, 16] 0.0587(2) [15] 0.0593(8) [4]

RP3/2→D3/2
0.006602(7) [4, 16] 0.00661(4) [15] 0.00667(9) [4]

DP3/2→S1/2
4.092(6) [14] 4.115(13) [15, 28] 4.099(18) [4]

DP3/2→D5/2
3.283(6) [14, 16] 3.300(12) [15, 28] 3.306(18) [4]

DP3/2→D3/2
1.092(2) [14, 16] 1.097(5) [15, 28] 1.100(6) [4]

TABLE II. Translation of P1/2 experimental values of
reduced-dipole-matrix elements[14] and branching ratios[16]
to P3/2 values and their comparison to the measured experi-
mental values of this work and Ref. [15] and the theoretical
values of Ref. [4]. The translation is done using high-precision
theoretical ratios of reduced-dipole-matrix elements[4].

matrix element,

D2
P3/2→S1/2

=
(
2JP3/2

+ 1
)

AP3/2→S1/2

3ε0~
8π2

λ3
P3/2→S1/2

.

(5)
The value of DP3/2→S1/2

= 4.115(13) ea0 is compared

to the value of DP1/2→S1/2
= 2.8928(43) ea0 (Hettrich

et al. [14]) using a high precision theoretical ratio
DP3/2→S1/2

/DP1/2→S1/2
= 1.4145(1) [4] yielding 4.092(6)

ea0. This way, both the experimental values are directly
compared without loss of uncertainty and agree to within
1.6 σ.

The reduced-dipole-matrix-elements ratios,
DP3/2→D5/2

/DP3/2→D3/2
=3.0068(13),

DP3/2→D5/2
/DP1/2→D3/2

=1.3421(4) and

DP3/2→D3/2
/DP1/2→D3/2

=0.44634(6), are further used to
compare the experimental branching ratios of the P3/2

with those of the P1/2 measured by Ramm et al. [16]
with excellent agreement. The converted P1/2 values are
of better precision than the directly measured P3/2 ones
(Table II). The matrix-element ratios are of such high
precision due to common electronic-correlations contri-
butions for transitions involving different fine-structure
components.

The directly measured values of reduced-dipole-matrix
elements and a high-precision measurement of the dif-
ferential polarizability α0(3d5/2) − α(4s) = −44.079(13)
a.u. by Huang et al. [29] are used to extract
improved recommended values for the scalar polariz-
abilities α(4s) = 76.40(32), α0(3d3/2) = 31.72(22)
and α0(3d5/2) = 32.32(32) and tensor polarizabilities
α2(3d3/2) = −17.18(8) and α2(3d5/2) = −24.42(17). All
values are in atomic units (see Appendix II for further
details).

D. Outlook and summary

A particularly attractive application of the present
method is the measurement of the lifetimes of quan-

tum states of molecular ions within the framework of a
quantum-logic experiment[18, 30, 31]. Consider, e.g, the
N+

2 molecular ion in its electronic (X2Σ+
g ) and vibrational

(v′′=0) ground state[32, 33]. A probe beam consisting of
a 1D optical lattice modulated at the trap frequency and
detuned closely to an excited state such as the A2Π+

u

(v′=2) will induce an optical-dipole force proportional
to the ac-Stark shift experienced by the molecule [18].
The force can be detected by a co-trapped atomic ion
using quantum logic protocols[18, 34, 35]. Upon scatter-
ing, the molecule will decay to a vibrational level of the
X2Σ+

g state according to Franck-Condon factors. Scat-
tering into vibrational states other than the ground state
(v′′=0) will diminish the optical-dipole force due to the
increased detuning, thus signalling the time of scatter-
ing. The ratio of the scattering rate and the ac-Stark
shift gives the sum of all transitions rates

∑
v′′ 6=0 A2→v′′

except one, A2→0, which can be extracted from the ac-
Stark shift measurement. The inverse of the sum of
all vibronic transitions rates gives the vibronic lifetime,
τv′=2 = 1/

∑
v′′ A2→v′′ . This discussion only includes vi-

bronic states. Rotational, fine and hyperfine structure
can be considered in a similar fashion.

To summarize, measurements of transition rates and
branching ratios were combined together with relativis-
tic theory for a more accurate determination of the life-
time of the (4p)2P3/2 excited state of Ca+, which was
obtained to be τP3/2

= 6.639(42) ns. The transition

rates, AP3/2→S1/2
+ AP3/2→D3/2

= 1.4178(89) · 108 s−1,
were measured using a combination of dispersive and ab-
sorptive interactions between light and a single atom and
are in good agreement with recent relativistic theoretical
calculations [4]. A detailed analysis of the systematic
shifts affecting this type of measurement is given in the
Appendices. Highly precise theoretical ratios of reduced
dipole matrix elements were used in combination with re-
cent experimental results to obtain recommended values
for radiative branching ratios, reduced dipole matrix ele-
ments, and polarizabilities in Ca+. The present method
can be used to measure transition rates and lifetimes in
many types of ionic, atomic and molecular systems both
for single particles and ensembles.
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I. APPENDIX - SYSTEMATIC SHIFTS

According to Eq. 3, the ratio of three experimentally
measured parameters (Γ, ∆E, ∆) equals to the sum of
the transitions rates AP3/2→S1/2

+ AP3/2→D5/2
which we

will denote as A from now on for brevity. This equality
holds for the approximate equations of the ac-Stark shift
(Eq. 1) and the scattering rate (Eq. 2). The experimen-
tally measured values, however, follow the exact formulas
for these parameters and hence the ratio given in Eq. 3
does not equate exactly to A, but it differs by a small
amount,

xi ≡
∆i

2π

Γi
∆Ei/h

= Ai (1− εi) .

Here, xi is the value calculated from the measurements in
the experimental instance i and εi is the systematic shift
of that experimental instance. Positive εi > 0 means
that our measured value of xi should be increased by εi
since Ai ≈ xi(1 + εi) for |εi| � 1.

In our experiment, we performed measurements with
different laser powers and detunings while interlacing be-
tween different Zeeman states. For each instance of the
experiment, i, we calculated a systematic shift, εi. Our
best estimation for A is given by the mean of all our
measurements:

A = 〈xi (1 + εi)〉 = 〈xi〉+ 〈xiεi〉 ≡ 〈xi〉 (1 + ε) .

Here, 〈xi〉 is the mean of all measured values of the tran-
sition rates without correction and

ε =
〈xiεi〉
〈xi〉

.

is the weighted mean of the systematic shifts of each ex-
perimental instance. The value of ε calculated for differ-
ent types of systematic shifts is given in Table I.

A. Line shape

The solution of a two-level system interacting with the
classical electric field of an electromagnetic wave in the
rotating-wave approximation gives rise to the well-known
Lorentzian profile for the excited-state population [36]:

pe =
Ω2/4

Ω2/2 + ∆2 + (1/τP3/2
)2/4

.

The scattering rate to “bright” states which decouple
from the two-level system is given by:

Γ = peA.

For large enough detuning, ∆ � Ω,AP3/2→D5/2
, these

equations approximate to Eq. 2 and give rise to a sys-
tematic shift:

εi ≈
Ω2
i /2 + (1/τP3/2

)2/4

∆2
i

.

We determine the Rabi frequency using Eq. 1. We take
the value of τP3/2

from Ref. [4], τP3/2
= 6.69 ns. The

mean systematic shift of all experimental instances is
ε < 7.7 · 10−5 which is negligible compared to the mea-
surement uncertainty. This shift is an upper bound since
as the exact scattering rate decreases as compared to the
approximated value (Eq. 2) when approaching the res-
onance, the exact ac-Stark shift also decreases as com-
pared to the approximated value (Eq. 1). These two
effects effectively cancel leading to a much smaller shift.
Nevertheless, the upper bound is small enough such that
it is not necessary to account for this effect in the present
case.

B. Rotating-wave approximation

Outside the rotating-wave approximation, the ac-Stark
shift takes the form [37, 38]:

∆E/h =
1

2π

Ω2

4
·
(

1

ω − ω0
− 1

ω + ω0

)
.

Here, ω is the laser frequency and ω0 is the transition
frequency such that: ∆ = ω − ω0. The scattering rate
outside the rotating-wave approximation is given by [37],

Γ = A
Ω2

4

(
ω

ω0

)3(
1

ω0 − ω
+

1

ω0 + ω

)2

.

For ∆ � ω0 both equations approximate to Eq. 1 and
Eq. 2 and give rise to a systematic shift:

εi = ∆i

(
3

ω0,i
+

1

ω0,i + ω

)
.

Note that this systematic shift depends on the sign of the
detuning, and in our experiment we used both red and
blue detuned probe lasers such that the systematic shifts
partially cancel giving rise to ε = 5.1·10−7. Nevertheless,
the maximum absolute value of this systematic shift is
|εi| < 3.4 · 10−5 which is negligible with respect to our
measurement uncertainty.

C. Other lines

The probe beam mainly interacts with the P3/2 ←D5/2

transition near 854.4 nm and shifts both the D5/2 and the
P3/2 levels. We monitored this ac-Stark shift by perform-
ing precision spectroscopy on the D5/2 ←S1/2 transition
using a narrow-linewidth laser beam at 729 nm as dis-
cussed in the main text. The probe beam interacts with
all other allowed transitions from both the S1/2 and the
D5/2 states. These interactions induce a systematic shift

of the measured ac-Stark shift value. Due to the ∆−2

dependence of the scattering rate and the large detuning
for any other transition, the scattering effect is negligible.
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The dominant interaction of the probe beam other
than with the P3/2 ←D5/2 transition is with the
P1/2 ←S1/2 and the P3/2 ←S1/2 transitions. The probe
beam at 854.4 nm was highly red detuned from these
transitions at 397 nm and 393 nm respectively. The S1/2

level was shifted by -1 Hz to -3 Hz depending on the laser
parameters. Our measured value of the ac-Stark shift is
then composed of two contributions:

∆E = ∆EPD −∆EPS.

The systematic shift of every experimental instance is
given by,

εi = −∆EPS,i

∆EPD,i
.

Note that, as in the case of the shift due to the rotating-
wave approximation, we have cancellation of systematic
shifts from blue and red detuned experiments. When we
change the detuning from red to blue in the experiment,
∆EPD either assumes positive or negative values while
∆EPS is always negative resulting in ε = −3.4 · 10−6.
Nevertheless, the maximal value of the systematic shift
is |εi| < 6.5 · 10−5 which is negligible compared to our
experimental uncertainty.

D. Finite D5/2 state lifetime

Due to finite lifetime of the D5/2 state, Eq. 2 changes
to:

Γ = A
Ω2

4∆2
+
(
AD5/2→S1/2

+ AD5/2→D3/2

)
.

Here,
(
AD5/2→S1/2

+ AD5/2→D3/2

)
= τ−1

D5/2
are the two

transition rates connecting the D5/2 “dark” state to the
S1/2 and D3/2 “bright” states which give rise to a finite
lifetime, τD5/2

= 1.1649(44) s [39], of this state. We

experimentally verified this lifetime (with less precision)
in our experiment to overrule spurious optical pumping
effects.

The systematic shift for each experimental instance is
given by,

εi = −
τ−1
D5/2

Γi
,

and the mean systematic shift is ε = −3.7 · 10−4 which
is small compared to our measurement uncertainty.

E. Inelastic Raman scattering

In the formula of the scattering rate given in Eq. 2,
we assumed that either the ion decays to “bright” states
or it decays back to its initial Zeeman “dark” state (also
known as elastic Rayleigh scattering). This assumption

+1/2 +3/2 +5/2-1/2-3/2-5/2 mJ

(3d)2D5/2

(4p)2P3/2

(3d)2D3/2

Δ

AP3/2->D3/2  

+ 
AP3/2->S1/2

Probe  
854 nm

(4s)2S1/2

10    :    4    :    1  
AP3/2->D5/2

a

b

5/2 5/2 corr. 1/2 1/2 corr. Main text
1.35

1.36

1.37

1.38

1.39

1.4

1.41

1.42

1.43

1.44

1.45

A
P

3/
2

S
1/

2
+

A
P
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2

D
3/

2
 [1

08  s
-1

]

FIG. 4. a) Schematic of inelastic Raman scattering from the
initial D5/2(mD=-5/2) state. A probe-beam (solid purple ar-
row) couples the D5/2(mD=-5/2) state to the P3/2(mP =-3/2)
excited state. From this excited state, the ion can decay ei-
ther to the S1/2 or D3/2 “bright” states or back to the D5/2

“dark” state. The latter breaks into elastic scattering to the
mD=-5/2 state or inelastic scattering to the mD=-3/2,-1/2
states (dotted blue arrows). The branching ratios for these
events are 10:4:1 respectively. After an inelastic scattering
event occurs, the probe beam couples the ion to different ex-
cited Zeeman states of the P3/2 level (dashed purple arrows).
b) Experimental verification of the inelastic process. Transi-
tion rates for an ion prepared in the D5/2(mD = ±5/2) (blue)
and the D5/2(mD = ±1/2) (red) states. Circles (diamonds)
represent values before (after) the correction of the system-
atic shift for inelastic scattering. The black diamond is the
corrected value given in the main text. The gray-shaded area
is the theoretical value of Safronova et. al. [4].

neglects the inelastic Raman scattering in which the ion
can decay to different Zeeman states of the D5/2 manifold
(see Fig. 4a). Inelastic scattering results in the change
of the Rabi frequency during the measurement instance
due to different angular factors in the transition moment.

As an example (see Fig. 4a), we consider the case
of an ion prepared in the D5/2(m = −5/2) state. A
probe-beam with linear horizontal polarization couples
this state to the P3/2(m = −3/2) state. From this ex-
cited state, there is a probability, pb = (AP3/2→S1/2

+

AP3/2→D3/2
)/(AP3/2→S1/2

+ AP3/2→D3/2
+ AP3/2→D5/2

) =

0.941, to decay to the “bright” states and pd = (1−pb) =
0.059 probability to decay back to the D5/2 state. In the
case of decaying back to the D5/2 state, the probability
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to decay to the different Zeeman states is given by,

p
(
P3/2(mP )→ D5/2(mD)

)
=

(2 · 3/2 + 1) ·

(
3/2 1 5/2

−mP mP −mD mD

)2

.

Here, the big brackets stand for a Wigner 3j symbol. In
our example, there is a 2/3 chance to decay back to the
initial m = −5/2 and 4/15 (1/15) chance to decay to
the m = −3/2 (m = −1/2) state. The total proba-
bility for the inelastic scattering event is then given by,
pd ·1/3 = 0.02. Note that for the electronic ground state,
S1/2, Raman scattering is known to vanish due to de-
structive interference from the P1/2 and P3/2 states [19].
In our case, due to the single transition involved, there
is no such destructive interference. When the ion decays
to a different Zeeman state, the Rabi frequency changes
accordingly and thus the rate in which a second scatter-
ing event occurs. The Rabi frequencies for the different
Zeeman states of the D5/2 level are proportional to,

Ω2(mD) ∝

(
3/2 1 5/2

−1−mD 1 mD

)2

+

(
3/2 1 5/2

1−mD −1 mD

)2

.

In our example, Ω2(−3/2)/Ω2(−5/2) = 3/5 and
Ω2(−1/2)/Ω2(−5/2) = 2/5.

Including the inelastic process, the decay of the “dark”
state changes from a single exponential decay to the fol-
lowing expression,

p(dark) = pbe
−Γ(mD)t

+ pd
∑
m′D

p(P3/2(mP )→ D5/2(m′D))e−Γ(m′D)t,

with Γ(m′D) = Γ(mD) · Ω2(m′D)/Ω2(mD). For the ini-
tial Zeeman state, mD = ±1/2, the expression be-
comes more complicated since the probe beam initially
populates two Zeeman states in the excited P3/2 level
(mP = ±3/2,∓1/2). The probability to populate each of
these states is given by,

p(m±P ) =

(
3/2 1 5/2

∓1−mD ±1 mD

)2

(
3/2 1 5/2

−1−mD 1 mD

)2

+

(
3/2 1 5/2

1−mD −1 mD

)2 ,

and the expression for the decay of the “dark” state
changes accordingly,

p(dark) = pbe
−Γ(mD)t

+ pd
∑
m±P

∑
m′D

p(m±P )p(P3/2(m±P )→ D5/2(m′D))e−Γ(m′D)t.

Here, m±P stands for exciting a state with Zeeman quan-
tum number mP = mD ± 1.

Initial state p| 5
2
| p| 3

2
| p| 1

2
| Method

m = ±5/2 1 0 0 No correction

m = ±5/2 0.9896 0 0.0104 DOBE

m = ±5/2 0.9802 0.0158 0.0040 Single scattering

m = ±3/2 0 1 0 No correction

m = ±3/2 0.0160 0.9407 0.0430 DOBE

m = ±3/2 0 0.9644 0.0356 Single scattering

m = ±1/2 0 0 1 No correction

m = ±1/2 0 0.0278 0.9722 DOBE

m = ±1/2 0.0099 0.0218 0.9684 Single scattering

TABLE III. Probabilities, p|m|, of the Zeeman state before
scattering from “dark” to “bright” derived from DOBE and
single-scattering analytic calculations for all initial Zeeman
states of the D5/2 manifold. “No correction” stands for the
limiting case of no inelastic Raman scattering shift described
by Eq. [2] of the main text.

The dark state population can be written in general
form,

p(“dark”) =

p 5
2
e−Γ( 5

2 )(t−t0) + p 3
2
e−Γ( 3

2 )(t−t0) + p 1
2
e−Γ( 1

2 )(t−t0).

Here, we used the symmetry of the Zeeman states,
Γ(mD) = Γ(−mD), and introduced back, t0, which ac-
counts for the fact that the AOM was turned on before
the experiment began. The probabilities, p|m|, indicate
from which Zeeman state the ion scatters from “dark”
to “bright”. In the previous paragraph, we showed how
to derive the probabilities within the approximation of a
single inelastic Raman scattering event. To check our cal-
culations and to derive more accurate probabilities, we
solved the dynamical optical Bloch equations (DOBE)
of our system (using similar treatment as performed in
Refs. [40, 41]). The treatment considers the 12 Zeeman
levels of the S1/2, P3/2, and D5/2 states (for simplicity we
omitted the D3/2 levels), a probe-beam that couples the
D5/2 and the P3/2 states with horizontal linear polariza-
tion and all spontaneous decay channels. We initialized
the density matrix in a single Zeeman state of the D5/2

manifold and numerically calculated the density matrix
evolution in time during the decay to the S1/2 levels. We
then fitted the probabilities to the DOBE numerical solu-
tion. The results of the probabilities for different initial
Zeeman states using the DOBE and the single Raman
scattering analytic derivation are given in Table III.

For the mD = ±5/2,±3/2 states, the inelastic Ra-
man scattering tends to decrease the scattering rate due
to pumping to states with lower Rabi frequency. The
mD = ±1/2 states, however, show an increase in the scat-
tering rate since they posses the lowest Rabi frequency.
To verify the inelastic Raman effect experimentally, we
performed an experiment in which the ion is prepared
in the mD = ±5/2 and mD = ±1/2 states. In that
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experiment, we used a spectroscopy laser with different
orientation with respect to the trap axis and different po-
larization with respect to the magnetic field axis than the
one used in the original experiments to allow preparation
of the ion in both the ±1/2,±5/2 Zeeman states. The
results are shown in Fig. 4b and are in agreement with
our calculations.

F. Off-resonant Raman coupling

Since we used a linear-horizontal polarized laser beam
in the experiment, we allowed for off-resonant Raman
coupling between Zeeman states in the D5/2 level which
satisfy ∆mD = ±2. This off-resonant coherent coupling
dresses our initial Zeeman state with Zeeman states of
∆mD = ±2 and thus changes the coupling to the excited
P3/2 level.

We estimate the mixing by considering the bare-
Raman coupling,

ΩRaman =
Ω(mD)Ω(mD ± 2)

∆
.

Here, Ω(mD) is the Rabi frequency of the probe beam
that couples the D5/2(mD) state with the excited P3/2

state and ∆ is the detuning of the probe beam from the
excited state. We estimate an upper bound for the mix-
ing due to this coupling by considering an off-resonant
Rabi flop. The average population in the coupled Zee-
man state is then given by,

pmix =
1

2

Ω2
Raman

Ω2
Raman + ∆2

Raman

.

Here, ∆Raman is the detuning between the two Zeeman
states due to the external magnetic field of 4.609 Gauss.
We now can calculate the upper bound for this systematic
shift,

ε = pmix

(
Ω2(mD + 2)

Ω2(mD)
− 1

)
≤ −1.4 · 10−5.

We consider this calculated shift as an upper bound since
we only included the effect on the scattering rate mea-
surements. Similar considerations can be made for the
ac-Stark shift measurements which will result in reduc-
tion of this systematic effect.

G. Thermal effect in AOM power stabilization

We used an acousto-optic modulator (AOM) to control
the duration of the probe-beam pulse during the exper-
iment. The AOM rise time is very short, typically less
than a µs, however, to reach a steady-state power it takes
the AOM about 15 µs (1/e). This effect is due to ther-
malization of the AOM crystal with the incident probe
beam. In Fig. 5a we show a typical snapshot of the

probe-beam power measured on a fast detector during a
scattering rate measurement.

Even though the Rabi frequency cancels in the calcula-
tion of the transition rates, different effective powers be-
tween the ac-shift and the scattering rate measurements
will lead to systematic errors. In the case of the ac-stark
shift measurements, we applied a 2 ms D-state repump
pulse using the probe-beam just before the ac-stark shift
measurement began. This pulse eliminated the AOM
thermal effect. We experimentally verified that there are
no systematic shifts in the ac-stark shift measurement
by adding a 150 µs pulse prior to the ac-stark shift mea-
surement and comparing the resulting ac-shift with an
experiment with no such pulse. The relative difference
between the two measurements was 0.08(18)% which is
consistent with no shift.

On the other hand, in the case of the scattering-rate
measurements, there is almost a ms delay between the
D-state repump pulse and the measurement pulse due
to D-shelving and state-purification pulses. For that, the
AOM thermal effect is present in the scattering rate mea-
surement and it induced a systematic shift.

To test the magnitude of this systematic shift, we ana-
lyzed the scattering-rate data excluding between 0 to 7 of
the first data points of the decay curve, thus, effectively
starting the scattering measurement after a time period
which the AOM could reach its steady-state power. On
average, each point of data we excluded amounts for
roughly 25 µs of pre-AOM time.

The results of the transition rates for this analysis are
given in Fig. 5b. As expected, the transition rates value
increases when excluding the first point due to the in-
crease in the effective Rabi frequency in the measure-
ment. The value of the transition rates remains constant
when excluding from one up to three of the first data
points. These values are used to calculate a systematic
shift of ε=+0.0041. The use of less data points in the
fit analysis increase the statistical error of our measure-
ment. We quantify this as an additional error of 0.0014
to the non-corrected value.

We note that excluding data points from the analysis is
equivalent to simulating bad D-state preparation. Thus,
this analysis can also be used to assess the effect of bad
D-state preparation, which in our case is negligible.

H. Motion-induced Doppler shifts

Mechanical effects of the ion motion affect the instan-
taneous detuning, ∆inst., of the probe-beam light through
the Doppler shift,

∆inst. = ∆ + kxω cos (ωt) ≡ ∆ (1 + β cos (ωt)) .

Here, k = 2π/λ is the projection of the k-vector of the
probe beam onto the direction of motion, x, with oscilla-
tion frequency ω. The motion of the ion is composed of
both thermal motion and micromotion with two different
frequencies (700 kHz and 16.8 MHz respectively). The
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FIG. 5. a) Typical snapshot of the probe-beam power mea-
sured on a fast photo-detector (blue) during a scattering-
rate measurement. Red line is an exponential fit with a
characteristic time of about 15 µs. b) Transition rates,
AP3/2→S1/2

+ AP3/2→D3/2
, in which we excluded from 0 to

7 of the first data points of the scattering-rate decay curve.
The results before correction reported in the main text are
given in light blue circle. The values used for extracting the
systematic shift are given in red diamonds where the corrected
value for this systematic shift is given in black diamond. The
gray-shaded area is the theoretical value of Safronova et. al.
[4].

modulation index, β = kxω/∆, quantifies the modula-
tion amplitude.

The duration of the scattering-rate and ac-Stark-shift
measurements is much longer than one cycle of modula-
tion. Hence, we can consider the average scattering-rate
and ac-Stark-shift values,

Γ = 〈Γinst.〉 = Γ0

〈
1

(1 + β cos(ωt))2

〉
= Γ0

(
1 +

3

2
β2

)
,

∆E = 〈∆Einst.〉 = ∆E0

〈
1

1 + β cos(ωt)

〉
= ∆E0

(
1 +

1

2
β2

)
.

Here, ∆E0 and Γ0 are the values of the ac-Stark shift and
scattering rate without the mechanical effect as given in
Eq. 1 and Eq. 2. The effect of mechanical motion on the
transition rates is given by,

A

A0
=

1 + 3
2β

2

1 + 1
2β

2
≈ 1 + β2,

thus the systematic shift due to mechanical motion is
ε = −β2.

For the case of thermal motion, the ion is Doppler
cooled to ∼0.5 mK such that amplitude of the thermal
motion is less than 100 nm. The resulting modulation in-
dex is β < 5·10−4 and the systematic shift is |ε| < 3·10−7

which is negligible compared to our measurement uncer-
tainty.

For the case of excess micromotion, its amplitude was
compensated below our detection limit. For that, it is
safe to estimate the micromotion amplitude to be smaller
than 10 nm. In this case, the modulation index is β < 1 ·
10−3 and the systematic shift is |ε| < 1·10−6 which is also
negligible compared to our measurement uncertainty.

I. Detection threshold

We determined whether the ion was in a “dark” or
“bright” state by counting photons (n) over 0.5 ms in
the first experiments (17/5/19-19/5/19) and over 0.75 ms
in the later ones (27/5/19-4/6/19) and setting a photon
threshold (t) such that for n ≤ t the ion was considered
“dark” while for n > t the ion was considered “bright”.
Photon counting traces for two experiments with two dif-
ferent detection times and their thresholds are shown in
Figs. 6a,c. In the latter experiment, the cooling laser
fell out of lock such that the mean “bright” photon num-
ber drifted during the experiment. Nevertheless, even
with unlocked detection and cooling laser, no detectable
systematic shifts were observed within the measurement
errors.

We determined the threshold value to minimize both
“dark” and “bright” counting errors by choosing the
point of lowest counting probability between the “dark”
and “bright” histograms (see Fig. 6b,d blue trace). To
quantify the effect of this threshold value on the experi-
mental results, we calculated the dependence of the tran-
sition rate on the threshold, A(t). The results are shown
in Fig. 6b,d for the two different detection times. We
observe that the experimental value, A(t), is almost in-
dependent of t around the chosen threshold value. There
is a small linear slope of -0.0002·108 s−1/∆t from which
we estimate an uncertainty of 4 · 10−4 due to possible
error of ±3 photons in the determination of the photon-
count threshold. This uncertainty is small compared to
our measurement uncertainty.
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FIG. 6. a) Photon number counts (blue) for an experiment
(19/5, 10 hrs) with 0.5 ms detection time. The black line
is the photon threshold used in the analysis. b) Histogram
(blue) of the photon number count in (a). The values of the
transition rates determined for different thresholds around the
one used in the experiment (black symbol) are given as red
symbols. A linear fit of the transition rates in an interval
of ±3 photons around the threshold value is shown in black.
The dashed grey area represents the theoretical value and
uncertainty from Ref. [4]. c) same as (a) for an experiment
(4/6, 7 hrs) with 0.75 ms detection time. Here, the detection
laser fell out of lock after 1.75 hrs. d) Same as (b) for the
photon number count in (c).

J. Finite detection time

In the previous section, we considered the case of the
counting error due to photon statistics. This error can
be reduced by increasing the detection time. However,
increasing the detection time will increase the probability
of a decay of the “dark” state into the “bright” state
during the course of detection due to the finite lifetime
of the “dark” state, τD5/2

.

We calculated the effective decay time, teff, up to which
a “dark” state is considered “bright”, by linearizing the
photon accumulation rate,

teff = tdet
b̄− t
b̄− d̄

.

This equation accounts for the fact that with high photon
threshold “dark” events that scatter during the detection
time can still be counted correctly as “dark” events given
that the scatter event occurred at the end of the detection
period. Here, tdet = 0.5, 0.75 ms is the total detection
time, d̄ < t < b̄ is the photon threshold value introduced
in the previous section and b̄ (d̄) are the mean “bright”
(“dark”) photons counted in the experiment.

The number of excessively measured “bright” (“dark”)

photons, ∆b (∆d) is then given by,

∆b = −∆d = d ·
(
e
teff/τD5/2 − 1

)
.

Here, d is the measured number of “dark” photons.
For the experiment in Fig 6a,b we estimated 180 pho-
tons which are falsely detected as “bright” out of total
∼600,000 “dark” counts. For the experiment in Fig. 6c,d
we estimated 210 false detected photons out of ∼470,000.

To estimate the systematic shift induced by this effect,
we changed the threshold value such that 180 (210) pho-
tons were transferred from “dark” to “bright” for the two
experiments. We found a systemic error of ε = −6 · 10−4

for both experiments. This value is small compared to
our measurement uncertainty.

II. APPENDIX - EXTRACTION OF
POLARIZABILITIES

The matrix elements that we obtained in this work as
well as extracted from other measurements [14–16] can
also be used to improve knowledge of the 4s and 3dj
polarizabilities. These quantities are of particular inter-
est due to their relevance in the determinations of the
blackbody radiation shift in the Ca+ clock [4, 29]. The
valence static scalar polarizability α0(v) of an atom with
one valence electron v is given by

α0(v) =
2

3(2jv + 1)

∑
k

|〈v||D||k〉|2

Ek − Ev
, (6)

where |〈v||D||k〉 is a reduced electric-dipole matrix ele-
ment and the indices k range over the np states for the 4s
electron and over the np and nf states for the 3d electron.
The 4s− 4pj contributions dominate the 4s value so in-
creased precision of the matrix elements improves the 4s
polarizability. Results obtained with the matrix elements
from this work, Ref. [14] and combination of the two are
listed in Columns A, B and C of Table IV, respectively.
Theory values from [4] are listed for comparison. Relative
uncertainties in the polarizability contributions are twice
the uncertainties of the corresponding matrix elements.
When values are correlated such as in the uncertainties
in the 4s−4p1/2 and 4s−4p3/2 matrix elements extracted
from the same work, we linearly add the uncertainties.

The differential scalar polarizability for the 4s −
3d5/2 clock transition was measured in [29] to be
−44.079(13) a.u. We use this value and the ground state
polarizabilities from Table IV to extract a value of the
3d5/2 scalar polarizability, listed in the columns A, B
and C last row of Table IV. All values are in agree-
ment with the theory [4], validating theory calculations
obtained using the same method for similar systems.

We also used the 4p− 3d matrix elements extracted in
this work to evaluate 3dj scalar and tensor polarizabilites,
as well as provide a consistency check of the 3d5/2 static
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TABLE IV. Ca+ static polarizabilities (in a.u.) obtained with the matrix elements from this work (Column A), Ref. [14] (Column
B) and combination of the two (Column C). The scalar 3d5/2 polarizability in columns A,B and C is extracted by combining the

resulting ground state polarizability and the differential Ca+ clock polarizability δα0(3d5/2− 4s) = −44.079(13) a.u. measured
in [29]. Theory values from [4] are listed for comparison.

Theory [4] A B C

4p1/2 − 4s 24.4(2) 24.58(15) 24.30(7) 24.30(7)

4p3/2 − 4s 48.4(4) 48.74(31) 48.20(14) 48.74(31)

Other [4] 3.36(5) 3.36(5) 3.36(5) 3.36(5)

Total α(4s) 76.1(5) 76.68(46) 75.86(21) 76.40(32)

Total α0(3d5/2) 31.8(3) 32.60(46) 31.78(21) 32.32(32)

value obtaind from the [29] measurement that was pre-
sented in Table IV. Tensor polarizabilities are given by

α2(v) = (−1)jv

√
40jv(2jv − 1)

3(jv + 1)(2jv + 1)(2jv + 3)

×
∑
k

(−1)j

{
jv 1 j

1 jv 2

}
|〈v||D||k〉|2

Ek − Ev
, (7)

where the curly bracket stands for the Wigner 6j sym-
bol. The results are given in Table V. The scalar 3d5/2

value obtained using this method is in agreement with
the results given in Table IV.
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TABLE V. Ca+ 3d static scalar (α0) and tensor (α2) polarizabilities (in a.u.) obtained with the matrix elements from this
work (Column A), Ref. [14] (Column B) and combination of the two (Column C). The other contributions are taken from [4].

State Contr. α0 α2

A B C A B C

3d3/2 3d3/2 − 4p1/2 19.16(14) 18.97(7) 18.97(7) -19.16(14) -18.97(7) -18.97(7)

3d3/2 − 4p3/2 3.74(3) 3.71(1) 3.74(3) 2.99(3) 2.97(1) 2.99(3)

Other [4] 9.01(21) 9.01(21) 9.01(21) -1.20(4) -1.20(4) -1.20(4)

Total 31.91(27) 31.69(23) 31.72(22) -17.37(16) -17.20(9) -17.18(8)

3d5/2 3d5/2 − 4p3/2 22.69(17) 22.46(8) -22.69(17) -22.46(8)

Other [4] 9.02(17) 9.02(17) -1.73(4) -1.73(4)

Total 31.71(24) 31.48(19) -24.42(17) -24.19(9)
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