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We present an efficient quantum algorithm for independent set problems in graph theory, based
on non-abelian adiabatic mixing. We illustrate the performance of our algorithm with analysis and
numerical calculations for two different types of graphs, with the number of edges proportional to
the number of vertices or its square. Our quantum algorithm is compared to the corresponding
quantum circuit algorithms and classical algorithms. Non-abelian adiabatic mixing can be a general
technique to aid exploration in a landscape of near-degenerate ground states.
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I. INTRODUCTION

The supremacy of quantum computers over classical
computers is illustrated by many significant algorithms,
in particular, the Shor algorithm [1] for factorization and
the Grover algorithm [2] for search. These algorithms are
based on discrete operations orchestrating simple quan-
tum gates. Algorithms of this kind are called quantum
circuit algorithms [3].

In another paradigm of quantum computing, algo-
rithms are implemented through the design of Hamil-
tonians. Here one starts with an easy-to-prepare initial
state, allows it evolve dynamically, and at some point
makes appropriate measurements. (Of course, the Hamil-
tonians should correspond to potentially realizable cir-
cuits.) Hamiltonian-based quantum algorithms translate
programming problems into physical problems, which al-
low one to exploit familiar physical processes to optimize
algorithms. A Hamiltonian approach to quantum search
was proposed in 1998 [4], and soon extended to more
general “adiabatic” algorithms [5].

It has been shown that every quantum circuit algo-
rithm can be converted into a quantum adiabatic algo-
rithm, whose time complexity is polynomially equivalent
(and vice versa) [6] [7]. But the continuum approach
can suggest different methods, such as the non-abelian
mixing discussed here, or resonance, as we will describe
elsewhere [8].

Here we present an efficient quantum Hamiltonian al-
gorithm for the independent set problem (see Fig.1). Any
graph has trivial independent sets: the empty set and sets
with just one vertex. Our aim is to find non-trivial in-
dependent sets, with two or, ideally, many more vertices.
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FIG. 1: An independent set of a graph is a set of vertices
no two of which are connected by an edge. Each vertex is as-
signed a boolean variable: xj = 1 if the jth vertex is included
in an independent set and xj = 0 if not. For example, the
empty circles here form an independent set that is described
by a set of boolean numbers (1, 0, 1, 0, 0, 1, 0, 0).

Independent set problems can be rephrased in terms of
all-negated 2-SAT problems, and vice versa. Based on
this observation, we are able to construct a Hamiltonian
such that its ground states are all independent sets of a
given graph. We then prepare the Hamiltonian system
in one of its trivial ground state, evolve it adiabatically
along a closed path. This leads to non-abelian adiabatic
mixing in the sub-Hilbert space of degenerate ground
states [9] and generates a quantum state that is roughly
an equal-probability superposition of all ground states.
As the number of non-trivial solutions is much bigger (see
Figs.3&5), when we make a measurement in the end, we
will likely find a non-trivial solution. Numerical results
indicate that we are almost certain to find a non-trivial
independent set. We analyze the performance of our al-
gorithm for two different types of graphs: the number of
edges proportional to the number of vertices or its square.
While finding solutions to this particular problem is not
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a pressing issue, our technique brings in some physics
which is interesting in itself and new in the context of
quantum algorithms, and which might find more general
applications.

II. EQUIVALENCE TO 2-SAT

For a given graph, we can assign a Boolean variable
to each of its vertices (see Fig.1): xj = 1 when the jth
vertex is chosen for an independent set and xj = 0 when
it is not. When two vertices xi and xj are connected by
an edge, it means that xi and xj can not be simultane-
ously chosen for one independent set. This is equivalent
to impose the following two-variable clause

(¬xi ∨ ¬xj) (i 6= j). (1)

Therefore, finding an independent set of a graph n ver-
tices with m edges is equivalent to finding a solution to
a 2-SAT problem which has n variables and whose m
clauses are of the above form. Since the clauses involve
only negated variables, we call it all-negated 2-SAT prob-
lem. An all-negated 2-SAT problem manifestly has at
least n+ 1 solutions, namely (0, 0, 0 · · · , 0) and n assign-
ments that have exactly one variable being 1, such as
(1, 0, 0 · · · , 0) and (0, 1, 0 · · · , 0). They correspond to the
trivial independent sets: the empty set and sets with only
one vertex. We are interested in finding non-trivial solu-
tions, that is, the solutions with at least two 1s. There are
generic algorithms of time complexity O(m + n) to find
solutions for 2-SAT problems [10, 11]. However, these
algorithms may well find the trivial solutions. We need
different algorithms to find non-trivial solutions.

III. QUANTUM ALGORITHM

For a clause in Eq.(1), the function f(xi, xj) = xixj is
minimized when the clause is satisfied. Notice that xj =
(σ̂zj + 1)/2, where the third Pauli matrix σzj ∈ {1,−1}
in the natural basis. With these two observations, for
a given graph (or a 2-SAT problem), we construct the
following Hamiltonian [12]

H0 = ∆
∑
〈ij〉

(σ̂zi + σ̂zj + σ̂zi σ̂
z
j ) , (2)

where the summation 〈ij〉 is over all edges (or clauses).
All the independent sets are the ground states of H0 and
vice versa. The energy gap between the ground states
and the first excited states is 4∆.

We rotate spin σ̂zj to an arbitrary direction ~r =

{sin θ̄ cos ϕ̄, sin θ̄ sin ϕ̄, cos θ̄}, and obtain new spin oper-
ator τ̂j = Vj σ̂

z
jV
−1
j with

Vj =

(
cos θ̄2 e−iϕ̄ sin θ̄

2

eiϕ̄ sin θ̄
2 − cos θ̄2

)
= V −1

j . (3)

FIG. 2: Adiabatic path in the algorithm. θ is the angle be-
tween the rotating axis and the z axis and ϕ is the angle
rotated from the initial direction. Note that θ and ϕ here are
related to but different from θ̄ and ϕ̄ in Eq.(3).

If |u〉j and |d〉j are eigenstates of σ̂zj , that is, σ̂zj |u〉j =

|u〉j and σ̂zj |d〉j = − |d〉j , the eigenstates of τ̂j are

|u~r〉j = cos
θ̄

2
|u〉j + sin

θ̄

2
eiϕ̄ |d〉j , (4)

|d~r〉j = sin
θ̄

2
|u〉j − cos

θ̄

2
eiϕ̄ |d〉j . (5)

With U = V1 ⊗ V2 ⊗ · · · ⊗ Vn, we can rotate all the spins
to the same direction and construct a new Hamiltonian

Hτ = UH0U
−1 = ∆

∑
〈ij〉

(τ̂i + τ̂j + τ̂iτ̂j) (6)

It is clear that Hτ has the same set of eigenvalues as H0.
The eigenstates of Hτ can be obtained by rotating the
ones of H0, and have the following form

|Eα〉 = |u~r〉1 ⊗ |d~r〉2 ⊗ · · · ⊗ |u~r〉j ⊗ · · · ⊗ |u~r〉n
= |u~r, d~r, · · · , u~r, · · · , u~r〉 . (7)

The Hamiltonian Hτ is parameterized by the direction
~r. With this in mind we propose the following quantum
algorithm for the independent set problem:

1. prepare the system at state {−1,−1, · · · ,−1},
which corresponds to the empty set (0, 0, · · · , 0);

2. set ~r initially along the z axis and slowly change Hτ

by changing ~r along a closed path shown in Fig.2;

3. make a measurement after ~r returns to the z direc-
tion.

Note that the energy gap 4∆ of Hτ does not change
with ~r and is independent of the system size n. There-
fore, the evolution in the above algorithm can be made
adiabatic by changing ~r with a slow but constant rate.
As {−1,−1, · · · ,−1} is a ground state of H0, when ~r
changes slowly, the system will stay in the sub-Hilbert
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space spanned by the ground states of Hτ . This kind of
adiabatic evolution in a sub-Hilbert space of degenerate
eigenstates was studied in Ref.[9], where it is found that
an adiabatic evolution along a closed path is given by

W = P exp i

∮
A(t)dt (8)

where A is the gauge matrix given by Aα,β =
i 〈Eα| ∂t |Eβ〉 (∂t ≡ ∂/∂t) and P is a symbol reminding
thatA(t) at different times be applied in time order. Note
that such an adiabatic evolution of degenerate eigenstates
was proposed to construct quantum gates [13].

We find that 〈Eα| ∂t |Eβ〉 is not zero only when |Eα〉
and |Eβ〉 differ by at most one qubit state. When α 6= β,
we have

Aα,β = i 〈Eα| ∂t |Eβ〉 = i 〈u~r| ∂t |d~r〉 =
sin θ

2

dϕ

dt
, (9)

where θ is the angle between the rotating axis and the z
axis and ϕ is the rotating angle (see Fig.2). When α = β
and |Eα〉 has k qubits in state |u~r〉 and n − k qubits in
state |d~r〉, we have

Aα,α = i 〈Eα| ∂t |Eα〉

= −
{
k sin2 θ

2
+ (n− k) cos2 θ

2

}dϕ
dt

. (10)

Let A = Ãdϕ
dt and we have

W = P exp

∮
iÃ(θ)dϕ = exp

[
2πiÃ(θ)

]
, (11)

where the gauge matrix Ã is real and independent of
time.

As the gauge matrix Ã has many off-diagonal terms, it
generates a mixing in the sub-Hilbert space of the ground
states, producing a quantum state that is roughly an
equal-probability superposition of all the ground states.
When a measurement is made at the end of the algo-
rithm, we will likely find a non-trivial ground state since
the number of non-trivial solutions is much bigger than
the trivial solutions. To illustrate the efficiency of our
algorithm, we consider two typical cases: the number of
edges is proportional to (I) the number of vertices; (II)
the square of the number of vertices.

Case I - To be specific, we choose m = n. Let
Ns(n) be the number of all the independent sets of a
given graph. Our numerical results in Fig.3(a) show
that Ns grows exponentially with n. The fitting gives
us Ns(n) ≈ 1.02 × 20.748n. This means that the n + 1
trivial sets are only a tiny part of all the independent
sets when n is large.

For our quantum algorithm, for simplicity we choose

θ = π/2, where the gauge matrix Ã has the simplest
form. We numerically compute

|ψ1〉 = W |ψ0〉 (12)

FIG. 3: (a) The number of independent sets of a graph as a
function of the number of vertices n for the case m = n. The
fitting line is given by log2Ns = 0.029 + 0.748n. The result
is averaged over 1000 instances randomly sampled out of all
possible configurations of edges; the standard error of every
data point is around 10−3 . (b) The averaged probability cn
of the n+ 1 trivial solutions in the final state as a function of
n. The fitting line is given by log2 cn = −0.444− 0.654n.

where |ψ0〉 = {−1,−1, · · · ,−1} is the initial state. Let
dn be the probability of the n+ 1 trivial solutions in the
final state |ψ1〉 and cn = dn/(n + 1) be the averaged
probability. Our numerical results are plotted in Fig.3,
where we see cn decreases exponentially with n. Numer-
ical fitting indicates cn ≈ 0.735 × 2−0.654n. Therefore,
we are almost certain to find a non-trivial solution at the
end of the algorithm. As the gap 4∆ is independent of
the problem size n, the time that our adiabatic evolution
takes to traverse one loop in Fig.2 is independent of n.
Thus the time complexity of our quantum algorithm is
O(1), and for large n it produces a non-trivial solution
with near certainty.

FIG. 4: (a) The averaged number of vertices NMIS of maxi-
mum independent sets (MISs) of a graph as a function of the
number of vertices n for the case m = n. The fitting line is
given by NMIS = −0.344 + 0.608n. The result is averaged
over 1600 instances randomly sampled out of all possible con-
figurations of edges; the standard error of every data point
is around 10−3 . (b) The averaged number N̄ of vertices in
for all the solutions in the final state as a function of n. The
fitting line is given by N̄ = 0.08 + 0.286n.

It is interesting to gauge the potential of our algorithm
in finding the maximum independent sets (MISs). For
this purpose, we define the averaged number of vertices
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in independent sets in the final quantum state |ψ1〉 =∑
j aj |sj〉

N̄ =
∑
j

|aj |2Nj (13)

where Nj is the number of ones in the jth solution
|sj〉. According to our numerical results, in the case
of m = n, the average size of maximum independent
set NMIS grows almost linearly with n (Fig.6(a)). The
averaged vertex number N̄ also grows linearly with n
but with smaller coefficient. While maximum indepen-
dent set is hard to approximate[15], for sparse graphs
with average degree d = 2m/n, The results in Ref.[32]
show that NMIS ≈ (2− εd)n ln d

d and the classical greedy
algorithm can find independent sets of nearly half size
(1 + ε′d)

n ln d
d with high probability, where εd, ε

′
d → 0.

However, no efficient algorithm is known to find inde-
pendent sets of size(1 + ε′′)n ln d

d for any fixed ε′′ > 0.
Our quantum algorithm can on average find an indepen-
dent of size N̄ ≈ 0.47NMIS , the ratio is slightly less than
the greedy algorithm.

Case II - We choose specifically m = bn2/4c. Ac-
cording to Ref. [16], for such a graph, there exists with
almost certainty a maximum independent set of the fol-
lowing size

k = 4
(

ln
n

4 ln(n/2)
+ 1
)

(14)

Since all its subsets are also independent sets, the number
of independent sets Ns is at least Ns & O((n/ lnn)4 ln 2).
The numerical results in Fig.5(a) show that

Ns ∝ O((n/ lnn)5.7) . (15)

For this case, we evolve the system along the loop in
Fig.2 with θ = 1.2 to make all possible ground states
more evenly distributed in the final quantum state (see
later discussion with Fig. 8). Our numerical results in
Fig.3(b) show that the averaged probability of finding
trivial solutions cn ∝ 1/n1.37.

In this case, we find numerically that the number
NMIS is proportional to ln n

ln(n/2) while N̄ grows lin-

early with lnn. In classical algorithm, Erdós-Rényi
random graphs G(n, 1/2), which behave similarly with
our model when n is large almost have a MIS of size
2 log2 n(1 + o(1)), but it is still an open problem to find
in polynomial time an independent set of size (1+ε) log2 n
while a greedy algorithm can reach log2 n [14, 17]. And
our results are worse than that, but can still on average
find an O(log n) size independent set in O(1) time.

IV. QUANTUM DIFFUSION IN MEDIAN
GRAPH

Our algorithm centers on the quantum non-abelian
adiabatic mixing in a sub-Hilbert space of degenerate

FIG. 5: (a) Number of independent sets for graph m = bn2/4c
as a function of n. The fitting line is given by lnNs =
−6.61 + 5.68 ln n

ln(n/2)
. The result is averaged over 1000 in-

stances randomly sampled out of all possible configurations of
edges; the standard error of every data point is around 10−2 .
(b) The averaged probability cn of the n+ 1 trivial solutions
in the final state |ψ1〉 as a function of n. The fitting line is
ln cn = −0.03− 1.37 lnn.

FIG. 6: (a) The averaged number of vertices NMIS in the
maximum independent sets (MISs) of a graph as a function of
the number of vertices n for the case m = bn2/4c. The fitting
line is given by lnNMIS = −3.36 + 3.91 ln n

ln(n/2)
. The result

is averaged over 1600 instances randomly sampled out of all
possible configurations of edges; the standard error of every
data point is around 10−2 . (b) The averaged number N̄ of
vertices in for all the solutions in the final state as a function
of n. The fitting line is given by N̄ = 0.035 + 0.783 lnn.

ground states. We find that such a dynamics process
can also be viewed as a quantum diffusion in a median
graph which can be embedded in an n-dimensional cube
(see Fig.7).

As the solutions of an all-negated 2-SAT problem form
a median graph [18–20], all the independent sets of a
graph form a median graph: each independent set is rep-
resented by a point, and a pair of points are connected
by a line when the two independent sets differ by only
one vertex. This median graph can be embedded in an
n-dimensional cube, as shown in Fig.7 for n = 3. Our

Hermitian gauge matrix Ã(θ) can be regarded as a Hamil-
tonian defined on this median graph: the onsite energy

is Ãα,α while off-diagonal element Ãα,β gives the hop-
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FIG. 7: A median graph embedded in a cube for a graph
that has three vertices x1, x2, x3 and one edge connecting x1
and x3. Each point represents an independent set and the
solid line connects a pair of independent sets that differ by
only one element.

ping amplitude between two points α and β. If we start
with an initial wave function localized at (0, 0, · · · , 0),
this wave function will spread in the graph and the dif-
fusion process is given by

|ψ(t)〉 = exp
[
itÃ(θ)

]
|ψ0〉 . (16)

When t = 2π, we recover the adiabatic mixing in Eq.(12).
So, the adiabatic evolution in Fig.2 is just a special case
of quantum diffusion in a median graph for t = 2nlπ (nl
is a positive integer).

Let us expand |ψ(t)〉 in terms of all the solutions

|ψ(t)〉 =
∑
j

aj(t) |sj〉 , (17)

where |sj〉 is the jth solution. To characterize how widely
the wave function is diffused over the median graph, we
define a quantum entropy

S(t) = −
∑
j

|aj(t)|2 ln |aj(t)|2 . (18)

It is called generalized Wigner-von Neumann entropy in
Ref. [21]. It is clear that the maximum of S(t) is lnNs.
We define S = S/(lnNs) and plot S as a function of t in
Fig.8. We again consider first the special case θ = π/2
(orange line in Fig.8). We observe an interesting behav-
ior of S: it starts at zero, quickly rises up to a value very
close to one, and eventually oscillates around an equilib-
rium value. At t = 2π, 4π, 6π, · · · , which correspond to
adiabatically evolving along the loop in Fig.2 one, two,
three, · · · rounds, we have S ≈ 0.75. This means that the
probability is roughly even distributed among all possi-
ble solutions. We checked numerically how probability
is distributed among different sets of the solutions. For
example, if the number of solutions with three 1s is N3,
then the probability of |ψ1〉 in these solutions is approx-
imately N3/Ns.

We can reduce the fluctuations of S and raise its equi-
librium value by choosing a different θ. In Fig.8, we
have plotted S for θ = 1.2 (blue line). We see much

θ=1.2

θ=π/2

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

t/2π

S

FIG. 8: The time evolution of entropy S for the quantum dif-
fusion in the median graph. The orange line is for a typical
independent set with θ = π/2; the blue line is for a differ-
ent typical independent set with θ = 1.2. The averaged or
equilibrium value of the entropy is S ≈ 0.77 for θ = π/2 and
S ≈ 0.88 for θ = 1.2. n = m = 12.

smaller oscillations around a larger equilibrium value. At
t = 2π, 4π, 6π, · · · , we have S ∼ 0.85.

The behavior of S in Fig.8 resembles how a simi-
lar quantum entropy behaves in quantum chaotic sys-
tems [21–24]: rises up rapidly from a low initial value and
quickly settles into an equilibrium value. By comparing
the two lines in Fig.8, we see that when θ deviates from

the special value π/2, Ã(θ) tends to be more chaotic.

V. PERSPECTIVE AND APPLICATIONS

The conventional wisdom is that the time complexity
for quantum adiabatic algorithm is solely determined by
the energy gap [5]. So far, for most quantum adiabatic al-
gorithms, their energy gaps decrease exponentially with
the system size n [25]. In these cases, the polynomial
time spent on preparing the system and checking the fi-
nal results can be comfortably neglected in counting for
time complexity. It appears no longer the case for our
quantum algorithm since the running time of our algo-
rithm, which is O(1) as indicated by the constant en-
ergy gap, is much shorter than the preparation time and
checking time when n is large. As a result, one may feel
necessary to include the preparation time and checking
time in time complexity. As there are m terms in the
Hamiltonian, the preparation should scale with m. The
checking time is clearly proportional to m. In this sense,
our algorithm is of time complexity O(m).

There is another way to assess the time complexity of
our algorithm: convert it to quantum circuits to see how
the number of quantum logic gates scales with n. The
caveat is, although there is an optimal way to convert
quantum circuit algorithm to quantum adiabatic algo-
rithm [7], there is no optimal way to convert quantum
adiabatic algorithm to quantum circuit algorithm. If we
adopt the scheme in Ref. [25], the converted quantum
circuit algorithm is of time complexity at least O(n3).
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If the gauge matrix A is treated as a sparse matrix, the
converted quantum circuit algorithm may be of time com-
plexity O(n2) [26]. One would expect that the optimally
converted quantum circuit algorithm can not be better
than O(n).

When the independent set problem is regarded as a
2-SAT problem, there exist both quantum and classical
algorithms. In Ref. [27], Farhi et al. proposed a quantum
algorithm for a class of restricted quantum 2-SAT prob-
lems. This algorithm is applicable to our independent
set problem and the time complexity is O(m4n2). This
is slower than the generic classical algorithm for 2-SAT
problems, which is of time complexity O(m+ n).

There is another classical algorithm, where one simply
picks up two variables and set them to 1. For the graph
with m = n, the chance of this randomly-picked solu-
tion being wrong is proportional to 2m/n(n− 1) ∼ 1/n,
which decreases polynomially with the graph size n. In
comparison, in our quantum algorithm, the chance of be-
ing wrong is exponentially small. For the graph with
m = bn2/4c, the chance of this randomly-picked solution
being wrong is about n2/2n(n− 1) ∼ 1/2, which is inde-
pendent of n. One may improve this classical algorithm
by running it in parallel. For example, for the latter case,
if one runs the algorithm in parallel on k different com-
puters, the chance of success can increase substantially
and becomes 1 − 1/2k. However, in this algorithm, one
has to take the checking time into account for time com-
plexity; otherwise, one would not know which computer
produces the correct answer. The time complexity, as a
result, is at least O(km).

The key of our algorithm, adiabatic non-abelian mix-
ing, can be applied to other problems that have multiple
solutions with one or more solutions easy to find or al-

ready found. For example, a class of quantum 2-SAT
problems have multiple solutions and one of their trivial
solutions is precisely |−1,−1,−1, · · · ,−1〉 [27–31].

The maximum independent set problem for a graph
is a NP-hard problem. Our analysis in the above puts
this problem in a new perspective. The maximum inde-
pendent set corresponds to the point which is farthest
from the original point (0, 0, · · · , 0). In our algorithm,
a quantum particle originally at (0, 0, · · · , 0) will indeed
arrive at this farthest point through quantum diffusion,
but with very small probability. Our understanding of
quantum diffusion may help us to find a way to increase
this probability significantly.

VI. CONCLUSION

In sum, we have presented an efficient quantum
algorithm for independent set problems which exploits
the non-abelian adiabatic mixing in a sub-Hilbert space
of degenerate eigenstates. Our algorithm is qualitatively
new and we expect that it find potential applications in
many other problems.
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