
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Flux-qubit readout in the persistent-current basis at
arbitrary bias points

M. Schöndorf, A. Lupaşcu, and F. K. Wilhelm
Phys. Rev. A 101, 012305 — Published  8 January 2020

DOI: 10.1103/PhysRevA.101.012305

http://dx.doi.org/10.1103/PhysRevA.101.012305


Flux qubit readout in the persistent current basis at arbitrary bias points
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Common flux qubit readout schemes are qubit dominated, meaning they measure in the energy
eigenbasis of the qubit. For various applications, measurements in a basis different from the energy
eigenbasis are required. Here we present an indirect measurement protocol, which is detector domi-
nated instead of qubit dominated, yielding a projective measurements in the persistent current basis
for arbitrary bias points. We show, that with our setup it is possible to perform a quantum nonde-
molition measurement in the persistent current basis at all flux bias points with fidelities reaching
almost 100%.

I. INTRODUCTION

The measurement postulate is fundamental in the for-
mulation of quantum mechanics [1]. To obtain informa-
tion about the quantum state of a closed system one
needs to employ an interaction with an additional read-
out system (meter). It is possible to design this inter-
action such that the measured observable is an integral
of motion during the readout process. This is called
a quantum non-demolition (QND) measurement. QND
measurements enable repeated measurements to have the
same outcome and were originally proposed to exceed the
standard quantum limit in connection with the detection
of gravitational waves [2–4]. The interest in QND mea-
surement methods has increased with the development of
quantum information, where they play an important role
in various aspects, e.g. error correction [5] or initializa-
tion by measurement [6].

Superconducting flux qubits [7] are especially interest-
ing for the field of quantum annealing [8–15], where the
intrinsic possibility for inductive coupling and the rather
large anharmonicity deliver a big advantage. However,
for flux qubits QND measurements in the persistent cur-
rent basis have only been performed far away from the
flux degeneracy point [16–20]. At the degeneracy point
the expectation value of the persistent current, which
is the measurement variable, is zero for the qubit en-
ergy eigenstates. Measurement in the energy eigenba-
sis at the degeneracy point is possible by coupling the
qubit transversely to a resonator, leading to a measure-
ment of the quantum inductance [21–24], or by using a
more complicated scheme based on modulated coupling
[25]. The ability to perform measurements in the flux
basis at an arbitrary operation point is especially inter-
esting in quantum annealing. To be able to measure dur-
ing the anneal process without first driving the qubit far
away from the degeneracy point would yield huge advan-
tages, e.g. avoid quenches in anealing schedules, which
limit success probability [13, 26, 27] or realize quantum
speedup with only stoquastic interactions [28]. In addi-
tion, state tomography would benefit from such a readout
scheme, since measurements in canonical conjugated ba-
sis are necessary [29, 30].
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FIG. 1. Circuit for the measurement protocol. The qubit
(yellow) is coupled to the large SQUID loop of the quantum
probe, here the cjj-SQUID (green). The large loop is cou-
pled to an additional flux readout loop (blue) and an external
control flux Φc (red) is applied to the small SQUID loop.

Here we present a method to measure the state of a
flux qubit for arbitrary biases, ranging from the symme-
try point to points far from the symmetry point, which
is both projective and high fidelity. In contrast to usual
flux qubit measurements [16–20], we measure in the per-
sistent current basis at all bias points and not in the
energy eigenbasis of the qubit.

The paper is organized as follows. In Sec. II we present
our setup the corresponding Hamiltonian. The four dif-
ferent steps of the measurement protocol are discussed in
detail in Sec III. In Sec. IV we present our results and in
Sec. V we give the conclusion.

II. SETUP AND HAMILTONIAN

The proposed indirect measurement protocol includes
a quantum probe in between the flux qubit we want to
read out and the actual readout resonator (e.g. SQUID).
This probe is a compound Josephson junction SQUID
(cjj-SQUID) [31–33]. The cjj-SQUID is coupled induc-
tively to the superconducting flux qubit we want to mea-
sure, leading to the Hamiltonian for the coupled qubit-
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probe system (for setup see Fig. 1)

Ĥ =
φ2
0

L

(

4ξ2
q̂2

2
+

ϕ̂2

2
+ βcjj(Φc) cos ϕ̂− g√

ξ
ϕ̂σ̂z

)

+ Ĥqb,

(1)

where ξ = e/φ0

√

L/CΣ, φ0 = Φ0/2π and g =√
ξMIp/φ0, with mutual inductance M , persistent cur-

rent Ip, inductance of the large cjj-SQUID loop L, sum of
the two junction capacitances CΣ and Φ0 the flux quan-
tum. The quantum variable of the probe is the average
phase of the junctions ϕ̂ = 2πΦ̂/Φ0 and q̂ is the conju-

gated variable. Ĥqb denotes the flux qubit Hamiltonian
represented in the persistent current basis {|	〉 , |�〉}

Ĥqb =
ǫ

2
σ̂z +

∆

2
σ̂x, (2)

with energy spacing ǫ and tunneling energy ∆. Note that
we do not include the Hamiltonian of the readout loop in
Eq. (1), since it is decoupled during the whole dynamics
of interest and only used after the protocol is performed
to readout the persistent current state of the probe.
A special property of the cjj-SQUID is that the

screening parameter depends on the additional control
flux Φc applied to the small loop, i.e. βcjj(Φc) =
(2I0L/φ0) cos(Φc/2φ0) [33], with critical current of the
SQUID junctions I0. The measurement starts with the
cjj-SQUID operated in a regime where the potential is
parabolic, and centered at a value that depends on the
state of the qubit. Next, the control flux Φc is used to
transform the potential into a double well barrier poten-
tial, leading to states localized in one of the wells, in
correspondence with the two qubit states. In contrast
to usual measurement schemes, here we present a detec-
tor dominated measurement by choosing strong or even
ultrastrong coupling [34] between the qubit and the quan-
tum probe, such that the measured observable is deter-
mined by the eigenbasis of the operator coupled to the
probe. Here this is the persistent current basis, as op-
posed to the qubit energy eigenbasis. We show that our
measurement protocol enables an almost perfect QND
measurement at the degeneracy point and can achieve
measurement fidelities close to 100%. Note that the pro-
tocol also works in a similar way for ǫ 6= 0.

III. MEASUREMENT PROTOCOL

The measurement protocol is schematically shown in
Fig. 2. It has four main steps: the initialization, the pre-
measurement, the effective decoupling and the readout
of the probe.
In the initialization step we prepare the qubit in an

arbitrary initial state α |	〉 + β |�〉 and the cjj-SQUID
in the ground state |g〉. Here the qubit and the probe
are decoupled and the screening parameter βcjj of the
cjj-SQUID is zero, meaning it is described by a harmonic
oscillator potential.

After intialization we start the premeasurement. For
this, we turn on the coupling between the qubit and the
cjj-SQUID. During this step, the external bias on the
small coupler loop is still choosen as Φc = Φ0/2, such
that the barrier is zero and the cjj-SQUID potential is
purely quadratic. By turning on the coupling between
the cjj-SQUID and the qubit, an entangled state between
the qubit and the pointer states of the probe is created,
performing the premeasurement. Since the cjj-SQUID
starts in the ground state |g〉, the coupling term shifts the
center of the Gaussian distribution of the phase. For zero
coupling, the cjj-SQUID state is centered around 〈ϕ̂〉 = 0,
until the coupling shifts the mean value to 〈ϕ̂〉 = ϕp 〈σ̂z〉,
where ϕp denotes the absolute value of the cjj-SQUID
potential minimum. Note that the shift depends on the
qubit state as follows from (1).
Here we want to choose parameters such that the inter-

action does not induce any excitation of the cjj-SQUIDs
initial ground state, meaning we require a perfect adia-
batic time evolution of the system [35]

(α |	〉+ β |�〉) |g〉 −→ αeff |	, g−〉+ βeff |�, g+〉 , (3)

where |g〉 is the coupler ground state centered around
zero and |g±〉 are the corresponding displaced ground
states. αeff and βeff include the time evolution under the
bare qubit Hamiltonian [35].There are two factors that
change the probability amplitudes α and β. On the one
hand if the state is not an eigenstate of Ĥqb, it evolves
under the bare qubit Hamiltonian. However as we will
see later, this is strongly depressed by the ramping of the
barrier. On the other hand the coupling to the quantum
probe leads to a measurement induced dephasing, mean-
ing the phase information encoded in α and β gets lost
during the measurement, as we will also see in more de-
tail in the next section (for more details see App. A 2).
The effective coupling energy ∆eff gets rescaled due to
the interaction with the cjj-SQUID [35]. To make the
adiabatic approximation applicable, the timescale of the
interaction must satisfy the adiabatic theorem [36]. This
yields the condition

maxt
ġ(t)√
ξ

≪ Ω, (4)

with characteristic frequency of the quadratic part of the
cjj-SQUID, Ω = 1/

√
LC. Violating this condition leads

to transitions between cjj-SQUID pointer states which
destroys the distinguishability, since there is no longer
a clear map between direction of persistent current and
qubit state.
Besides the fact that we want the measurement to dis-

criminate between the qubit states, we additionally want
the measurement to be QND. A QND measurement is
achieved, when the measured observable is an integral
of motion during the measurement, meaning successive
measurements of the qubit yield the same result [37].
This is achieved by the third step of our protocol, the ef-
fective decoupling. Especially in the case ǫ ≪ ∆, the non-
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FIG. 2. Principle of the measurement scheme. Color code analog to Fig 1. 1.) Initialization: The qubit (yellow) and the
cjj-SQUID (green) initial state are prepared. 2.) Premeasurement: The coupling between the qubit and the cjj-SQUID is
ramped up, such that the qubit states get entangled with corresponding pointer states. 3.) Effective decoupling: The c-jj
SQUID potential is turned from a single well to a double well potential, resulting in an exponential decrease of the effective
coupling ∆eff . 4.) Readout: The cjj-SQUID persistent current state is read out with an additional flux readout device (e.g
rf-SQUID).

commuting part of the system and the interaction Hamil-
tonian is crucial, hence severe backaction would appear
during the macroscopic readout of the probe. Therefore
in the effective decoupling step, we use the external bias
Φc to ramp the barrier of the cjj-SQUID potential from
a single well harmonic potential to a double well poten-
tial with a high barrier. This exponentially decreases the
effective coupling energy ∆eff , resulting in a reduction of
the non-commuting part. Here ∆eff means the tunneling
matrix element between the two compound states |�, g−〉
and |	, g+〉. With this we freeze the dynamics of the
qubit, yielding an effective decoupling of the qubit and
the probe, necessary for a QND measurement [37]. Note
that the tuning of the barrier also has to be adiabatically
on the cjj-SQUID timescale to again avoid excitations to
higher modes, such that we have to modify condition (4)
and include the time derivative of the screening parame-
ter βcjj(t)

maxt

[

ġ(t)√
ξ
, β̇cjj(t)

]

≪ Ω. (5)

In a last step we can measure the probe state using
the additional persistent current readout with indicating

almost no backaction, since ∆eff(T ) ≈ 0, where T denotes
the time for the overall protocol.
Because of the non-commuting nature of the interac-

tion and the system Hamiltonian, there is also a back
action induced during the premeasurement and the ef-
fective decoupling. Therefore one needs to perform these
two steps fast with respect to the characteristic qubit
timescale

T
√

∆2 + ǫ2 ≪ h, (6)

where h is the Planck constant. However, this general
condition is too strict in our case. On the one hand the
whole point of the third step is to decrease the effective
decoupling rate to almost zero and on the other hand in
the case ǫ ≫ ∆ the backaction is negligible, since system
and interaction Hamiltonian almost commute. Including
these facts, the QND condition for our system is given
by

∫ T

0

∆eff(t)dt ≪ h. (7)

Note that the effective tunneling rate is time dependent,
since it is influenced by the interaction with the probe.
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FIG. 3. Results of the numerical simulations of the measure-
ment protocol for ∆/h = 0.1Ω and linear time schedule with
gmax/Ω = 1 and βmax

cjj = 2 and ξ = 0.1 (corresponding e.g.
to CΣ = 15 fF and L = 600 pH). The initial qubit state is
chosen to be |0〉 = 1/

√
2(|	〉+ |�〉). Shown is the probability

distribution of projection to qubit left (red) and right (blue)
persistent current state. Numerical (solid) and analytical re-
sults (dotted).

Because of the entanglement of the pointer states and
the qubit states after the premeasurement, a high barrier
of the cjj-SQUID potential also frustrates a tunneling
between the qubit states. This leads to the fact that
(7) is even satisfied for measurement times larger than
the qubits characteristic time, as we will see in the next
section.

At the end of the decoupling step, it is important that
the two pointer states are statistically distinguishable,
meaning that the maximal coupling strength gmax =
g(T ), needs to be chosen such that the condition [38]

〈ϕ(T )〉1 − 〈ϕ(T )〉0 ≥ 2 [σ1(T ) + σ0(T )] , (8)

is satisfied at the end. Condition (8) is a qualitative mea-
sure for statistical distinguishability, but does not quan-
tify measurement fidelity. Here 〈ϕ(T )〉i is the expecta-
tion value of the pointer state if the qubit is in state i
and σ(T )i is the respective standard deviation. Both are
taken at the end of the measurement protocol.

The distinguishability criterion gives a lower bound for
the necessary maximal coupling strength gmax. The mea-
surement fidelity is limited by the overlap of the pointer
states (see Fig . 3) and transitions between different cjj-
SQUID states during the interaction process. Therefore
the most general expression for the measurement fidelity
is given by

Fmeas =
F� + F	

2
, (9)

where Fi denotes the probability to get the right mea-
surement result if the qubit is prepared in the energy
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FIG. 4. Time evolution of the screening parameter βcjj, the
coupling g and the coupling energy ∆eff .

eigenstate |i〉. The state fidelities read

Fi =

∫ bi

ai

(

∣

∣

∣
〈ϕ,	 |Û(t)|g, i〉

∣

∣

∣

2

+
∣

∣

∣
〈ϕ,� |Û(t)|g, i〉

∣

∣

∣

2
)

dϕ

(10)

where i ∈ {	,�}, Û(t) is the time evolution operator
which describes the time dynamics of the measurement
process and {a	, b	} = {−∞, 0}, {a�, b�} = {0,∞}.

IV. RESULTS

We want to quantitatively study the measurement pro-
tocol. The most important point here is to quantify the
right time scales and system parameters to obtain high
measurement fidelities and prove the QNDness of the pro-
tocol. To solve the time dependent Hamiltonian (1) nu-
merically, we evolve the cjj-SQUID part in harmonic os-
cillator modes. Here we truncate the Hamiltonian after
100 excitations. Since g(t) and βcjj(t) are time dependent
we have to solve a time dependent Schrödinger equation.
For this we use a standard Runge-Kutta method. In the
simulations we assume that the coupling and the non-
linearity are turned on simultaneously instead of succes-
sively. We simulate the full Hamiltonian (1) including
the qubit dynamics.
We choose the simplest possible time dependence here,

where we tune up the coupling and the barrier linearly.
Here the maximal value of the coupling is gmax/Ω = 1
and the maximal screening parameter βmax

cjj is 2. The
overall time interval in which we ramp up both param-
eters is chosen to be 10/Ω and Ω is ten times the qubit
frequency. The time evolution of the coupling, the screen-
ing parameter and the linear approximation of the effec-
tive coupling strength (see App. A 2 for more details on
how to calculate this) are shown in Fig. 4. We study
the measurement protocol at the flux degeneracy point
ǫ = 0 and choose as initial state the qubit eigenstate
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FIG. 5. Measurement fidelity depending on gmax for different
values of m for the same parameters as in Fig. 3 and for
different values of ξ. The inset shows the infidelity in log scale
to illustrate how the fidelity tends to one for large couplings.

|0〉 = (|	〉+ |�〉)/
√
2. After modeling the time evolution

of the pointer states using (1), we calculate the measure-
ment fidelity given by Eq. (9). Fig. 3 proves that the
pointer states of the cjj-SQUID nicely resolve the qubit
states. The measurement error is given by the overlap of
the two probability distributions. For the chosen param-
eters this results in a measurement fidelity of 1, since the
overlap of the states is zero.
To quantify this, we also show the measurement fidelity

dependence on the maximal coupling strength gmax for
different values of ξ in Fig 5. We see that the measure-
ment fidelity strongly increases for larger values of gmax

until it reaches a plateau at fidelity 1. For smaller ξ, the
fidelities are slightly lower, but do not vary significantly
in the range of realistic system parameters [33, 39–41].
Even though the ultrastrong coupling regime is accessi-
ble in flux qubit architectures ([42–44]), it is more feasi-
ble to work in the strong coupling regime. However, even
in this regime which corresponds to gmax/Ω ≈ 0.1, the
measurement fidelities are quite high. E.g. for ξ = 0.1
we reach a fidelity of 80.8% for the same measurement
time as in Fig. 3. Since the coupling is weaker the in-
teraction time needed for a resolving premeasurement is
also longer, hence it is supporting to choose longer mea-
surement times. For an increased measurement time of
T = 40/Ω the fidelity for ξ = 0.1 and g = 0.1 already
reaches 95% and can be further improved by decreasing
T . This means that there is a tradeoff between coupling
and measurement time. One can choose a smaller cou-
pling when at the same hand the measurement time is
increased, but the coupling is roughly lower bounded by
condition (8). Note that a measurement time of 10/Ω in
our choice of parameters corresponds to the characteris-
tic time scale of the qubit. For flux qubits this would be
in the ns regime.
Here we model measurement at the flux degeneracy

point, but the protocol can lead to perfect fidelities for
ǫ 6= 0, e.g. for the same parameters as in Fig. 3 but

FIG. 6. Decay of excited state population during measure-
ment for initial state |	〉 and the same parameters as in Fig
3.

for the case ǫ/h = ∆/h = Ω/10, our simulations show
an almost perfect measurement fidelity of 0.999. The
simulations are performed in exactly the same way as for
the case ǫ = 0.
In Fig. 3, also the time evolution of the density matrix

elements for the initial qubit state |0〉 = 1/
√
2(|	〉+ |�〉)

at the degeneracy point is studied. The parameters are
the same as before. We see that the measurement induces
a strong dephasing in the measurement basis (persistent
current basis). This is what one expects since entan-
gling the qubit with the respective pointer states means
transferring qubit information to the probe system ([45]
or [37]). The fact that the measurement induces a de-
phasing in the persistent current basis proves that the
meausrement protocol does not measure in the energy
eigenbasis of the qubit, but in the eigenbasis of the probe.
The diagonal elements on the other hand stay constant,
meaning the population in the persistent current basis is
conserved.
As mentioned before, a way to determine the QNDness

of a measurement is the comparison of repeated succes-
sive readouts. Since here the measurement observable
is the persistent current, we have to study the decay of
the corresponding states |�〉 , |	〉 of the qubit to check for
QNDness. The QNDness in our system can be quantified
as the probability that the qubits initial persistent cur-
rent state is preserved after premeasurement, irrespective
of the measurement outcome [37, 46], yielding the expres-
sion

FQND =
〈� |ÛQB(t)| �〉+ 〈	 |ÛQB(t)| 	〉

2
, (11)

where ÛQB(t) = Trprobe{Û(t)} denotes the effective time
evolution of the qubit during the premeasurement. This
means nothing else than successive measurements giving
the same results which is the textbook definition of QND-
ness. As mentioned, to ensure QNDness of the protocol
we ramp up the barrier and effectively discriminate the
time evolution of the system, which leads to the fact that
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FIG. 7. Decay of excited state population during measure-
ment for initial state |	〉 for the same parameters as in Fig.
3.

only in the beginning of the protocol the qubit suffers a
small rotation. Fig. 3 shows the decay of the diagonal
density matrix element during the measurement proto-
col, which is in the order of 10−3 for the chosen param-
eters. Expression (11) can be determined numerically
and yields a QND fidelity of FQND = 99.6%. We are
optimistic that further optimization strategies (e.g. find
optimized schedules) could lead to even better results,
yielding a perfect QND measurement with a measure-
ment fidelity of 100%.
The quantum probe, here realized by the cjj-SQUID

includes an additional device compared to conventional
flux qubit schemes. Such an additional device could make
the system more susceptible to noise. In flux qubit archi-
tectures, the most present noise is 1/f -flux noise [47–49].
In App. A 3 we model the influence of 1/f -noise acting
on the cjj-SQUID of our measurement circuit. It can be
seen that neither the measurement fidelity is changed sig-
nificantly (error in the order of 10−3) due to the noise,
nor additional back action is induced on the qubit. This
shows that the presented protocol is not more susceptible
to noise than conventional flux qubit readout architec-
tures.
Using a Gaussian approximation for the pointer states

and assuming a completely adiabatic time evolution, it
is also possible to derive an analyitcal expression for
the probabiltiy amplitude of the pointer states. A com-
parison between analytical and numerical results can be
found in Fig. 3. We see that both results match very well,
allthough there is a small deviation arising from higher
order potential terms, i.e. the numerical distributions
are slightly asymmetric and shifted towards Φ/Φ0 = 0.5.
The measurement fidelity within the Gaussian approxi-
mation is given by

Fmeas = Φ

(

ϕp(T )

σ(T )

)

, (12)

where ϕp is the position of the minima of the cjj-SQUID
double well potential at the end of the protocol, σ(T ) =

(2mΩ
√

1− βcjj(T ) cosϕp(T ))
−1/2 is the standard devia-

tion and Φ(x) denotes the normal cumulative distribution
function. The detailed calculations can be found in the
Supplement, where we additionally study the backaction
analytically and show a qualitative agreement with the
numerically found back action results.
For the sense of completeness, we want to point out

that D-wave also uses the cjj-SQUID as a qubit but that
the measurement method differs from the one presented
here. They use a quench to first tune the qubits into
the regime ǫ ≫ ∆ and then perform a persistent current
readout (see e.g. [26]).

V. CONCLUSION

In conclusion we have presented an indirect measure-
ment protocol to perform fast read out a flux qubit at
every bias point in the persistent current basis, with pos-
sible measurement fidelities close to 100%. Further the
measurement is also shown to be QND, which increases
the possibility for applications in fundamental flux qubit
experiments as well as in the perspective of quantum an-
nealing even more. A special feature is that the readout
at the flux degeneracy point is performed in the persis-
tent current basis, being potentially useful in terms of
quantum annealing but also for other applications such
as quantum state tomography.
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Appendix A: Analytical Results

1. Measurement fidelity

In this section we will analytically describe the setup
presented in Sec I, especially giving approximate expres-
sion for the success probability.
Since the regime of interest is Ω ≫ ǫ,∆, we consider

the qubit Hamiltonian as the perturbation of the system

V =
ǫ

2
σz +

∆

2
σx. (A1)

As shown in the main part, the phase-charge space rep-
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resentation of the unperturbed Hamiltonian reads

H0(t) =
q2

2m
+mΩ2ϕ

2

2
+mΩ2βc(t) cos(ϕ)−mΩ2λ(t)σzϕ.

(A2)

with effective mass L/(2ξφ0)
2. Without the cosine term,

this yields a shifted harmonic oscillator where the shift
depends on the qubit state. To include the contribution
of the non-harmonic cosine part, we will approximate the
potential around its minimum. It is

U ′(ϕ) = mΩ2ϕ−mΩ2βc(t) sin(ϕ)−mΩ2λ(t)σz . (A3)

The condition U ′(ϕ) = 0 leads to an equation for the
potential minimum, depending on σz . Since σz = ±1 the
position is symmetric for the two qubit states

ϕ±(t) = ±ϕp(t), (A4)

where ϕp(t) denotes the positive valued minimum. The
effective potential up to second order then reads

U(ϕ) ≈ ϕp(t)σz +
mΩ2

2
[1− βc(t) cos(ϕp(t))] (ϕ− ϕp(t)σ̂z)

2

(A5)

= ϕp(t)σz +
mΩ̃(t)2

2
ϕ2 −mΩ̃(t)2ϕp(t)ϕσ̂z . (A6)

with time dependent frequency Ω̃(t) =

Ω
√

1− βc(t) cos(ϕp). Note that the frequency does
not depend on the qubit state, because of the symmetry
of the cosine. This leads to the effective Hamiltonian

Ĥ0(t) ≈
q2

2m
+

mΩ̃(t)2ϕ2

2
−mΩ̃(t)2ϕp(t)ϕσ̂z (A7)

= Ω̃(t)a†a− Ω̃(t)

√

mΩ̃(t)

2
ϕp(t)(a

† + a)σ̂z. (A8)

The last part implies a qubit dependent shift of the har-
monic oscillator, such that we can diagonalize this Hamil-
tonian with the displacement operator

ˆ̃H(t) = D†(ϕ̃p(t)σ̂z)HD(ϕ̃p(t)σ̂z) (A9)

= Ω̃(t)a†a (A10)

where ϕ̃p(t) = ϕp(t)
√

mΩ̃(t)/2. The time dependence

of the transformation induces an additional inertia term.
As mentioned before, we choose time scales to be diabatic
on the qubit and adiabatic on the coupler time scale.
Hence in zeroth order we assume the SQUID state to
follow the minimum adiabatically, so we ignore the term
proportional to ˙̃ϕp (inertia part) for now. Additionally
we ignore the contribution arising from the zeroth order
of the Taylor expansion, since it only acts as a correction
of the bare qubit Hamiltonian (for more details see App.
A 2).

We can directly write down the solution to (A10) in the
position space which is a Gaussian distribution around
the minimum of the potential

ϕ(t) =
(

2πσ(t)2
)1/4

e

(

ϕ−ϕp〈σ̂z〉(t)

2σ(t)

)2
+ip0ϕ |ϕ〉 , (A11)

with standard deviation σ(t) = 1/
√

2mΩ̃(t) and p0 be-

ing the average momentum. Let us now assume the qubit
starts in a superposition state and the cjj-SQUID in its
ground state (centered around ϕ = 0). The time evolu-
tion reads

(α |	〉+ β |�〉) |g〉 Û→ αeff |	, ϕ−(t)〉+ βeff |�, ϕ+(t)〉 ,
(A12)

with

|ϕ±(t)〉 =
(

2πσ(t)2
)−1/4

e

(

ϕ∓ϕp

2σ(t)

)2
+ip0ϕ |ϕ〉 (A13)

and where αeff and βeff include the time evolution in-
duced by the bare qubit Hamiltonian, i.e when the state
is not an eigenstate (see [35] for more details). We are es-
pecially interested in the probabilities for the SQUID to
be in the left or right persistent current state, depending
on the qubit state. E.g. the probability to get the right
measurement result if the qubit starts in the |	〉 state
(equivalent to F	 of the main text) is given by

F	(t) =
1

√

2πσ(t)2

∫ 0

−∞
e
(ϕ+ϕp)2

2σ(t)2 dϕ (A14)

= Φ

(

ϕp(T )

σ(t)

)

, (A15)

with Φ(x) = 1√
2π

∫ x

−∞ e−
1
2 t

2

dt denoting the normal cu-

mulative distribution function. In the same manner we
can write down the probability to get the right measure-
ment result when the qubit starts in state |1〉

F�(T ) = −Φ

(

−ϕp(T )

σ(T )

)

. (A16)

This expressions correspond to the two contributions that
appear in the expression for the fidelity, hence in the
Gaussian approximation F can be written as

F(T ) = Φ

(

ϕp(T )

σ(T )

)

, (A17)

where we used the fact that Φ(t) is an odd function. For-
tunately, Gaussians are among the simplest special func-
tions and the expectation value is completely determined
by the standard deviation σ(T ), hence the fidelity is fully
determined by σ(T ) and ϕp. This fact can be used to e.g.
put a lower bound on the measurement fidelity and de-
termine the corresponding system parameter intervals to
reach this fidelity. Here the main parameters that can be
varied are λmax and βmax

cjj . One could also optimize the
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FIG. 8. Comparison of the numerical (solid) and analytical
(dotted) results for the same parameters as in the main text.

schedule, i.e. find an optimal pulse for the time dynamics
of the coupling and the barrier to optimize both, mea-
surement fidelity and back action. However, this would
yield an optimal control problem and can be tracked by
future work. A lower bound for the respective system pa-
rameters is given by the distinguishability condition (Eq.
(3)). Since the distributions are symmetric, the condition
has the simplified form

ϕp(T ) ≥ 2σ(T ) (A18)

In Fig. 8 the distribution of the cjj-SQUID state (de-
pending on the qubit state) is compared to the numerical
results. We basically see what we expect; the two results
qualitatively coincide but there are corrections coming
from the higher order potential terms. Since we model
the double well potential of the cjj-SQUID with two har-
monic potentials, the two actual expectation are slightly
shifted compared to the Gaussian ones. Additionally the
width of the actual distribution is also slightly smaller.

In App. A 2 we use the same strategy to calculate an
expression for the time evolution of the density matrix
in the cjj-SQUID ground subspace. Since the calcula-
tions are rather involved we put them into the appendix.
The analytics show the right qualitative and long time
behavior but differ quantitatively from the numerical re-
sults caused by different approximations made during the
calculation.

All in all this section shows, that the intuitive picture
of the system dynamics, we gave when we described the
measurement scheme in the main text can be quantified
with the given analytical results assuming an adiabatic
time evolution of the pointer states. Since the analyti-
cal results also give a good agreement with the numerics,
the adiabatic approximation is satisfied for the chosen
time scale, avoiding any induced transitions between dif-
ferent cjj-SQUID states. Further the given results could
be used to optimize system parameters for real world ap-
plications.

2. Backaction

Here we will try to analytically approximate the back
action of the measurement on the qubit. For this we first
transform the Hamiltonian into an interaction frame (i.e
the displaced oscillator frame) such that we can write
down the time dependent Hamiltonian as a tensor sum
of two dimensional matrices (within the adiabatic ap-
proximation). Then we can study the time evolution of
the qubit subspace density matrix and with this make
statements about the back action.
As shown in (A 1) we can diagonalize H0 approxi-

mately by applying the displacement operator

D̂(ϕ̃p(t)σ̂z). (A19)

This leads to a diagonal Hamiltonian plus an additional
inertia term coming from the time dependence of the
transformation and a correction of the bare qubit Hamil-
tonian arising from the fact that the two minima of the
tilted double well potential are not at the same potential
level

H̃0 = Ω̃(t)â†a− i ˙̃ϕp(t)(a
† − a)− λϕ(t)σ̂z (A20)

= Ω̃(t)â†a− i ˙̃ϕ(t)p0

(

ϕ̇p +
1

4

˙̃Ω(t)

Ω̃(t)
ϕp(t)

)

− λϕ(t)σ̂z

(A21)

where p0(t) is the average momentum at time t, which
can be rewritten using the correspondence principle
p0(t) = mϕ̇p(t). The last term arises from the zeroth
order of the Taylor expansion. Hence we need to take
into account two correction terms. We also have to check
what is the effect of the transformation on the bare qubit
Hamiltonian

Ṽ = D̂†(ϕ̃p(t)σ̂z) [ǫσ̂z +∆σ̂x] D̂(ϕ̃p(t)σ̂z) (A22)

≈ ǫσ̂z +∆σ̂x + 2ϕ̃p(t)p0(t)∆σ̂y , (A23)

where we only kept the first order term of the Baker-
Campbell-Hausdorff formula. Since we assume ∆ ≪ Ω,
the σy correction is assumed to be rather small com-

pared to the σz correction arising from ˆ̃H0, hence will
be ignored in the following. With this we can write the
Hamiltonian in the transformed basis as a tensor sum

H̃(t) = ⊕∞
N=0H̃N (t), (A24)

where HN (t) is the Hamiltonian in the N excitation sub-
space {|0, N−〉 , |1, N+〉} and has the form

H̃N (t) =

(

N Ω̃(t)− γ(t) ∆
2 〈N+|N−〉

∆
2 〈N−|N+〉 N Ω̃ + γ(t)

)

, (A25)

with

γ(t) = −m

(

ϕ̇p(t)
2 +

1

4

˙̃Ω(t)

Ω̃(t)
ϕp(t) + λϕp(t)

)

(A26)

Ω̃N (t) = N Ω̃(t). (A27)
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Here |N±〉 refer to the N excitation states of a shifted
harmonic oscillator, where the sign depends on the qubit
state and the shift is given by (A4) (for more details on
the shifted harmonic oscillator we refer to [50]). Here we
assumed an adiabatic time evolution of the cjj-SQUID
dynsmics by setting 〈N±|M±〉 = 〈N±|M∓〉 = 0 if N 6=
M . Note that 〈N+|N−〉 = 〈N−|N+〉, hence H̃(t) is her-
mitian as demanded. The overlapp between the shifted
oscillator vacuum states is given by [50]

〈0−|0+〉 = e−ϕ2
p/2 (A28)

Because of the block diagonal structure of the Hamilto-
nian, we can also write down the time propagator U(t) in
a block diagonal structure. For this we need the following
expressions

UN (t) = exp

(

iT
∫ t

0

dt′H̃N (t′)

)

, (A29)

with the time ordering operator T . Since we assume the
time evolution to be diabatic on the qubit subspace and
we are interested in the dominating back action effects,
we use first order Magnus expansion to calculate the time
propagators VN (t)

VN (t) ≈ exp

(

i

∫ t

0

dt′H(t′)

)

. (A30)

Defining the parameters Γ(t) =
∫ t

0
dt′γ(t′) and ∆̃N (t) =

∆/2
∫ t

0 dt
′ 〈N+|N−〉 (t′) the propagator of the N excita-

tion subspace can be written as

VN (t) = e

∫ t
0 dt′Ω̃N (t′)













cos

(

√

Γ(t)2 + ∆̃N (t)2
)

− i
Γ(t)

√

Γ(t)2+∆̃N (t)2
sin

(

√

Γ(t)2 + ∆̃N (t)2
)

i
∆̃N

√

Γ(t)2+∆̃N (t)2
sin

(

√

Γ(t)2 + ∆̃N (t)2
)

i
∆̃N

√

Γ(t)2+∆̃N (t)2
sin

(

√

Γ(t)2 + ∆̃N (t)2
)

cos

(

√

Γ(t)2 + ∆̃N (t)2
)

+ i
Γ(t)

√

Γ(t)2+∆̃N (t)2
sin

(

√

Γ(t)2 + ∆̃N (t)2
)













.

(A31)

Since the back action tends to be strongest at the degen-
eracy point, we choose ǫ = 0 in the following, such that
HQB = ∆

2 σx. We want to study the time evolution of an
arbitrary qubit state, when we prepare the SQUID in the
ground state (〈N〉 = 0), leading to the following density
matrix at t = 0

ρ̂(0) =

(

|α|2 αβ∗

α∗β |β|2
)

⊗ |0〉 〈0| (A32)

The time evolution of this state can then be calculated
using V (t). We are especially interested in the density
matrix of the qubit at time t, so we trace out the cjj-
SQUID degrees of freedom

ρQB(t) = Trcjj {ρ(t)} (A33)

= |α(t)|2 |	〉 〈	|+ α(t)β∗(t) |	〉 〈�| e−ϕ̃p(t)
2

+ α∗(t)β(t) |�〉 〈	| e−ϕ̃p(t)
2

+ |β(t)|2 |�〉 〈�|
.

(A34)

Here we clearly see the measurement induced dephasing
appearing as an exponential damping of the off diago-
nal elements, depending on the displacement between the
two pointer states. The time evolution of the prefactors
α and β can be calculated using the time propagator. For
the initial state |+〉 we have also chosen the main text, it

is α = 1/
√
2 and β = 1/

√
2 leading to the density matrix

entries

ρQB
00 (t) =

1

2

(

1− 2
∆̃0(t)Γ(t)

κ(t)
sin2 κ(t)

)

(A35)

ρQB
01 (t) =

1

2

(

1− 2
Γ(t)2

κ2(t)
sin2 κ(t)

−2i
Γ(t)

κ(t)
sinκ(t) cosκ(t)

)

exp
(

−ϕ̃p(t)
2
)

(A36)

ρQB
10 (t) =

(

ρQB
01 (t)

)∗
(A37)

ρQB
11 (t) = 1− ρQB

00 (t), (A38)

where we defined κ(t) =
√

∆0(t)2 + Γ(t)2. In Fig. 4 we

see the time evolution of the parameters Γ(t) and ∆̃(t).
We see that for t 7→ T , Γ gets much larger than ∆ leading
the oscillating term of the diagonal elements to go to
zero, such that at the end of the measurement process the
population is the same as in the beginning, proving the
measurement to be QND. The long time behavior of the
off diagonal elements are dominated by the measurement
induced dephasing, i.e. the exponential part. Therefore
the offdiagonal elements completely decay for t 7→ T ,
what we also see in the numerical results.
However, even though the analytical results predict the

right qualitative behavior and the right long time behav-
ior, there are deviations between the analytical and nu-
merical results. E.g. the predicted damped osicllations
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for the same parameters as in the main text.
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FIG. 10. Error of the measurement result at the flux degen-
eracy point(left) and way from it for ǫ = ∆ (right) and 100
different generations of 1/f -noise. The yellow line shows a
linear fit to visualize the average error.

of the diagonal elements around 1/2 are not observed in
Fig. 9. Two main factors limit the validity of the analyt-
ics. First we only included the first order of the Magnus
expansion, but since T is in the order of the qubit time
evolution for the chosen parameters, it is not completely
reasonable to assume a diabatic time evolution on the
qubit time scale. Hence to get more rigorous results one
has to include higher orders of the Magnus expansion.
Second, we ignored the contributions coming from non
commutating character of the interaction and the qubit
Hamiltonian. Even though the studied contributions are
the leading back action terms, for T comparable to the
qubit time scale, the other contributions also start to
matter.

3. Flux noise acting on the cjj-SQUID

Here we will study an effect which is more specific for
our setup, i.e. flux noise acting on the quantum probe
during the measurement. We assume 1/f flux noise,
which typically appears in superconducting flux qubit
architectures. To generate the noise trajectories, we use
the matlab inbuilt object dsp.ColoredNoise, which cre-
ates 1/|f |α noise, with α to choose from [−2, 2], using
Gaussian sampling. Here we use 5000 samples to gen-
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FIG. 11. Left:Evolution of the density matrix element ρ		(t)
for a vacuum environment (solid blue) and a 1/f -noise envi-
ronment (dotted yellow).
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FIG. 12. Example of a 1/f -noise signal generated by sampling
Gaussian random processes and adding a variance to account
for low frequency shifts.

erate one noise trajectory. Since dsp.ColoredNoise gives
noise trajectories with zero mean value, we additionally
add a constant offset to every noise trajectory, to ac-
count for low frequency shifts. For every noise trajectory
this offset is again obtained by a Gaussian sampling with
mean 0 and variance A log(Texp/Twf). Here A is the am-
plitude of the power spectral density S(f) = A/|f |, Twf

is the duration of the actual readout process (here 10
ns) and Texp = Nr(Twf +Treset) is the total experimental
time. This time results from the sum of the actual mea-
surement time plus the reset time Treset, multiplied by
the number of repetitions Nr necessary to obtain good
measurement statistics. In our simulations we assume
Treset = 1 ms, Nr = 100 and A = (2µΦ0)

2 for the small
loop and A = (10µΦ0)

2 for the larger loop. These values
are good upper bounds for realistic flux qubit experi-
ments (e.g. [51]).
In Fig. 10 we show the measurement fidelity for the 100



11

20 22 24 26 28 30

log
2
(Hz)

-150

-145

-140

-135

-130

-125

-120

d
B

PSD generated noise

Theoretical PSD
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Fig. 12.

different 1/f -noise generations. The results are shown
for a qubit at (left) and away from the symmetry point
(right). We see that in both cases the measurement fi-
delity is only changed in a very small amount (≈ 10−3).

This means that the additional ingredient of our scheme,
i.e. the quantum probe, does not make the system more
susceptible for flux noise.
Besides a direct change of the measurement results,

flux noise induced in the cjj-SQUID could also lead to
back action on the qubit itself. To prove that this also
has no significant effect in our case, we study the time
evolution of the qubit density matrix elements for one
1/f -noise generation. As an input state we choose the
persistent current state |	〉 and the parameters are the
same as in Fig. 3 of the main text. Fig. 11 shows the
evolution of the density matrix element ρ		(t) with and
without additional 1/f flux noise in the two loops of the
cjj-SQUID. We see that the QND fidelity of the qubit
is only slightly affected by the noise, almost not visible
in the figure. In Fig. 11 (right) we show an example of
a 1/f -noise signal generated by the algorithm and ad-
ditionally the corresponding power spectral density to
prove the 1/f behavior.
All in all this proves that the additional circuit ingredi-

ent, i.e. the cjj-SQUID, does not make the measurement
scheme more susceptible for typical noises appearing in
flux qubit designs.
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