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Entanglement is a central concept in quantum information and a key resource for many quantum protocols.
In this work we propose and analyze a class of entanglement witnesses that detect the presence of entanglement
in subsystems of experimental multi-qubit stabilizer states. The witnesses we propose can be decomposed
into sums of Pauli operators and can be efficiently evaluated by either two measurement settings only or at
most a number of measurements that only depends on the size of the subsystem of interest. We provide two
constructive methods to design the local witness operators, the first one based on the local unitary equivalence
between graph and stabilizer states, and the second one based on sufficient and necessary conditions that the
respective set of constituent Pauli operators needs to fulfill. We theoretically establish the noise tolerance of the
proposed witnesses and benchmark their practical performance by analyzing the local entanglement structure of
an experimental seven-qubit quantum error correction code.

I. INTRODUCTION

Entanglement is one of the fundamental aspects of quan-
tum physics. It is used as a resource, for instance in quan-
tum communication protocols [1, 2] or in measurement-based
quantum computing [3, 4]. From a fundamental viewpoint,
the presence of entanglement allows one to rule out certain
local realistic descriptions of Nature [5, 6]. Recently, entan-
glement has also moved into the focus of other research areas
beyond the field of quantum information science: examples
include studies about the role of entanglement in quantum
phase transitions [7–10], the presence of long-ranged quan-
tum correlations as a signature of topologically ordered states
in condensed matter systems [11–15], or in the AdS/CFT cor-
respondence, where the entanglement entropy in a conformal
field theory contains information about the spacetime geome-
try of the anti-de Sitter space [16–19].

Experimentally, a variety of physical systems including
trapped ions [20], photons [21], cold atoms [22], or supercon-
ducting qubits [23], are used to create complex multi-qubit
quantum states where entanglement can be studied from a
fundamental point of view [24, 25], or used as a resource for
quantum communication [1, 2], computation [26] and simula-
tion [27]. In these systems the study of entanglement through
tomographic techniques like compressed sensing [28–30] is
feasible for small systems [31] but becomes impractical as
the number of qubits in the systems increases. Two common
approaches to overcome this difficulty are MPS tomography
[32–35], which efficiently reconstructs the state of systems
close to matrix product states, and entanglement witnesses
[36–38] which are observables that detect the presence of en-
tanglement with a reduced number of measurements.

Entanglement witnesses have been developed for diverse
scenarios, including multi-qubit states [24, 39, 40], continu-
ous variable systems [41–43], thermal states [44–47], high-
dimensional states [48–51], or as a way of not only detect-
ing, but also quantifying the amount of entanglement [52–55].
In the context of quantum communications, measurement-
device-independent witnesses [56–59] can be used to prevent

eavesdropping by certifying entanglement beyond measure-
ment imperfections.

With respect to the construction of optimal witness oper-
ators, work has mainly focused on the decomposition of wit-
nesses into Pauli operators [60, 61], or on reducing the number
of required measurement settings [62, 63]. Most efforts are
devoted to the detection of genuine entanglement, but there
are also witnesses that detect the entanglement depth [64, 65],
the entanglement with respect to partitions [66], or witnesses
that provide information about the Schmidt number [67–69].

In this work we focus on local witness operators [70–72],
i.e. witnesses that detect the entanglement among qubits in-
side subsets Ω of larger multi-qubit systems (see Fig. 1(a)).
As we will show, the entanglement detected by a local wit-
ness is intimately related to localizable entanglement [73–75],
which is the maximum entanglement that can be localized in
a region (subset of qubits) Ω by means of single-qubit projec-
tive measurements on the qubits outside Ω. In fact, we show
that if a local witness detects entanglement in a subsystem Ω,
the localizable entanglement in Ω is non-zero.

The use of multiple local witnesses for multiple regions
Ω reveals the existing entanglement structure of experimen-
tal states. With this information it is possible to answer
e.g. whether qubits in a given region or pairs of qubits are
entangled. It also allows one to study the entanglement of
the subsystem of interest coupled to an environment repre-
sented by the rest of qubits. In the preparation of complex
many-qubit quantum states, such information may be useful
to detect in which spatial regions and within which subsets of
particles errors have occurred.

The local witnesses we propose are constructed for stabi-
lizer states and represent a generalization of the local wit-
nesses proposed in [70] for graph states. Stabilizer states play
a role in many areas of quantum information, e.g. in quantum
error correction, where fragile quantum information of logi-
cal qubits is distributed over many physical qubits and collec-
tively encoded in entangled stabilizer quantum error correct-
ing codes [76, 77]. We show that, like genuine entanglement
witnesses [60], local witnesses for stabilizer states can be de-
composed into sums of Pauli operators, which belong to the
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FIG. 1. Schematic summary of features and construction techniques of local entanglement witnesses. (a) Given an experimental mul-
tipartite state ρ, if the measurement of a local witness WΩ yields a negative expectation value, a non-zero amount of entanglement can be
localized in Ω by local measurements on the qubits outside Ω. (b) A local witness constructed for a stabilizer state |S〉 can be decomposed
into a sum of stabilizer elements si defined by a subset WΩ ⊂ S of the stabilizer group S. Importantly, the number of stabilizers in WΩ

equals the number of qubits in Ω. (c) We propose two constructive methods to find valid sets WΩ . (c.1) The graph-based method consists in
first finding a local unitary ULE (a product of single-qubit unitaries) that maps the stabilizer state of interest onto a locally equivalent graph
state, ULE |S〉 = |G〉. Then, the subset WGΩ = {gµ : µ ∈ Ω} of graph state generators that constructs a local witness for |G〉 is identified,
and the inverse transformation yields the generator WΩ = U−1

LEW
G
ΩULE . (c.2) The stabilizer-based consists in checking the four conditions

summarized in Theorem 1, which the stabilizers si ∈WΩ must satisfy to construct a valid local witness for Ω.

stabilizer group that define the state of interest (Fig. 1(b)).

In order to find valid decompositions of local witnesses into
sets WΩ of stabilizer operators (see Fig. 1(b)) we propose
two methods, which will be called the graph-based method
and the stabilizer-based method in the remainder of the pa-
per. The graph-based method (see Figure 1(c.1)) consists of
finding multiple graph states and the local unitary operations
(product of single-qubit unitary operators) connecting them,
then constructing multiple local witness for each graph state,
and finally transforming them into local witnesses for the sta-
bilizer state via the inverse unitary operations. It was shown
in [78] that for every stabilizer state it is always possible to
find such local unitary operations and locally equivalent graph
states. The stabilizer-based method resumed in Fig. 1(c.2) es-
tablishes sufficient and necessary criteria that the stabilizers in
WΩ must satisfy to guarantee that it can be transformed into
a local witness of some graph state with only local unitary
operations.

Apart from providing information about the entanglement
in subsets of qubits, the number of measurement settings re-
quired to evaluate the local witnesses does not depend on the
total number of qubits in the state. Therefore, they can be ap-
plied efficiently to states with an in principle arbitrarily large
number of qubits. In order to reduce even further the num-
ber of measurements required we use the techniques in [62]
to propose two types (Fig. 1(c)) of modified local witnesses
that require even less measurement settings. These techniques
are based on reducing the number of stabilizers that appear in
the decomposition of the witness while keeping the ones that
can be measured with the same measurement setting. For in-
stance, with only two measurement settings it is possible to
evaluate all the modified local witness of one type for all the
subsystems of the experimental state. The downside of reduc-

ing the number of measurements is that the tolerance to noise
of the witness decreases. To analyze this quantitatively, we
benchmark the performance of the witnesses for noisy quan-
tum states, described a white noise model as previously used
e.g. in [38]. We also study the tendency of some witnesses
to have a more negative expectation value than others, which
means that they are finer entanglement detectors [79].

To test the performance of the proposed local witnesses in
practice, we use both methods to construct multiple local wit-
nesses for multiple subsystems (Fig. 1(f)) of a seven-qubit er-
ror correcting code. The analyzed state is a quantum error
correction code corresponds to a minimal instance of topolog-
ical color code, and encodes one protected logical qubit in en-
tangled states of seven physical qubits [80]. Additionally, we
use experimental data from a recent experimental realization
[81] of this state to evaluate all local entanglement witnesses
put forward, and thereby shed light on the local entanglement
structure of the experimental state.

In Section II we revise the concept of genuine entanglement
witness operators and particularize them to stabilizer states.
In Section III, we introduce the local witnesses for stabilizer
states, propose modified local witnesses that require a reduced
number of measurement settings, and compare their respec-
tive noise tolerance. Section IV describes the two methods
to construct these operators. In Section V, we present the re-
sults of the construction of local witnesses for the seven-qubit
color code and then apply them to the experimental realization
of this state to map out its entanglement structure. Section VI
presents our conclusions and an outlook.
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II. GENUINE ENTANGLEMENT WITNESS OPERATORS

Entanglement witnesses are observables that provide a suf-
ficient (thought not necessary) condition for the presence of
entanglement. They detect entanglement in noisy experimen-
tal quantum states, as long as the difference with the ideal state
is sufficiently small. In this section we revise the concept of
genuine entanglement witness operators and how to construct
them for stabilizer states as explained in [38, 60]. Evaluation
of these witnesses requires a number of measurements that
grows in general exponentially with the number of qubits in
the state. This motivates us to apply the methods from [61, 62]
to reduce the required number of measurement settings.

A. Witnesses as entanglement detectors

An entanglement witness that detects the genuine N -qubit
entanglement is an observable which is guaranteed to have
a non-negative expectation value if applied to any separable
state, and a negative expectation value for at least one genuine
entangled state [36]. Therefore, a negative expectation value
unambiguously signals the presence of N -partite genuine en-
tanglement. A witnessW prepared for the ideal expected state
|ψ〉 is an operator

W = α|ψ〉I − |ψ〉 〈ψ| , (1)

where |ψ〉 is a non-separable pure state and α|ψ〉 is the maxi-
mal Schmidt coefficient of all bi-partitions of |ψ〉 [60].

Note that the witness expectation value is directly related to
the quantum state fidelity F = 〈ψ| ρ |ψ〉 by 〈W〉ρ = α|ψ〉−F ,
and therefore a sufficiently high quantum state fidelity suffices
to signal the presence of entanglement. For many states the
state fidelity can be either estimated efficiently [82] or be di-
rectly determined [60] via a few measurement settings. For
stabilizer states |S〉, which we focus on here, the projector
|S〉 〈S| can be decomposed into a sum of the stabilizers that
define the state.

B. Stabilizer states

A stabilizer state |S〉 [76, 83] is an N -qubit state com-
pletely defined by N independent generators si (the generator
set), which mutually commute and act trivially on the state,
|S〉 = si |S〉. The Pauli operators si are tensor products of N
single-qubit Pauli operators {I,X, Y, Z} multiplied by fac-
tors ±1,±i. We denote the usual single-qubit Pauli operators
and the identity as X , Y , Z and I .

The set S containing all generators and their products (in-
cluding the identity operator I) forms the stabilizer group,
containing 2N elements, called stabilizers (Fig. 2(c)). We say
that S spans S and we will use the notation [S] = S.

We will use the fact that the choice of the generator set is not
unique, because generators contained in it can be recombined
and still generate the same stabilizer state, but may require
different measurement settings. A recombined generator set

FIG. 2. Example of a stabilizer state. (a) Seven-qubit color code
lattice containing 7 qubits in the vertices of 3 plaquettes colored in
red R, blue B and green G [80]. (b) Generator set S containing all
the generators si (and their products) that completely define the sta-
bilizer state |S〉, which in this example is the logical state |+L〉. (c)
Stabilizer S containing all the 128 products of generators (including
the identity I), whose elements are called stabilizers.

S(R) contains products of the generators in S, and these prod-
ucts are controlled by a non-singular N ×N binary matrix R:

S(R) =

s(R)
i : s

(R)
i =

N∏
j=1

s
Rij
j , i = 1, . . . , N

 , (2)

where s0
j = I and s1

j = sj .
For instance, the following recombined generator set spans

the same stabilizer as the generator set in Fig. 2(b):

S(R) =
{
sZRs

X
R , s

Z
B s

X
B , s

Z
Gs

X
G , s

X
R , s

X
B , s

X
G , s

X
L

}
, (3)

where the Z-type generators have been multiplied by the X-
type generators of the same plaquette, so they have trans-
formed into stabilizers containing only Y Pauli matrices.

Recombinations preserve the stabilizer S, so they also pre-
serve the projector onto the stabilizer state |S〉:

|S〉 〈S| =
∏

s
(R)
i ∈S(R)

I + s
(R)
i

2
=

1

2N

∑
si∈S

si ∀ R. (4)

Analogously, a generator subset WΩ ⊂ S of n < N in-
dependent and commuting stabilizers of S can be recombined
by n × n non-singular binary matrices RΩ . All the recom-
bined generator subsets W (RΩ)

Ω span the same subset of 2n

stabilizers (including the identity I):[
W

(RΩ)
Ω

]
= [WΩ ] ⊂ S ∀ RΩ . (5)

Then, the projector onto the common +1 eigenspace of all
the stabilizers in WΩ is preserved under recombinations:∏

s
(RΩ)

i ∈W (RΩ)

Ω

I + s
(RΩ)
i

2
=

∏
sj∈WΩ

I + sj
2

=
1

2n

∑
si∈[WΩ ]

si

(6)

for all RΩ .
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C. Standard and modified genuine witnesses for stabilizer
states

For all non-separable multi-qubit stabilizer states |S〉 the
maximal Schmidt coefficient of all bipartitions is α|S〉 = 1/2,
and the fidelity operator is the projector onto the +1 eigen-
value of the N stabilizers. Then, the standard genuine wit-
ness constructed for the stabilizer state reads

W =
1

2
I −

∏
si∈S

I + si
2

. (7)

The standard genuine witness is the same if we use any re-
combined generator set S(R) instead of S because, as pointed
out above, recombinations preserve the projector of Eq. (4).
For instance, the genuine witness for the seven-qubit color
code is preserved if one uses the recombined generator set
S(R) in Eq. (3) instead of S in Fig. 2(b). To compute the
expectation value of this witness it is necessary to measure
2N − 1 stabilizers, which becomes in general impractical for
large N . One way to overcome this problem is to construct
modified witness operators that includes a smaller number of
terms. One option is to consider what we call the the alterna-
tive witness [61, 62] in the following,

Wa =
N − 1

2
I − 1

2

∑
si∈S

si. (8)

This requires measuring only the N stabilizers in a generator
set S. In this case, substituting S by a recombined genera-
tor set S(R) changes the alternative witness, which however
remains a genuine witness.

If the stabilizer state |S〉 has a generator set S composed
entirely by X-type and Z-type stabilizers sXi and sZj respec-
tively, i.e. each involving single-qubit Pauli operators X and
Z only, (for instance Calderbank-Steane-Shor (CSS) codes
[84, 85]), this allows to construct a two-measurements wit-
ness,

W2m =
3

2
I −

∏
sXi ∈S

I + sXi
2

−
∏
sZi ∈S

I + sZi
2

. (9)

Note that its evaluation requires only two measurement set-
tings, with all qubits measured in the X and the Z basis.

For the two-measurement witness we have chosen the mea-
surement settings X1X2 · · ·XN and Z1Z2 · · ·ZN but rotated
versions σ1σ2 · · ·σN and σ′1σ

′
2 · · ·σ′N can be used instead as

long as σµ 6= σ′µ. For instance, in Ref. [70] the authors con-
struct modified witnesses for bi-colorable graph states, where
one measurement setting consists in measuring X on every
even qubit and Z on every odd qubit, and vice versa for the
second measurement setting. These operators are witnesses
because their expectation value is larger than the expectation
value of the standard genuine witness for any state [61, 62],

〈W〉ρ ≤ 〈Wa〉ρ , 〈W〉ρ ≤ 〈W2m〉ρ ∀ ρ, (10)

which guarantees non-negative expectation values for any sep-
arable state ρ.

The reduction in the number of measurement settings
comes at the price that modified witnesses are in general less
tolerant to noise. They detect entanglement only in a subset
of the states where the standard genuine witness also detects
entanglement.

III. LOCAL ENTANGLEMENT WITNESS OPERATORS

As stated above, we call a local witness an observable that
detects the entanglement of a subsystem of qubits (Fig. 1(a)).
This type of entanglement coincides with localizable entan-
glement [73–75]. In previous works, local witnesses were
proposed for graph states in [70, 71]. Here, we discuss how
they can be constructed and why they are detectors of entan-
glement. Then, we use the fact that every stabilizer state is
equivalent to some graph state up to a local unitary (i.e. a prod-
uct of single-qubit unitary operations) [78] to show that local
witnesses for stabilizer states also detect this entanglement.

A local witness can be decomposed into a sum of stabiliz-
ers, and the number of stabilizers that must be measured to
evaluate its expectation value only depends on the number of
qubits in the subsystem. On the other hand, the evaluation of
multiple local witnesses allows one to resolve the entangle-
ment structure of a state. This requires the measurement of a
number of stabilizers that grows with the number of subsys-
tems in addition to the number of qubits in each one. How-
ever, using the same ideas applied to the modified genuine wit-
nesses, it is possible to reduce the number of measurements.
We show that in fact, only two measurement settings are often
enough to reveal the entanglement structure with a modified
version of the local witnesses.

A. Graph states

We now review some key concepts of graph states that en-
able the construction of the local witnesses as proposed in
[70]. A graph state |G〉 is an N -qubit stabilizer state [86]
associated to an underlying undirected graph, like the one de-
picted in Fig. 3(a), formed byN sites (representing the qubits)
and a setE of links or edges l = {µ, ν} connecting sites µ and
ν. A graph, like the one in Fig. 3(a), can be represented by a
N ×N adjacency matrix Γ with elements Γµν = 1 (0) if the
sites µ, ν are (ar not) linked, or, equivalently, by the N ×

(
N
2

)
incidence matrix ME ,

[ME ]µl =

{
1 if µ ∈ l and l ∈ E
0 otherwise

, (11)

with the index µ indicating the µth site and l one of the
(
N
2

)
pairs of sites.

A graph state is non-separable if and only if the underlying
graph is connected [86]. A graph is connected if it can not be
separated into two components without breaking a link. The
rank modulo 2 ofME is related to the numberm of connected
components of the graph: rank (ME) = N − m [87]. In
particular, rank (ME) = N − 1, if the graph is connected.
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FIG. 3. Graph state concepts. (a) Underlying graph of a 4-qubit
graph state, and neighborhood N1 of the site 1. (b) Adjacency ma-
trix Γ . (c) Incidence matrix ME . (d) Unitary operation ULC,1 that
realizes a local complementation on the qubit 1. (e) Graph defining
the locally equivalent graph state |G〉 obtained after applying ULC,1,
and subsystem of qubitsΩ = {2, 3, 4}. (f) Natural generator set of a
graph state. (g) Generator subset WGΩ that constructs a local witness
for |G〉 in Ω. (h) Subgraph of the reduced graph state |GΩ〉 in Ω.
(i) Reduced incidence matrix MEΩ . The order of columns in MEΩ

is not important for this work. (j) Basis of |GΩ〉 composed by the
reduced graph state generators gΩ,µ.

For a graph state |G〉, there is one graph state generator gµ
associated to each qubit µ,

gµ = Xµ

∏
ν∈Nµ

Zν , (12)

where Nµ is the neighborhood of the site µ.
An equivalent representation of a graph state is

|G〉 =

 ∏
{µ,ν}∈E

UCZµν

 N⊗
η=1

1√
2

(|0η〉+ |1η〉) , (13)

where controlled-phase gates

UCZµν =
Iν + Zν

2
Iµ +

Iν − Zν
2

Zµ (14)

act on all pair of qubits (sites) connected by a link in the
underlying graph.

We need to define analogous concepts within the subsystem
Ω where we aim to detect entanglement. From a graph state
it is possible to extract a reduced graph state |GΩ〉 for each
subsystem Ω of n < N qubits. The underlying graph is the
reduced graph (Fig. 3(h)) composed by the sites in Ω and the
subset of links EΩ ⊂ E connecting them. It is represented by
the reduced incidence matrix MEΩ (Fig. 3(i)) that describes
the links in EΩ . Thus, the reduced graph is connected and

hence, |GΩ〉 is non-separable, if and only if:

rank (MEΩ ) = n− 1. (15)

The graph state generators gΩ,µ of the reduced graph state
|GΩ〉 can be obtained from the generator subset of n graph
state generators corresponding to the qubits in Ω (Fig. 3(g)):

WGΩ = {gµ : µ ∈ Ω , gµ |G〉 = |G〉} . (16)

From this set one can construct the reduced graph state gen-
erators (Fig. 3(j)),

gΩ,µ =
⊗
ν∈Ω

gµν ∀ µ ∈ Ω. (17)

Here, gµν ∈ {I,X,Z} is the single-qubit Pauli operator that
appears for qubit ν in the graph state generator gµ ∈WGΩ .

These reduced graph state generators form a complete gen-
erator set GΩ of the reduced graph state |GΩ〉 (Fig. 3(i)),

gΩ,µ |GΩ〉 = |GΩ〉 ∀ µ ∈ Ω. (18)

Since the controlled-phase gates equal their inverse opera-
tion, the unitary that disentangles Ω from the rest Ω̄ of qubits
UGdis |G〉 = |GΩ〉 ⊗ |GΩ̄〉 is the product of controlled-phase
operations that break the links connecting Ω with Ω̄,

UGdis =
∏

{µ,ν}∈T

UCZµν . (19)

where

T =
{
{µ, ν} ∈ E : µ ∈ Ω , ν ∈ Ω̄

}
(20)

This unitary applied to the generator subsetWGΩ leads to the
reduced graph state generators gΩ,µ (Fig. 3(j))

UGdisgµU
G†
dis = gΩ,µ ⊗ IΩ̄ , (21)

and hence

UGdis

 ∏
gµ∈WG

Ω

I + gµ
2

UG†dis = |GΩ〉 〈GΩ | ⊗ IΩ̄ . (22)

B. Local witnesses for graph states

Following the approach in [70], the entanglement of an N -
qubit state ρ is localized in a subsystem Ω by means of local
measurements on the rest of qubits Ω̄. The entanglement does
not increase under these measurements, so the remaining
entanglement in the reduced state ρΩ obtained after the
measurement was present in ρ. On ρΩ a genuine witness W
is evaluated to detect the remaining entanglement. The key
observation is that, instead of executing these measurements,
we can instead evaluate a local entanglement witnessWΩ on
the global state ρ because the expectation values coincide,
〈W〉ρΩ = 〈WΩ〉ρ. Therefore, a negative expectation value of
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the local witness WΩ detects the presence of entanglement
in the reduced state ρΩ , and thus the entanglement in the
subsystem Ω of the global state ρ is detected.

Let us briefly recall the effect of Z measurements on a pure
graph state |G〉. All 2N−n possible outcomes of the measure-
ments of qubits ν in Ω̄ can be represented by a binary num-
ber x of length N − n, with the bit xν = 0 (1) for outcome
+1 (−1). The reduced state obtained from |G〉 after the out-
come x on the measurement of Z on every qubit ν ∈ Ω̄ is
Zx |GΩ〉 [86], i.e. the reduced graph state |GΩ〉 up to outcome-
dependent single-qubit Z operations, Z0

µ = Iµ and Z1
µ = Zµ.

The effect of the latter is equivalent to the action of the disen-
tangling unitary in Eq. (19) and tracing over the rest of qubits,

|GΩ〉 〈GΩ | = trΩ̄

(
UGdis |G〉 〈G|U

G†
dis

)
. (23)

If the same process is applied to a mixed N -qubit state ρ, the
reduced state is

ρGΩ = trΩ̄

(
UGdisρU

G†
dis

)
. (24)

One can check that this reduced state is the average over
all possible outcomes states ρΩ,x obtained after the same
measurement process, multiplied by the outcome-dependent
single-qubit operations,

ρGΩ =
∑
x

pxZxρΩ,xZ
†
x. (25)

The normalized state corresponding to outcome x

ρΩ,x =
1

px
trΩ̄

ρ∏
ν∈Ω̄

Iν + (−1)xνZν
2

 (26)

is obtained with a probability px.
Once the reduced state ρGΩ is obtained, a genuine witness of
the form Eq. (1)

WGΩ = α|GΩ〉IΩ − |GΩ〉 〈GΩ | (27)

allows one to detect entanglement in the region. Again, the ex-
pectation value of this genuine witness evaluated in ρGΩ equals
the expectation value of the following local witness evaluated
in the original state ρ,

WGΩ = α|GΩ〉I −
∏

gµ∈WG
Ω

I + gµ
2

, (28)

yielding, using Eq. (22),

〈WGΩ 〉ρGΩ = 〈WGΩ〉ρ . (29)

As pointed out in section II A,WGΩ acts as a witness only
if |GΩ〉 is a non-separable state. Therefore, WGΩ must be cho-
sen such that the genuine witnessWGΩ is prepared for a non-
separable graph state |GΩ〉.

This expectation value is the average of the genuine witness
evaluated on all reduced states after the measurement,

〈WGΩ〉ρ =
∑
x

px 〈WGΩ 〉ZxρΩ,xZ†
x
. (30)

Since px are positive coefficients, if the expectation value
of the local witness is negative, at least one 〈WGΩ 〉ZxρΩ,xZ†

x

with px 6= 0 is also negative, indicating that an outcome state
ρΩ,x is non-separable (recall that Zx preserves entanglement).
Thus, the entanglement has been localized in the subsystemΩ
by the corresponding measurement.

This is due to the connection between local witnesses and
localizable entanglement [73–75]. This quantity provides the
maximum amount of entanglement LΩ(ρ) that can be local-
ized on average in a subsystem Ω by means of local measure-
ments on the rest of qubits. Every measurementM specifies
a set of 2N−n outcome states ρΩ,x and probabilities px, so for
a givenM the average entanglement localized is:

LΩ(ρ) = max
M

LMΩ (ρ) , LMΩ (ρ) =
∑
x

pxE (ρΩ,x) , (31)

where E (ρΩ,x) is an entanglement measure. Thus, if at least
one of the outcome states ρΩ,x is entangled, the the entangle-
ment measure E (ρΩ,x) 6= 0 is non-zero and consequently,
the localizable entanglement is non-zero LΩ(ρ) 6= 0. Analo-
gously, if a local witness has negative expectation value, there
is at least one outcome state ρΩ,x with px 6= 0 resulting of
the particular measurement of Z for which the witnessWGΩ
in Eq. (30) detects entanglement. Hence, as we show in more
detail in Refs. [72, 88], local witnesses detect localizable en-
tanglement because a negative expectation value of the first
implies that the value of the second is non-zero.

C. Local witness operators for stabilizer states

Now we want to construct a witness for the stabilizer state
|S〉, i.e. we want to measure only stabilizers si ∈ S of its
stabilizer. We can show that if we find a generator subset
WΩ ⊂ S that is locally equivalent to some generator subset
of graph state generators WGΩ , the local witness constructed
withWΩ instead ofWGΩ is also a local witness that detects the
entanglement of Ω.

We say that one generator subset WΩ of stabilizers is lo-
cally equivalent (LE) to a generator subset WGΩ of graph state
generators if there is a local unitary VLE and a recombination
RΩ such that:

VLEW
(RΩ)
Ω V †LE = WGΩ . (32)

Hence, we can construct the following local witness that is
decomposed only into stabilizers of the stabilizer state |S〉 and
we will call standard local witness:

WΩ =
1

2
I −

∏
si∈WΩ

I + si
2

. (33)
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Note that the standard local witness is locally equivalent to the
witness for a graph state VLEWΩV

†
LE = WGΩ . Then, the ex-

pectation value ofWΩ evaluated on an state ρ coincides with
the expectation value ofWGΩ evaluated on the locally equiva-
lent state VLEρV

†
LE ,

〈WΩ〉ρ = 〈WGΩ〉VLEρV †
LE
, (34)

which has the same entanglement properties. Again, WGΩ is
a witness only if the reduced graph state |GΩ〉 associated to
WGΩ is non-separable.

If the standard local witness has negative expectation value,
the entanglement detected can be understood in an analogous
way. In this case, the measurements of the qubit ν ∈ Ω̄ out-
side the subsystem are performed in the basis V −1

LEZνVLE .
The outcome-dependent correction is V −1

LEZxVLE , which is
again a local unitary operation that does not change the entan-
glement properties of the outcome states. The average of all
the outcome states corrected in this way is

ρΩ = trΩ̄

(
UdisρU

†
dis

)
. (35)

Here the disentangling unitary is

Udis = V −1
LEU

G
disVLE . (36)

Then, a negative expectation value of the local witness
implies that at least one outcome state is genuinely entangled,
and therefore entanglement has been localized in Ω.

Now, the problem reduces to finding the generator subset
WΩ of stabilizers that constructs a valid local witness for the
subsystem Ω. The conditions on WΩ are summarized in the
next Proposition.

Proposition. 1. The stabilizer state |S〉 with stabilizer S has
a local witness of the form of Eq. (33) for the subsystem Ω
that is constructed from the generator subset WΩ ⊂ S of sta-
bilizers if and only if the following conditions are satisfied:

(A) WΩ is locally equivalent to some generator subset of
graph state generators, i.e. there is a local unitary VLE
and a recombination RΩ such that:

VLEW
(RΩ)
Ω V †LE = WGΩ . (37)

(B) The reduced graph state |GΩ〉 is non-separable.

Proof. Property (A) guarantees that the local witness WΩ

constructed from WΩ satisfies Eq. (34). Property (B) guar-
antees that WGΩ is a valid local witness. Provided the local-
unitary equivalence between the states ρ and VLEρV

†
LE their

entanglement properties coincide. Therefore, given Eq. (34),
WΩ detects entanglement only if ρ is entangled. Hence, the
local witness constructed from WΩ satisfying proposition 1 is
a valid local witness.

This takes into account that it is possible that a generator
subset WΩ can not be transformed directly into some WGΩ by
a local unitary, but that there is a recombined generator subset
W

(RΩ)
Ω for which such a local unitary exists. For instance, the

following generator subsets of stabilizers of the seven-qubit
color code differ only in a recombination RΩ but the first one
can not be transformed directly into graph state generators:

W{1,2,3,4} =
{
sXR s

Z
R , s

Z
R , s

Z
B , sZG

}
(38)

W
(RΩ)
{1,2,3,4} =

{
sXR , sZRs

Z
Bs

Z
G , sZB , sZG

}
. (39)

More concretely, the first two elements sXR s
Z
R = Y1Y2Y3Y4

and sZR = Z1Z2Z3Z4 of W{1,2,3,4} can not be transformed
into two graph state generators with the same local unitary
VLE . But the local unitary VLE = H1H2H4 composed
by three Hadamard operators transforms the stabilizers in
W

(RΩ)
{1,2,3,4} into graph state generators:

sXR = X1X2X3X4 7→ g3 = Z1Z2X3Z4

sZRs
Z
Bs

Z
G = Z1Z3Z5Z7 7→ g1 = X1Z3Z5Z7

sZB = Z2Z3Z5Z6 7→ g2 = X2Z3Z5Z6

sZG = Z3Z4Z6Z7 7→ g4 = Z3X4Z6Z7

. (40)

Note also that the only condition of the local unitary VLE
is that it transforms a generator subset WΩ of the stabilizer
state |S〉 into a generator subset WGΩ of a graph state |G〉,
but it is not forced to transform |S〉 into |G〉. This fact will
become important below where we prove that the stabilizer-
based method indeed finds more witnesses than the graph-
based method.

D. Modified local witnesses

The evaluation of the standard local witness of Eq. (33) re-
quires the measurement of 2n−1 stabilizers. This number can
be reduced further following the same techniques employed
for the modified genuine witnesses. Once a valid subset WΩ

that satisfies Proposition 1 is found, it can be used to con-
struct modified local witnesses that require less measurement
settings. For instance, with n measurements we can compute
the value of the alternative local witness:

WΩ,a =
n− 1

2
I − 1

2

∑
si∈WΩ

si. (41)

Similar to the two-measurement local witness, if the subset
WΩ is entirely composed by X-type and Z-type stabilizers,
one can construct a two-measurements local witness:

WΩ,2m =
3

2
I −

∏
sXi ∈WΩ

I + sXi
2

−
∏

sZi ∈WΩ

I + sZi
2

, (42)

that can be evaluated with just two measurement settings. If
WΩ is not of this form, a recombined generator subsetW (RΩ)

Ω
can be used instead. For instance, the generator subset in
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Formula Meas. set. Crit. prob. pc

Genuine
witnesses

Standard W =
1

2
I −

∏
si∈S

I + si
2 2N − 1 ' 1/2

Alternative Wa =
N − 1

2
I − 1

2

∑
si∈S

si N 1− 1/N

Two
measurements

W2m =
3

2
I −

∏
sXi ∈S

I + sXi
2

−
∏
sZi ∈S

I + sZi
2 2 ∈ [2/3, 3/4]

Local
witnesses

Standard WΩ =
1

2
I −

∏
si∈WΩ

I + si
2 2n − 1 ∈ [1/3, 1/2]

Alternative WΩ,a =
n− 1

2
I − 1

2

∑
si∈WΩ

si n 1− 1/n

Two
measurements

WΩ,2m =
3

2
I −

∏
sXi ∈WΩ

I + sXi
2

−
∏

sZi ∈WΩ

I + sZi
2 2 ∈ [1/2, 3/4]

TABLE I. Overview of genuine and local entanglement witnesses: the table shows the explicit form in terms of stabilizer operators si defining
the N -qubit stabilizer state, the maximum number of measurement settings required, and the critical probability of the white noise state of
Eq. (45) below which no entanglement is detected.

Eq. (38) is not of this form because the first element contains
Pauli operators Y , but the generator subset in Eq. (39) has
the right form. In this example one can construct the follow-
ing two-measurements local witness from the generator subset
W

(RΩ)
{1,2,3,4}:

W{1,2,3,4},2m =
3

2
I − I + sXR

2

− I + sZRs
Z
Bs

Z
G

2

I + sZB
2

I + sZG
2

. (43)

Again, here we have chosen the measurement settings
X1X2 · · ·XN and Z1Z2 · · ·ZN , but other pairs can be cho-
sen as well.

Like in Eq. (10), the modified local witnesses are valid wit-
nesses as their expectation value is greater or equal than the
expectation value of the standard local witness for every state,

〈WΩ〉ρ ≤ 〈WΩ,a〉ρ , 〈WΩ〉ρ ≤ 〈WΩ,2m〉ρ ∀ ρ. (44)

Again, the price of reducing the number of measurements is
that the modified local witnesses are in general less tolerant to
noise than standard local witnesses.

E. Robustness and comparison of genuine and local witnesses

To obtain a benchmark figure of merit for the robustness
of a local witness, we consider [61] the performance of the
witnesses with respect to a noisy model state of the form

ρp = p |S〉 〈S|+ 1− p
2N

I, (45)

which is a mixture of the ideal stabilizer state |S〉 and the com-
pletely mixed state.

The robustness of a witness is then given by the crit-
ical probability pc, that guarantees that the expectation
value of the witness operator evaluated in the state ρp is
negative, and thus entanglement is detected. The critical
probabilities of all witnesses discussed summarized in Table I.

Moreover, one witnessW is said to be finer than otherW ′
if the expectation value ofW is negative on every state where
the expectation value ofW ′ is negative. Thus, there is a posi-
tive coefficient β > 0 such that 〈W〉ρ ≤ β 〈W ′〉ρ for any state
ρ. In that case, one can be sure thatW detects entanglement
ifW ′ detects it. If one witness is finer than another, it is also
more robust.

There is a hierarchy between the presented witnesses con-
sidering this criteria. First, the standard genuine witness is
finer than the modified genuine witnesses [61, 62]:

〈W〉ρ ≤ 〈Wa〉ρ , 〈W〉ρ ≤ 〈W2m〉ρ ∀ ρ, (46)

which again shows that reducing the number of measurements
by means of modifying the witnesses leads to a decrease of
the tolerance to noise. Similarly, and using the same ideas
as in [61, 62], the standard local witness constructed with the
generator subset WΩ is finer than the modified witnesses con-
structed from the same generator subset:

〈WΩ〉ρ ≤ 〈WΩ,a〉ρ , 〈WΩ〉ρ ≤ 〈WΩ,2m〉ρ ∀ ρ. (47)

Second, standard local witnesses, for every subsystem Ω,
are finer than the standard genuine witness because the ex-
pectation value of the projector in Eq. (33) is bigger than the
expectation value of the projector in Eq. (7) for any state ρ:

〈WΩ〉ρ ≤ 〈W〉ρ ∀ ρ. (48)

Third, two different standard local witnessesWΩ andWΩ′

such that the generator subsets WΩ and WΩ′ satisfy [WΩ ] ⊂
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[WΩ′ ] (therefore, the subsystem Ω is included inside the sec-
ond Ω ⊂ Ω′) satisfy that the first one is finer than the second:

〈WΩ〉ρ ≤ 〈WΩ′〉ρ ∀ ρ. (49)

For instance, the standard local witness constructed from
W{2,3} =

{
sXR , s

Z
B

}
is finer than the standard local witness

constructed from W{2,3,4} =
{
sXR , s

Z
B , s

Z
G

}
.

In the following we provide recipes how to construct the
local witnesses starting from the stabilizers of the state of in-
terest.

IV. CONSTRUCTION OF LOCAL WITNESSES

We now propose two methods to find a generator subset
WΩ that satisfies Proposition 1: The graph-based method ex-
ploits the connection between stabilizers and graph states, and
the stabilizer-based method provides sufficient and necessary
criteria to decide whether an arbitrary WΩ does satisfy this
proposition. The latter does not require finding the local uni-
tary and the graph state generators (Figs. 1(e.1) and 1(e.2)).
We anticipate that the stabilizer-based method finds the com-
plete set of local stabilizer-based witnesses, while the graph-
based method in general only finds a subset of them.

Moreover, we will show that generally there are multiple
local witnesses for every subsystem. These witnesses act like
different detectors of the same entanglement in the sense that
the positive detection of just one of them is enough to confirm
that the subsystem is entangled.

A. Graph-based method

We now show how can one use the knowledge of a graph
state |G〉 that is locally equivalent to a stabilizer state of inter-
est |S〉, i.e. ULE |S〉 = |G〉, to construct local witnesses for
this state as illustrated in Fig. 4. Some key properties of graph
states are depicted in Fig. 3. It is known that for any stabilizer
state such a locally equivalent graph state exists [78]. Within
the binary picture of the stabilizer formalism, which we sum-
marize in Appendix A, the problem of finding such a graph
state reduces to solving a system of binary equations [86, 89].

Once the graph state generators have been found, the fol-
lowing stabilizer generator subset for state |S〉 in a region Ω
of interest can be obtained by transforming the graph state
generators corresponding to qubits within Ω,

WΩ =
{
U−1
LEgµULE ∈ S : µ ∈ Ω

}
, (50)

which satisfies property (A) in Proposition 1. The subset WΩ

also satisfies property (B) if the underlying graph Γ of |G〉 is
connected within the subsystem Ω, and this is the case if the
incidence matrix MEΩ of the reduced graph has rank n− 1.

We illustrate this for the example of the first graph state in
Fig. 4(b). The local unitary ULE = H1H5H7 transforms the
seven-qubit stabilizer color code as defined in Fig. 2 into a

FIG. 4. Illustration of the graph-based method. Here, local wit-
nesses for (a) two subsystem {5, 6} (green) and {2, 3, 4} (yellow)
of the seven-qubit color code |S〉 are constructed. The protocol con-
sists of the following steps: Find the local symmetries U (t)

LS such
that U (t)

LS |S〉 = |S〉, and a local unitary ULE that generates the ini-
tial locally equivalent graph state ULE |S〉 = |G(0)〉. (b) With local
complementation unitary operations U (k)

LC generate the orbit OS of
graph states locally equivalent to |S〉, i.e. U (k)

LC |G
(0)〉 = |G(k)〉. For

each graph consider the subsystems that are connected (e.g. {5, 6} is
connected in both depicted graphs, but {2, 3, 4} is connected only in
the second) and take the (c) generator subsets WG

(k)

Ω . (d) Apply the

local unitary
[
U

(k,t)
L

]−1

to obtain (e) the generator subsets W (k,t)
Ω

that construct local witnesses for the stabilizer state |S〉.

graph state with the following correspondence between stabi-
lizers and graph state generators:

U−1
LE g1 ULE = sZR , U−1

LE g2 ULE = sXGs
X
L

U−1
LE g3 ULE = sXR s

X
B s

X
G , U−1

LE g4 ULE = sXB s
X
L

U−1
LE g5 ULE = sZB , U−1

LE g6 ULE = sXR s
X
L

U−1
LE g7 ULE = sZG

. (51)

Whereas any generator subset WΩ of these stabilizers sat-
isfies property (A) in Proposition 1, this is not the case for
property (B), which depends on the selected subsystem. For
instance, since the subsystem Ω = {5, 6} shown in green is
connected, the generator subset W{5,6} =

{
sZB , s

X
R s

X
L

}
in-

deed constructs a local witness operator,

W{5,6} =
1

2
I − I + sZB

2

I + sXR s
X
L

2
(52)

for this subsystem. In contrast, the subsystem {2, 3, 4} in red
is not connected within this graph, thus the generator sub-
set W{2,3,4} =

{
sXGs

X
L , s

X
R s

X
B s

X
G , s

X
B s

X
L

}
does not provide

a local witness. This illustrates that construction of a wit-
ness using the graph-based approach requires finding a locally
equivalent graph state, for which the qubits corresponding to
the region of interest are connected.

If the required connectivity within the regionΩ is not given
for the graph state |G〉, one can use this state to generate other
locally equivalent graph states by local complementation (LC)
operations: the entirety of the locally equivalent graph states
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|G(1)〉 , ..., |G(k)〉 , ... reached in this way is a finite set and cor-
responds to the orbit of the graph associated to the initial graph
state.

Local complementation on a site η in a graph (represented
by an adjacency matrix Γ ) acts on all possible links between
the sites forming the neighborhood Nη of site η and substi-
tutes them by their complementary, i.e removes the existing
links and adds the non-existing ones,

Γ ′µν =

{
Γµν if µ and / or ν /∈ Nη
Γµν + 1 if µ and ν ∈ Nη

, (53)

where the sum is modulo 2. The unitary realizing the graph
state transformation corresponding to the LC on the graph is
given by a product of single-qubit unitary operations [86],

ULCη = exp
(
−iπ

4
Xη

) ∏
µ∈Nη

exp
(
i
π

4
Zµ

)
. (54)

See Figures 3 (a), (d), (e) for an example of a unitary perform-
ing a LC on a graph state.

Then, for each connected subsystem in the underlying
graph of each graph state obtained in this manner one can take
the generator subset (Fig. 3(g))

WG
(k)

Ω =
{
g(k)
µ : g(k)

µ |G(k)〉 = |G(k)〉 , µ ∈ Ω
}

(55)

and transform these graph state generators back into a subset
of generators of the original stabilizer state of interest,

W
(k)
Ω = U−1

LE

[
U

(k)
LC

]−1

WG
(k)

Ω U
(k)
LCULE , (56)

by the inverse chain of local unitary operations corresponding
to the sequence of LC operations. Due to the connectivity
of the region Ω within the graph they originate from, they
satisfy Proposition 1 by construction and thereby provide a
valid local witness operator for state |S〉 within Ω.

This approach, involving exploration of the orbit of a graph
by LC operations, allows one to find local witnesses for any
possible subsystem Ω of qubits belonging to the stabilizer
state. Using additional symmetries of the stabilizer state al-
lows one to find even more witnesses: Such symmetries are
local unitary operations U (t)

LS , labeled by an index t, which act
trivially on the stabilizer state U (t)

LS |S〉 = |S〉 but are them-
selves not stabilizer operators. These unitaries can be found
by means of solving a binary linear system in the binary pic-
ture. For instance, for the seven-qubit color code defined in
Fig. 2, one of the symmetries is

ULS =

7∏
ν=1

exp
(
i
π

4
Xν

)
, (57)

which transforms the generator set S of Fig. 2 into the re-
combined generator set S(R) of Eq. (3). Whereas a symmetry
leaves the stabilizer S invariant, it may transform a genera-
tor subset WΩ into another one that generally will not lead

to the same local witness. For instance, the generator subset
W{1,2,3,4} in Eq. (38) is transformed into a generator subset

W ′{1,2,3,4} = ULSW{1,2,3,4}U
†
LS

=
{
sZR , s

X
R s

Z
R , s

X
B s

Z
B , sXGs

Z
G

} (58)

that constructs a different local witness because it spans a dif-
ferent set of stabilizers than W{1,2,3,4}:[

W ′{1,2,3,4}

]
6=
[
W{1,2,3,4}

]
. (59)

Therefore, for every generator subset W (k)
Ω found with this

method, the generator subset W (k,t)
Ω =

[
U

(t)
LS

]−1

W
(k)
Ω U

(t)
LS

also constructs a local witness that may be different from the
one constructed using W (k)

Ω for the same subsystem.
Interestingly, there can exist even more local witnesses that

are not generated using the graph-based approach, but can be
found using an alternative method outlined in the following
section.

B. Stabilizer-based method

Here, we introduce an alternative method which provides
sufficient and necessary criteria to decide if a given generator
subset WΩ ⊂ S of stabilizers constructs a local witness for a
subsystemΩ, i.e. that whether or not it satisfies Proposition 1.
This method is illustrated in Fig. 5 with an example. Impor-
tantly, the method does not require obtaining the local unitary
VLE , nor the recombination RΩ of Proposition 1. Further-
more, the stabilizer-based method is based on a set of intuitive
criteria, which for simple cases can be checked by inspection.

Given a generator subset WΩ ⊂ S of a stabilizer, we de-
note with siµ the single-qubit Pauli operator of the stabilizer
operator si ∈WΩ on the qubit µ,

si =

N⊗
µ=1

siµ siµ ∈ {I,X, Y, Z} . (60)

We will need two useful definitions:

Definition. 1. The n reduced Pauli operators sΩ,i of a
generator subset WΩ ⊂ S that contains n stabilizers are
(Fig. 5(b)):

sΩ,i =
⊗
µ∈Ω

siµ ∀ si ∈WΩ . (61)

The reduced Pauli operators of the generator subset WGΩ
of a graph state are the reduced graph state generators gΩ,µ
(Fig. 3(j)) defined in Eq. (17).

Definition. 2. The pseudo-incidence matrix M(WΩ) of a
generator subsetWΩ of n stabilizers si, is theN×

(
n
2

)
binary

matrix created from the commutation or anti-commutation
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a) 

b) 

d) e) 

c) 

a) 

FIG. 5. Illustration of the stabilizer-based method to obtain local
witnesses. The method allows one to decide if a given (a) generator
subset WΩ ⊂ S composed by the stabilizers in (b) constructs a local
witness for a subsystemΩ. For the example shown, it contains n = 3
independent and commuting stabilizers so it satisfies condition (i) in
Theorem 1. (c) The reduced stabilizers in the subsystem Ω are inde-
pendent and commute, thus they satisfy condition (ii). (d) For each
pair of stabilizers si, sj ∈ WΩ and for each qubit µ write a 0 if the
Pauli operators siµ, sjµ ∈ {I,X, Y, Z} commute [siµ, sjµ] = 0,
and 1 if they anti-commute {siµ, sjµ} = 0. The subsystem Ω can
be read from this local commutation structure: it contains the qubits
ν where at least one pair of stabilizers anti-commutes (qubits in the
yellow area). (e) The pseudo-incidence matrixM (WΩ) contains the
information about the local commutation structure. All rows corre-
sponding to qubits outside Ω are zero, thus condition (iii) holds.
The rank modulo 2 of M (WΩ) is n − 1 = 2 here, thus condi-
tion (iv) holds. Therefore, the generator subset WΩ constructs a
valid local witness for the subsystem Ω = {2, 3, 4}, since it satisfies
(i), (ii), (iii), (iv) in Theorem 1.

property of each pair of stabilizers si, sj ∈WΩ on each qubit
(Fig. 5(c)) as follows:

M (WΩ)µl =

{
1 if {siµ, sjµ} = 0

0 if [siµ, sjµ] = 0
(62)

Here, the index l = {i, j} labels all pairs of stabilizers
si, sj ∈ WΩ from 1 to the number of pairs

(
n
2

)
, and the in-

dex µ labels qubits from 1 to N .

Note that the pseudo-incidence matrix is preserved under
local unitary operations,

M
(
VLEWΩV

†
LE

)
= M (WΩ) , (63)

because commutation and anti-commutation relations of
single-qubit Pauli operators siµ on each qubit are preserved
under these operations.

The following theorem then provides the necessary and suf-
ficient criteria to decide whether a generator subset constructs
a local witness for a subsystem or not:

Theorem. 1. The generator subset WΩ ⊂ S satisfies Propo-
sition 1 i.e. constructs a local witness for the subsystem Ω if
and only if it satisfies the following properties:

(i) WΩ contains n independent and commuting stabilizers.

(ii) The n reduced Pauli operators sΩ,i in Ω are indepen-
dent and commute.

(iii) The rows of the pseudo-incidence matrix M (WΩ)
corresponding to the qubits outside Ω are zero,
i.e. M (WΩ)ηl = 0 ∀l and ∀η /∈ Ω.

(iv) The modulo 2 rank of the pseudo-incidence matrix
M (WΩ) = n− 1.

Proof. To prove this we first show that (i), (ii), (iii) are suf-
ficient and necessary for (A) in Proposition 1. Suppose that
the generator subset WΩ satisfies (A). Then, the generator
subset WGΩ exists and contains n independent and commut-
ing graph state generators. This is preserved under any local
unitary and recombinations, so WΩ contains n independent
and commuting stabilizers. Then (A) implies (i). The same
applies to the reduced Pauli operators: the n reduced graph
state generators of WGΩ are independent and commute, thus
the same holds for the reduced Pauli operators of WΩ . Then
(A) implies (ii). The single-qubit Pauli operators of WGΩ on
qubits outside Ω are of two types only, namely I and Z, thus
they commute. Again, this is preserved by local unitary op-
erations and recombinations, therefore the single-qubit Pauli
operators of WΩ on these qubits are of two types, Iη and ση ,
only, which is the same for each qubit η /∈ Ω. They commute
on each qubit, thus the rows η /∈ Ω ofM (WΩ) are zero. Then
(A) implies (iii).

To show the converse, now suppose that the generator sub-
set WΩ satisfies (i), (ii), (iii). If (i), the generator subset
VLEWΩV

†
LE contains n independent and commuting stabiliz-

ers. If (ii) holds, the n reduced Pauli operators VLEsΩ,iV
†
LE

form a complete generator set of the reduced graph state |G〉.
It was shown in [78] that there is always a local unitary VLE,Ω
and a recombination RΩ that transforms them into graph state
generators,

VLE,Ω

n∏
j=1

s
[RΩ ]ij
Ω,i V †LE,Ω = gΩ,µ ∀ sΩ,i, (64)

where gΩ,µ are the reduced graph state generators of the re-
duced graph state |GΩ〉 and the mapping i 7→ µ is one-to-one.

As an example, in Eq. (40), the reduced Pauli operators of
the generator subset of Eq. (38) are transformed into reduced
graph state generators

sΩ,1 = Y1Y2Y3Y4 7→ gΩ,3 = Z1Z2X3Z4

sΩ,2 = Z1Z2Z3Z4 7→ gΩ,1 = X1Z3

sΩ,3 = Z2Z3 7→ gΩ,2 = X2Z3

sΩ,4 = Z3Z4 7→ gΩ,4 = Z3X4

(65)

with the local unitary VLE,Ω = H1H2H4 and the recombina-
tion

RΩ =

1 0 0 0
1 1 0 0
0 1 1 0
0 1 0 1

 . (66)
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Finally, if (iii) holds, the single-qubit Pauli operators siη
on each qubit η /∈ Ω can only be of two types: Iη and ση .
Then, there exists always a local unitary VLE,Ω̄ that trans-
forms them into Iη and Zη . For instance, for the generator
subset in Fig. 5(a) this unitary is given by VLE,Ω̄ = H5H6H7.

The conclusion is that if the generator subset WΩ satisfies
(i), (ii), (iii), the local unitary VLE = VLE,Ω ⊗ VLE,Ω̄ and
the recombination RΩ exist, and thus, (i), (ii), (iii) implies
(A) in Proposition 1.

To complete the proof we now show that if the generator
subset WΩ that satisfies (A), or equivalently, (i), (ii), (iii),
then (B) and (iv) are equivalent.

Consider first the pseudo-incidence matrixM(G) of a com-
plete generator set G of N generators of a graph state |G〉.
One can check that it coincides with the incidence matrix ME

of the underlying graph. First, the column l = {µ, ν} that
compares the graph state generators gµ, gν is either zero or
contains two ones. It is zero only if the pair of sites l is not in
the graph (l /∈ E). But if the two sites are linked l ∈ E, the
graph state generators anti-commute precisely on the qubits
corresponding to those sites. Then, rank (M(G)) = N − 1
if and only if |G〉 is non-separable. The same happens with
a generator set GΩ of n reduced graph state generators gΩ,µ:
rank (M(GΩ)) = n− 1 if and only if |GΩ〉 is non-separable.

Now, given that the non-zero rows of the pseudo-incidence
matrix M

(
WGΩ

)
coincide with the rows of M(GΩ), their

ranks also coincide. Additionally, the local unitary operations
preserve the pseudo-incidence matrix, thus we can conclude
that rank

(
M(W

(RΩ)
Ω )

)
= n − 1 if and only if |GΩ〉 is non-

separable.
In Appendix B we show that an invertible recombination

RΩ of the stabilizers in WΩ induces an invertible recombina-
tion R̃ of the columns of the pseudo-incidence matrix,

M
(
W

(RΩ)
Ω

)
= M (WΩ) R̃, (67)

where the matrix product between the binary matrices
M (WΩ) and the binary non-singular matrix R̃ is performed
modulo 2. Thus, the rank of the pseudo-incidence matrix is
preserved under recombinations, confirming that properties
(B) and (iv) are equivalent, thus, completing the proof of
Theorem 1.

As mentioned earlier, the stabilizer-based method allows
one to find more local witnesses than the graph-based method
because the condition on the local unitary VLE is less stringent
than the condition on the local unitary ULE used in the graph-
based method. On the one hand, the local unitary VLE must
transform WΩ into some WGΩ up to a recombination, but it
is not forced to transform the stabilizer state |S〉 into a graph
state |G〉. On the other hand, ULE must convert |S〉 into |G〉,
and this always guarantees that it converts WΩ into some WGΩ
up to a recombination. For example, the witness constructed
with the generator subset used as example in Fig. 5(a) is found
with the stabilizer-based method but it cannot be found with
the graph-based method (see Appendix C). In this example,
the unitary VLE = H3H5H6H7 satisfies property (A) but one
can check that VLE |S〉 is not a graph state, and furthermore,

n Subsystem Ω
Graph-
based

stabilizer-
based

method

Two-
meas.

2 All 54 72 4

3
String like 32 40 4

Non string like 34 44 5

4
Plaquette like 17 30 9

Non plaquette like 18 18 3

5 All 8 8 3

6 All 3 3 2

Total 119 3122 3927 476

TABLE II. Local witnesses for the seven-qubit color code.
Columns from left to right: number of qubits in the subsystem, clas-
sification of subsystems, number of standard local witnesses con-
structed with the graph-based method, number of standard local wit-
nesses constructed with the stabilizer-based method, and number of
two-measurements local witnesses.

there is no local unitary that satisfies (A) and also converts the
seven-qubit color code into some graph state.

V. LOCAL WITNESSES ON AN EXPERIMENTAL STATE:
THE SEVEN-QUBIT COLOR CODE

We now examine the performance of the developed local
witness operators on a concrete example of a recently imple-
mented experimental seven-qubit color code state [81]. This
multi-qubit state provides a rich playground to explore in-
teresting features of the local witnesses introduced and their
practical suitability for entanglement characterization. To this
end, we construct all local witnesses that can be constructed
with both methods for all the 119 possible subsystems of the
seven-qubit color code evaluated them based on the experi-
mental data of Ref. [81]. These 119 subsystems are simply
the 27 = 128 possible subsets of seven qubits excluding the
empty set, the subset containing the seven qubits, and the
seven subsets containing only one qubit.

A. Constructed local witnesses

We generate the entanglement witnesses systematically us-
ing a computer program and find that the graph-based method
provides 3122 standard local witnesses whereas the stabilizer-
based method provides a larger number of 3927 witnesses.
The difference comes from the fact that not all local witnesses
for a stabilizer state can be constructed from the orbit of local
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FIG. 6. Witnesses expectation values. Each point corresponds to the expectation value of a witness evaluated on the experimental imple-
mentation of the seven-qubit color code [81], so each point in the green area is an entanglement detection. The subsystems Ω are ordered in
119 columns from left to right according to the following convention {1, 2}, {1, 3}, ..., {1, 7}, {2, 3}, ..., {2, 7}, ..., {6, 7} for the two-qubit
subsystems, then followed by {1, 2, 3}, ..., {1, 2, 7}, {1, 3, 4}, ..., {1, 3, 7}, ..., {2, 3, 4}, ..., {5, 6, 7} as the three-qubit subsystems, and so
forth, up to the last six-qubit subsystem {2, 3, 4, 5, 6, 7}. The point in the very last column corresponds to the standard genuine witnesses
(the value of the two-measurements genuine witness is 0.52(5), which lies outside the scope of the plot and is not shown). Light blue points
correspond to the local witnesses obtained only with the stabilizer-based method, and the dark blue points to witnesses obtained with both the
stabilizer-based method and the graph-based method. Red points correspond to two-measurement local witnesses. The horizontal blue and red
lines are the positions where the standard local witnesses and the two-measurements local witnesses, respectively, would lie if the state was
accurately described by the simplified Werner state model, adjusted to reproduce the experimental fidelity of 0.33(1). Missing red lines for
n > 3 subsets lie outside the shown range of the figure and not shown.

unitary equivalent graph states. Note that the 3927 standard
local witnesses constitute all witnesses of this structure that
exist for the seven-qubit color code state. This is because the
stabilizer-based method provides the sufficient and necessary
conditions for them to exist and we go through all possible
generator subsets WΩ ⊂ S that can be formed out of the
27 − 1 = 127 non-trivial stabilizers, checking for each sub-
set whether it satisfies the criteria or not. From the generator
subsets which give rise to these 3927 local witnesses we also
construct all 476 possible two-measurements local witnesses.
The results are summarized in Table II. We find, as expected,
that the three groups of local witnesses contain at least one
local witness for each of the possible 119 subsystems.

The distribution of local witness operators associated to the
119 possible subsystems results from the structure of the ideal
seven-qubit color code state. It is useful to distinguish be-
tween two types of three-qubit subsystems and two types of
4-qubit subsystems. The “string-like subsystems” are three-
qubit subsystems in which the multiplication of the logical
operator sXL with any combination of X-type plaquette op-
erator has support on one of the following three-qubit sets,
{1, 2, 5}, {1, 4, 7}, {5, 6, 7}, {1, 3, 6}, {3, 4, 5}, {2, 3, 7},
and {2, 4, 6}, while the “non-string-like subsystems” are the
rest of three-qubit subsystems. Similarly, the “plaquette-like
subsystems” are four-qubit subsystems in which the multi-
plication of the Z-type stabilizers has support, {1, 2, 3, 4},

{2, 3, 5, 6}, {3, 4, 6, 7}, {1, 2, 6, 7}, {1, 4, 5, 6}, {2, 4, 5, 7},
and {1, 3, 5, 7}, whereas “non-plaquette operator like subsys-
tems” refer to the rest of four-qubit subsystems.

B. Evaluation of experimental data

In a recent experiment, the seven-qubit color code was en-
coded using a linear ion-trap quantum processor formed of a
string of seven 40Ca+ ions [81]. The experimental state was
realized unitarily by successive creation of entanglement on
each plaquette using four-qubit entangling operations com-
bined with sequences of single-qubit operations to spectro-
scopically decouple and activate physical qubits - we refer the
interested reader for details to Ref. [81].

Perfect implementation of the encoding sequence would
lead to the ideal genuinely entangled state with an expectation
value of all witnesses of−1/2. However, due to state prepara-
tion, gate and measurement errors, the quantum state fidelity
of the experimental state with the expected state was limited to
0.33(1), illustrating the usefulness of witness operators to re-
veal the structure of local quantum correlations in such noisy
multi-qubit state. Figure 6 shows the expectation values of
the genuine and local witnesses, as calculated based on the
experimental measurement data for the 127 non-trivial stabi-
lizer operators. Error bars correspond to the variance based
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Standard local witnesses detections Two-meas. local witnesses detections

Confi. (%) >97 73 84 55 87 84 77 81 60 87 73 69 >55 92 75 80 57 57 99 77 59 69 77 69 69 >59 55 71 75 56 75 66

1 1 1 2 2 2 2 2 3 3 4 1 1 1 1 2 3 1 2 3 4 4 5 1 2 2 2 2 3

Subsystem
⊂

3 4 5 3 4 4 5 5 5 5 5
⊂

2 2 2 4 3 4 6 4 4 5 6 7
⊂

2 3 3 3 6 5

Ω 6 7 7 6 6 7 6 7 6 7 7 3 3 6 5 4 6 7 5 6 7 7 6

4 7 7 6 5 7

Size of Ω 2 3 4 2 3

TABLE III. Local entanglement detections. The rows contain from top to bottom: the type of witness, the confidence (in %) in the fact that
the most negative expectation value of all the witnesses for the same subsystem Ω (in the same column of Fig. 6) is below 0, the subsystem Ω,
and number n of qubits in eachΩ. The columns with the subset symbol (⊂) represents all subsystems Ω′ inside at least one of the subsystems
Ω presented in the columns at the right of the symbol. For instance, the first column of n = 2 represents the 21 two-qubit subsystems inside the
presented three and four-qubit subsystems. To obtain confidence of this column we compare the most negative witnesses for each subsystem
Ω′ and then take the confidence of the most positive one among them.

on the assumption of independent binomial distributions of
expectation values for each stabilizer operator (see Appendix
D for details).

The first observation is that we detect entanglement in mul-
tiple subsystems, which are summarized in Table III. The de-
tections by the standard local witnesses are for all 7 ·6/2 = 21
two-qubit subsystems, all 35 three-qubit subsystems except
{1, 2, 5} and {1, 3, 5}, and 6 four-qubit subsystems out of the
possible 35. The detections of the two-measurements local
witnesses are: all the 21 two-qubit subsystems except {1, 3},
{1, 4}, and {4, 7}, and 6 three-qubit subsystems out of the
possible 35. Regarding the distribution of points the results of
Fig. 6 confirm what Eq. (49) suggests, namely that local wit-
nesses for small subsystems tend to have a more negative ex-
pectation value, while local witnesses for bigger subsystems
hardly detect entanglement. In fact, for every subsystem Ω′

where entanglement is detected, all subsystems Ω ⊂ Ω′ of it
present entanglement as well. For instance, all two-qubit and
three-qubit subsystems with qubits only in the red plaquette
show entanglement because 4-qubit entanglement in subsys-
tem {1, 2, 3, 4} has been detected.

It can also be seen that as expected the two-measurements
witnesses tend to have more positive values than the standard
ones, in accordance with Eq. (44), and they also become even
more positive as the number of qubits in the subsystem in-
creases. Therefore, with two-measurements local witnesses
one can detect the entanglement of small subsystems with just
two measurement settings, for the state at the given noise lev-
els, but for larger subsystems the standard local witnesses, re-
quiring more measurement settings provide a more reliable
choice to detect entanglement.

A further interesting observation is that the Werner model
can at best be a rough approximation of the experimental state
at hand. In this model, all stabilizers have the same expec-
tation value p, and this value coincides with the fidelity be-
tween the Werner state and the stabilizer state. Thus, in order
to compare the Werner state model with the experimental state
we set the value of p as so it reproduces the experimental state
fidelity of 0.33(1). The resulting expectation value of all local

witnesses is positive when evaluated on the Werner model, so
no entanglement is detected. However, when evaluated on the
experimental state, different stabilizers have varying expecta-
tion values. Then, local witnesses constructed predominantly
from stabilizers with an expectation value above the fidelity
have an expectation value below the prediction of the Werner
model. Some of these witnesses have negative expectation
values significantly below zero when evaluated on the experi-
mental state, resulting in the detection of entanglement in the
respective subsets of qubits.

The discrepancies of the entanglement detection in subsets
of qubits as predicted from the simple white noise model and
as obtained by evaluating the witnesses for experimental data
of the seven-qubit color code indicates that the local entan-
glement properties of the experimental state is not captured
by the one-parameter Werner state description. A quantitative
prediction of the structure of the experimental state, to predict
the observed entanglement structure, would require a model-
ing of the experimental state preparation process, which takes
into account the microscopic details of the experimental gates
and other operations [81, 90].

VI. CONCLUSIONS AND OUTLOOK

In this work we have proposed and explored two meth-
ods to construct local witness operators for stabilizer states,
which can be decomposed into stabilizer operators of corre-
sponding state of interest. We have shown how these op-
erators, detecting the entanglement among qubits in subsys-
tems of larger multi-qubit states, allow one to resolve the en-
tanglement structure in experimental stabilizer states. In our
work, we have built on ideas proposed in [70] for graph states
and extended this to arbitrary subsets of qubits in graph states
and general stabilizer states. Additionally, we have explored
a so-called stabilizer-based method which provides sufficient
and necessary criteria to decide if a local witness can be con-
structed from a generator subset, and which, in general, pro-
vides a larger set of local witness operators than the graph-
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based technique. Following the spirit of Ref. [62], we have
also constructed modified local witnesses that require less
measurement settings, at the cost of a decrease in sensitiv-
ity to detect entanglement in noisy states. Finally, we have
illustrated the construction of the witnesses and studied their
practical suitability for local entanglement detection by ap-
plying them to an experimental implementation of a 7-qubit
quantum error correcting code [81].

Possible future extensions of the present work could in-
clude generalizations of the methods to construct local wit-
nesses to non-stabilizer states like e.g. W-states [91, 92] and
Dicke states [93], the construction of local witnesses that de-
tect other types of entanglement different from genuine en-
tanglement [38], like bipartite entanglement, on qubit subsys-
tems. Furthermore, one could explore the possibility of us-
ing local witnesses to determine the accuracy of noise models
adapted to a particular experimental realization, or in the con-
text of detecting phase transitions in condensed matter sys-
tems.
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Appendix A: Binary picture of the stabilizer formalism

Here we introduce for completeness the binary picture of
the stabilizer formalism. In the binary picture, stabilizers and
the Clifford group acting on the Hilbert space HN2 are repre-
sented by binary vectors and matrices, respectively [78, 86].
We will follow the notation used in Ref. [78].

In the binary picture of the stabilizer formalism for one
qubit H1

2 the single-qubit Pauli operators are 2 × 1 column
vectors:

I 7→
(

0
0

)
, X 7→

(
0
1

)
, Y 7→

(
1
1

)
, Z 7→

(
1
0

)
(A1)

and matrix multiplication is transformed into a vector addition
modulo 2:

XY = iZ 7→
(

0
1

)
+

(
1
1

)
=

(
1
0

)
. (A2)

We disregard the phases ±1, ±i because in all cases relevant
for the present work they result in global phases with no influ-
ence.

In the binary picture of N qubits the stabilizers si formed
by single-qubit Pauli operators siµ (see Eq. (60)) are repre-
sented by 2N × 1 column vectors:

si =

(
sZi

sXi

)
(A3)

where sZi and sXi are N × 1 column vectors with elements sZiµ
and sXiµ, respectively:

siµ = I :

{
sZiµ = 0

sXiµ = 0
, siµ = X :

{
sZiµ = 0

sXiµ = 1

siµ = Y :

{
sZiµ = 1

sXiµ = 1
, siµ = Z :

{
sZiµ = 1

sXiµ = 0

(A4)

The generator set S of the stabilizer state |S〉 is represented
by the 2N×N binary matrix S where each column represents
one stabilizer operator in S:

S =

(
SZ

SX

)
=

(
sZ1 · · · sZi · · · sZN

sX1 · · · sXi · · · sXN

)
. (A5)

For instance, for the natural generator set of a graph state
like the one in Fig. 3(f) the upper block SZ = Γ is the ad-
jacency matrix of the underlying graph, and the lower block
SX = IN is the N ×N identity matrix. The upper and lower
blocks for the seven-qubit color code generator set in Fig. 2(b)
are respectively:

SZ =



1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 1 1 0 0 0 0
1 0 1 0 0 0 0
0 1 0 0 0 0 0
0 1 1 0 0 0 0
0 0 1 0 0 0 0


, SX =



0 0 0 1 0 0 1
0 0 0 1 1 0 1
0 0 0 1 1 1 1
0 0 0 1 0 1 1
0 0 0 0 1 0 1
0 0 0 0 1 1 1
0 0 0 0 0 1 1


,

(A6)

where we have written the Z-type generators in the first three
columns, and the X-type stabilizers in the last four columns.

Two stabilizers si, sj commute if they satisfy that sTi P sj =
0 where P permutes the Z and X blocks:

P =

(
0 IN

IN 0

)
. (A7)

Then, the binary matrix that represents a generator set S
must satisfy STPS = 0, and consequently:

[
SZ
]T

SX +[
SX
]T

SZ = 0.
A recombination of the stabilizers in the generator set S is

represented in the binary picture as an invertible recombina-
tion of the columns of S performed by a N ×N non-singular
binary matrix R. In the particular example of Eq. (3), the re-
combined binary matrix is S(R) = SR where:

R =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
1 0 0 1 0 0 0
0 1 0 0 1 0 0
0 0 1 0 0 1 0
0 0 0 0 0 0 1


. (A8)

Single-qubit local Clifford unitary operations are repre-
sented by the 2× 2 binary non-singular matrix

Q =

(
a b
c d

)
(A9)

where the non-singularity in the binary picture means that
the determinant calculated with the addition modulo 2 is non-
zero: ad+ bc = 1 with a, b, c, d = 0, 1.

There are six of these matrices, each one corresponding to
an invertible transformation of the Pauli operators. For in-
stance, the Hadamard unitary H that performs the transfor-
mation: X ↔ Z, Y 7→ Y , is represented by the binary matrix
H:


HXH† = +Z

HYH† = −Y
HZH† = +X

,



H

(
0
1

)
=

(
1
0

)
H

(
1
1

)
=

(
1
1

)
H

(
1
0

)
=

(
0
1

) , H =

(
0 1
1 0

)
.

(A10)
The binary picture disregards the phases; in fact

H represents any of the four Clifford operations
Zαexp

(
(−1)βiY π/4

)
, where α, β = 0, 1 (Z0 = I)

are two indices that control the four possible phases under
this transformation of the Pauli operators. The six ways of
transforming Pauli operators and the unitary representations
of them are summarized in [86].

A local Clifford unitary operation on N qubits is repre-
sented by the 2N × 2N matrix

QL =

(
A B

C D

)
(A11)
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where A,B,C and D are the N × N diagonal matrix that
satisfy AD + BC = IN to guarantee that it preserves the
commutation of Pauli operators: QT

LPQL = P . Using this
equality it is easy to see that the inverse local Clifford unitary
is:

Q−1
L =

(
D B
C A

)
. (A12)

In the binary picture, the problem of finding a graph state lo-
cally equivalent to the stabilizer state reduces to solving the
following equation

QLSR =

(
Γ
IN

)
(A13)

where the variables are QL, R and Γ .
Equivalently, the stabilizers represented by QLSR com-

mute, so they satisfy that

(Γ |IN )PQLSR = 0 ⇒ (Γ |IN )PQLS = 0 (A14)

where now the variables are QL and Γ .

Appendix B: Proof of Eq. (67)

Here we prove Eq. (67). The idea of the proof consists in
writing M (WΩ) in the binary representation and checking
that an invertible recombination ofWΩ results in an invertible
recombination of the rows of M (WΩ).

The representation WΩ of a generator subset WΩ with n
stabilizers is a 2N×n binary matrix whose columns represent
the stabilizers. For instance, the binary representation of the
subset in Fig. 5(a) is:

W{2,3,4} =



1 0 0
1 0 0
1 0 0
1 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 1 0
0 1 1
0 0 1
0 1 0
0 1 1
0 0 1



. (B1)

Given the binary representation si , sj of two stabiliz-
ers si, sj one can see that the pseudo-incidence matrix
M ({si, sj}) is the N × 1 column vector M ({si, sj}) with
elements defined by:

M ({si, sj})µ = sZiµsXjµ + sZjµsXiµ (B2)

where the sum is performed modulo 2. Therefore, the ele-
ments of M (WΩ) are defined by:

M (WΩ)µ{i,j} = WZ
Ω,iµWX

Ω,jµ + WZ
Ω,jµWX

Ω,iµ

=
(
uTµ | 0

)
WΩ

(
viv

T

j + vjv
T

i

)
WT

Ω

(
0
uµ

) (B3)

where the column index l = {i, j} runs over all the pairs of
stabilizers in WΩ . Here the auxiliary binary column vectors
uµ, vi of size N and n respectively have one 1 entry in the
position µ = 1, . . . , N and i = 1, . . . , n respectively, and
zeros elsewhere.

For simplicity, let us expand M (WΩ) to have one column
for every of the n2 possible pairs {i, j}, including those with
equal indices {i, i}, and both orderings {i, j} and with {j, i}
for the rest. Note that this expanded pseudo-incidence matrix
has the same rank because the new columns {i, i} are defined
as zero columns and the new columns {j, i} coincide with the
existing columns {i, j}. Thus, in the following, the indices i, j
run over all n2 possibilities and hence, the pseudo-incidence
matrix is a N × n2 matrix. Moreover, a recombined W (RΩ)

Ω
is represented by WΩRΩ , where RΩ is a non-singular N × n
binary matrix, resulting in

M
(
W

(RΩ)
Ω

)
µ{i,j}

=

=
(
uTµ | 0

)
WΩRΩ

(
viv

T

j + vjv
T

i

)
RT

ΩWT

Ω

(
0
uµ

). (B4)

One can check that the terms in the center of this expression
can be rewritten as

RΩ
(
viv

T

j + vjv
T

i

)
RT

Ω

=

n∑
a,b=1

(vav
T

b + vbv
T

a )RΩ,aiRΩ,bj
(B5)

where we have used that RΩ =
∑n
a,b=1RΩ,abvav

T

b and that
vTb vi = δbi.

The products RΩ,aiRΩ,bj are the matrix elements
R̃{a,b}{i,j} of a n2×n2 matrix R̃ = RΩ ×RΩ , which is non-
singular because RΩ is non-singular. This matrix performs a
recombination of columns on the modified pseudo-incidence
matrix,

M
(
W

(RΩ)
Ω

)
µ{i,j}

=

=
∑
{a,b}

(
uTµ | 0

)
WΩ (vav

T

b + vav
T

b ) WT

Ω

(
0
uµ

)
R̃{a,b}{i,j}

=
∑
{a,b}

M (WΩ)µ{a,b} R̃{a,b}{i,j}

.

(B6)

This completes the proof of Eq. (67), namely that
M (WΩ(RΩ)) = M (WΩ) R̃.

Appendix C: Example of a valid local witness that can not be
found with the graph-based method

Here we present example of a local witness operator that
can be found with the stabilizer-based method, but not using
the graph-based method. Both methods find generator subsets
WΩ that satisfy property (A) in Proposition 1. The graph-
based method uses the local unitary operationsULE that trans-
form the stabilizer state into a graph state ULE |S〉 = |G〉.
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These ULE guarantee the existence of WΩ because WGΩ ex-
ists,

ULE |S〉 = |G〉 ⇒ ULEWΩU
†
LE = WGΩ . (C1)

On the other hand every generator subset WΩ found with
the stabilizer-based method is directly built to satisfy property
(A) in Proposition 1, i.e. there exists a local unitary VLE that
transforms WΩ into some WGΩ (up to some recombination).
But this does not imply that VLE transforms the stabilizer state
|S〉 into a graph state |G〉,

VLE |S〉 = |G〉 : VLEWΩV
†
LE = WGΩ . (C2)

For instance, the subsetW{2,3,4} in Fig. 5(a) is transformed
into a generator subset WGΩ with the local unitary VLE =
H3H5H6H7,

sZR = Z1Z2Z3Z4 7→ g3 = Z1Z2X3Z4,

sXB = X2X3X5X6 7→ g2 = X2Z3Z5Z6,

sXG = X3X4X6X7 7→ g4 = Z3X4Z6Z7,

(C3)

but VLE |S〉 is not a graph state because the rest of generators
in the basis S of Fig. 2(b) are not graph state generators under
any recombination,

sXR = X1X2X3X4 7→ X1X2Z3X4,

sZB = Z2Z3Z5Z6 7→ Z2X3X5X6,

sZG = Z3Z4Z6Z7 7→ X3Z4X6X7,

sXL = X1X2X3X4X5X6X7 7→ X1X2Z3X4Z5Z6Z7.

(C4)

Furthermore, we are going to prove here that for this
particular generator subset W{2,3,4} there is no VLE that
transforms |S〉 into some |G〉. In the binary picture it becomes
clear that VLE is partially fixed because it transformsW{2,3,4}
into some WGΩ . This fixing is enough to forbid the existence
of any non-singular matrix R that recombines the color code
generator set S into a recombined generator set S(R) that
transforms into the generator set G of some graph state under
the action of VLE .

First, let us show that the binary form of a generator subset
WΩ that satisfies property (A) in Proposition 1, or equiva-
lently, that satisfies conditions (i), (ii), (iii), (iv) in Theorem
1, is the 2N × n binary matrix WΩ

WΩ =


SZΩ

ΛZΣΩ̄

SXΩ
ΛXΣΩ̄

 . (C5)

The rows have been reordered to represent the qubits in Ω
with the n × n binary block matrices SXΩ ,S

Z
Ω , and the qubits

in Ω̄ with the product of the (N − n)× n matrix ΣΩ̄ and the
(N − n)× (N − n) diagonal matrices ΛZ , ΛX .

To satisfy (i), the rank modulo 2 of this matrix must be
n. To satisfy (ii) the rank modulo 2 of the following matrix,

which represents the reduced Pauli operators sΩ,i, must be n
as well, (

SZΩ

SXΩ

)
. (C6)

The form of the blocks ΛZΣΩ̄ and ΛXΣΩ̄ that represent
the single-qubit Pauli operators in the qubits of Ω̄ guarantees
that the stabilizers commute on each qubit of Ω̄, which is the
condition (iii). To see this note that the matrices ΛZ , ΛX

are diagonal, so they just lead to certain rows of ΣΩ̄ with all
entries zero. For a qubit µ ∈ Ω̄ the µ-th and (N + µ)th rows
of WΩ can be of any of these four types,(

ΣΩ̄,ν

ΣΩ̄,ν

)
,

(
ΣΩ̄,ν

0

)
,

(
0

ΣΩ̄,ν

)
,

(
0

0

)
, (C7)

depending on the four combinations of 1 and 0 that ΛZ , ΛX

have in the diagonal position corresponding to the qubit µ.
Here ΣΩ̄,ν is the ν-th row of ΣΩ̄ , with ν = µ − n. For
every stabilizer si ∈ WΩ , the first case indicates that the
single-qubit Pauli operator siµ is I or Y , for the second case
it is either I or Z, for the third case I or X depending if
ΣΩ̄,µi = 0 or 1 respectively, and for the fourth case siµ = I .
Consequently, every stabilizer si ∈WΩ with support on qubit
µ ∈ Ω̄ commutes by construction, which is condition (iii).

Now we focus on the particular generator subset W{2,3,4}.
It contains n = 3 independent stabilizers so it can be part of a
generator set S represented by S of the stabilizer state. We can
then write its binary representation W{2,3,4} in the first three
columns of S and write the rest of generators in the other four
columns,

S =


SZΩ S̃ZΩ

ΛZΣΩ̄ S̃Z
Ω̄

SXΩ S̃XΩ
ΛXΣΩ̄ S̃X

Ω̄

 =



1 0 0 1 0 0 0
1 0 0 1 1 0 0
1 0 0 0 1 0 0
1 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 1 1 0 0
0 0 0 0 1 0 0
0 1 0 0 0 1 1
0 1 1 0 0 1 1
0 0 1 0 0 1 1
0 0 0 0 0 1 1
0 1 0 0 0 0 1
0 1 1 0 0 0 1
0 0 1 0 0 0 1



. (C8)

Note that we have reordered the rows to identify more eas-
ily the blocks. From the first to the last row, the order of
the qubits that they represent is: 2, 3, 4, 1, 5, 6, 7, so the first
three rows represent the qubits in Ω = {2, 3, 4} and the last
four rows the rest of qubits. From the left column to the
right column, the order of the stabilizers that they represent
is sZR , s

X
B , s

X
G , s

Z
B , s

Z
G , s

X
R , s

X
L , so the first three columns

represent the stabilizers in W{2,3,4}.
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Here, the following blocks can be identified:

ΛZΣΩ̄ =

1 0 0
0 0 0
0 0 0
0 0 0

 ΛXΣΩ̄ =

0 0 0
0 1 0
0 1 1
0 0 1



S̃ZΩ̄ =

0 0 0 0
1 0 0 0
1 1 0 0
0 1 0 0

 S̃XΩ̄ =

0 0 1 1
0 0 0 1
0 0 0 1
0 0 0 1


(C9)

From the blocks ΛZΣΩ̄ , ΛXΣΩ̄ we can read ΛZ , ΛX , ΣΩ̄ ,

ΣΩ̄ =

1 0 0
0 1 0
0 1 1
0 0 1

 ,

ΛZ = diag(1000), ΛX = diag(0111).

(C10)

The diagonal matrices fix partially the part VLE,Ω̄ of the local
Clifford unitary VLE = VLE,ΩVLE,Ω̄ acting on the qubits of
Ω̄. This part must transform all the single-qubit Pauli opera-
tors in Ω̄ into I or Z because the generator subsets WGΩ have
only I or Z on each qubit of Ω̄. To do so, the part VLE,Ω̄ must
be represented by

QLE,Ω̄ =

(
A B

ΛX ΛZ

)
, (C11)

where A,B are some (N − n) × (N − n) binary diagonal
matrices that satisfy AΛZ + BΛX = IΩ̄ . It transforms all
single-qubit Pauli operators in Ω̄ of the stabilizers in WΩ into
I or Z,

QLE,Ω̄

(
ΛZΣΩ̄

ΛXΣΩ̄

)
=

(
ΣΩ̄

0

)
. (C12)

The effect on the rest of stabilizers can be seen from their
effect on the corresponding blocks,

QLE,Ω̄

(
S̃ZΩ̄

S̃XΩ̄

)
=

(
AS̃ZΩ̄ +BS̃XΩ̄

ΛX S̃ZΩ̄ + ΛZ S̃XΩ̄

)
. (C13)

Therefore, the modified block is fixed by ΛX , ΛZ :

S̃X′Ω̄ ≡ Λ
X S̃ZΩ̄ + ΛZ S̃XΩ̄ =

0 0 1 1
1 0 0 0
1 1 0 0
0 1 0 0

 , (C14)

which, importantly, is not an invertible matrix.
We will now show that there is no local unitary VLE repre-

sented by QLE that transforms the generator set S into graph
state generators and also transforms WΩ into graph state gen-
erators. That means that QLESR does not represent the natu-
ral generator set G of a graph state for any R,

ΓΩ γT

γ ΓΩ̄
In 0
0 I(N−n)

 . (C15)

We can consider a completely general non-singular matrix R
that performs the recombination in block form as

R =

(
rΩ rΩΩ̄
rΩ̄Ω rΩ̄

)
. (C16)

Here, rΩ , rΩ̄ are n×n and (N−n)×(N−n) binary matrices
respectively, and rΩΩ̄ , rΩ̄Ω are n× (N −n) and (N −n)×n
binary matrices respectively, such that R is non-singular.

Then, the lower blocks in Eq. (C8) change in this way:

QLE,Ω̄
(
ΛXΣΩ̄ SX′Ω̄

)
R =

(
0 S̃X′Ω̄

)
R

=
(

S̃X′Ω̄ rΩ̄Ω S̃X′Ω̄ rΩ̄

)
.

(C17)

The key is that the new block S̃X′
Ω̄
rΩ̄ in the right should be

I(N−n) to represent the generator set of a graph state. How-
ever, given that S̃X′

Ω̄
is not invertible, there is no matrix rΩ̄Ω

such that

S̃X′Ω̄ rΩ̄Ω = IΩ̄ . (C18)

This proves that there is no local unitary VLE that satis-
fies property (A) in Proposition 1 for the generator subset
W{2,3,4} of Fig. 5 and transforms the stabilizer state |S〉 into
a graph state. Therefore, this supposes an example of a local
witness that can be found with the stabilizer-based method but
not with the graph-based method.

Appendix D: Variance of the witnesses

Here we briefly discuss the variance of the witness expec-
tation values, as computed from the experimentally measured
stabilizer data.

The estimator of the expectation value of a stabilizer op-
erator is the mean value of the outcomes +1 and −1 when
the operator is measured M times. We treat the experimen-
tal value of a stabilizer operator as a binomially distributed
random variable with two possible values: +1 and −1 with
probabilities pi and 1− pi, so the expectation value is

〈si〉 = 2pi − 1. (D1)

The binomial distribution gives the probability of obtaining
Mi times the result +1 in a sample of M repetitions, which is
the one obtained with probability pi. The variance of binomial
distributions is given by

σ2(Mi) = Mpi(1− pi). (D2)

The binomial variable 〈si〉 is related to Mi by

〈si〉 =
2Mi

M
− 1 (D3)

and therefore, the variance of a function f depending of Mi is
related to σ2(Mi) as

σ2(f(Mi)) =

[
df(Mi)

dMi

]2
∣∣∣∣∣
Mpi

σ2(Mi). (D4)
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Simple algebra then yields the variance of the stabilizers

σ2 (〈si〉) =
1

M

(
1− 〈si〉2

)
. (D5)

Since the variance of a sum of independent random variables
is given by the sum of the variances of each variable, we can
finally compute the variance of witness operators with the ex-
perimental value 〈si〉 of the stabilizers involved in the witness

and the number of times M that the measurement was done,

σ2 (W) =
1

M

2N−1∑
i=1

1− 〈si〉2

22N
, (D6)

σ2 (Wa) =
1

2M

N∑
i=1

(
1− 〈si〉2

)
, (D7)

σ2 (W2m) =
1

M

∑
sXi ∈S

1− 〈sXi 〉
2

(|SX |+ 1)
2

+
1

M

∑
sZi ∈S

1− 〈sZi 〉
2

(|SZ |+ 1)
2 ,

(D8)

where SX are the X-type stabilizers sXi ∈ S in the stabilizer
S, and SZ are the Z-type stabilizers sZi ∈ S . Finally, the
variances of local witnesses constructed from the generator
subset WΩ are then given by

σ2 (WΩ) =
1

M

∑
si∈[WΩ ]

1− 〈si〉2

22n
, (D9)

σ2 (WΩ,a) =
1

2M

∑
si∈WΩ

(
1− 〈si〉2

)
, (D10)

σ2 (WΩ,2m) =
1

M

∑
sXi ∈[WΩ ]

1− 〈sXi 〉
2(∣∣∣[WΩ ]

X
∣∣∣+ 1

)2

+
1

M

∑
sZi ∈[WΩ ]

1− 〈sZi 〉
2(∣∣∣[WΩ ]

Z
∣∣∣+ 1

)2 ,

(D11)

where [WΩ ]
X
, [WΩ ]

Z are the X-type and Z-type stabilizers
sXi , s

Z
i in the spanned group [WΩ ] respectively, and the cardi-

nality of the sets is
∣∣∣[WΩ ]

X
∣∣∣ , ∣∣∣[WΩ ]

Z
∣∣∣, respectively.
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