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We analyze the dephasing dynamics of an impurity coupled to an anharmonic environment. We
show that a strong anharmonicity produces two different effects depending on the environment
temperature: for high temperatures, the system suffers a strong dephasing, while for low tem-
peratures there is a strong information back-flow (as measured by the Breuer-Laine-Piilo (BLP)
non-Markovianity measure). Both dephasing and back-flow are particularly significant when the
anharmonic potential allows environment states very close to the dissociation limit. In contrast, the
information back-flow is suppressed when assuming the environment to be Gaussian. In this regard,
we find that the Gaussian approximation is particularly poor at low temperatures.

I. INTRODUCTION

An accurate description of hybrid systems such as
molecular ensembles containing different types of degrees
of freedom is still challenging. An often convenient ap-
proach is to consider some of these freedoms as an open
system, while others that operate at a different time scale
are treated as an environment and described by its statis-
tical properties [1–6]. The open system may represent for
instance an electronic component while the environment
describes a set of nuclei. In other situations the system is
an impurity coupled to a complex environment that can
be either in condensed matter form, a liquid or a gas. One
of the most successful approaches consists in approximat-
ing such environment as a set of harmonic oscillators, an
idea that was first put forward by Feynman and Ver-
non [7]. In this context, the best known model is the
spin-boson [8], which is very extended to describe energy
transfer between two or more molecules (or molecular
states) in the presence of an environment [9, 10]. Exam-
ples of these systems are antenna molecules within pho-
tosynthetic complexes that are coupled to a protein en-
vironment [11–16], or electron-transfer reactions between
electronic donor and acceptor states that are conditioned
by the motion of nuclear degrees of freedom [17–19]. In
both cases, the protein and nuclear degrees of freedoms
are represented by a harmonic bath producing dephas-
ing. Other situations where electron transfer is affected
by an environment include transport in polymers [20],
dynamics of organic molecules within solar cells [21], or
impurities in strongly condensed matter or liquids [22].

However, the emergence of new scenarios and the rapid
development of experimental techniques such as time-
resolved nonlinear spectroscopy are giving more infor-
mation on the dynamics of complex molecular systems,
therefore requiring more detailed models and analysis
[23]. For instance, when the electronic dynamics oc-
cur in the presence of nonpolar liquids or low-frequency
intramolecular modes (such as torsional motion) the
harmonic approximation is known to fail [17, 24–28].
Also, nuclear environments may have a complex structure
where some modes are highly anharmonic, while the re-
maining ones can be treated as harmonic and considered

to be linearly coupled to the anharmonic ones [29, 30].
Another relevant type of environment that is present in
condensed matter physics and quantum technological de-
vices corresponds to a set of spins or spin bath [31]. For
these spin environments it is well known that the statis-
tics (i.e. the behaviour of different order correlation func-
tions of the environment coupling operators), is highly
non-Gaussian, and therefore their description in terms of
a spectral density is highly inaccurate. In such context
of quantum technological devices, where noise-optimized
quantum control is required, an accurate characteriza-
tion of the environment and its non-Gaussian features is
essential [32, 33].

agation and rectification properties are a↵ected by the presence of atom-atom interactions, and
the presence of a gradient in the atomic resonant structures.

In this regard, we expect that the propagation properties of a quantum mechanical field in a
moving (and strongly correlated) media, will be very di↵erent from the ones previously analysed
in electromagnetic induced transparency (EIT), and standing qubit arrays in waveguides.

Once again, we will combine the development of new equations in the frame of OQS, with
t-DMRG.

2.3 Work programme including proposed research methods

The work programme and the corresponding research methods for each of the three main parts of the
project are discussed in the following:

(a) Relaxation properties of open quantum systems in harmonic oscillator environments

In order to access the long time limit properties of the system in an accurate way, we plan to combine
three di↵erent approaches: firstly, we derive a new time-local master equation (from now on referred as
generalized master equation, GME) without the weak coupling approximation; secondly we consider
the chain mapping approach combined with the thermofield approach to truncate the chain in the first
few oscillators and consider the e↵ect of the reminder oscillators in terms of a Lindblad evolution; and
thirdly we will compare the previous results with exact t-DMRG techniques combined with the TTM
recently proposed in [14]. In the following, we will enumerate our goals in a more detailed way, and
in a chronological order:

a1) We re-cast the hierarchy of Heisenberg equations derived in [P2] as an exact time local mas-
ter equation for the total density operator. This equation is written in terms of integrals over
the correlation function of the environment ↵(⌧), which include the system coupling operators
evolved with the full Hamiltonian, X(⌧) = eiHtot⌧Xe�iHtot⌧ , with Htot written in its chain map-
ping representation. Provided that the environment correlation time, ⌧c (given by the decay of

the kernel ↵(⌧)), is finite, we approximate X(⌧) ⇡ eiĤN
S ⌧Xe�iĤN

S ⌧ , where ĤN
S includes the open

system and first N oscillators in the environment chain. After tracing the resulting equation
over the remainder environment degrees of freedom, we obtain the GME, which is an evolu-
tion equation for the density operator in a Hilbert space that includes the system and the N
oscillators.

HS The idea of approximating the evolution of X(⌧) with a truncated Hamiltonian ĤN
S is based

on the fact that the evolution time induces a dynamical renormalization over the system-bath
interaction, i.e. the system interacts progressively with the environment degrees of freedom
rather than with all of them at once (see discussion and references in [P9]). Interestingly, as
discussed in [29], the required size of the truncated Hamiltonian can be determined a priori by
considering a Lieb-Robinson bound argument.

a2) We will implement numerically the GME. This task will be performed directly with Matlab, as
we expect that the size of the truncated Hilbert space will not be too large (just the system and
its 2-4 nearest oscillators in the chain representation).

a3) As discussed above, the size of the truncated system will be highly dependent on the environ-
ment correlation time ⌧c. For those cases with longer ⌧c, which require a larger N , we will
develop alternative methods based on t-DMRG or tensor networks to solve the GME. It shall
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purity coupled to a harmonic bath and to a spin bath,
as well as all the intermediate anharmonic regimes. As
shown in Fig. (1) the coupling is in a star configuration,
and therefore the harmonic and spin limits correspond to
the dephasing version of the spin-boson and central spin
models, respectively.

The paper is organized as follows. We first discuss
general concepts of the model in Sec. II as well as the
dynamical map that describes the reduced dynamics of
the impurity. Then we divide the analysis in three parts:
In Sec. III we discuss the changes in the impurity dephas-
ing time, that is intimately related to the persistence of
quantum mechanical properties such as coherence and
entanglement along the evolution, when considering two
impurities initially entangled [36]. In Sec. IV we con-
sider the ratio between the flow of information inwards
and outwards of the impurity [37], which determines the
amount of information that is lost from the system into
the environment. In turn, such ratio is strongly linked
to the presence of non-Markovianity [4, 5, 38], a concept
that has gained increasing attention in various contexts
including quantum information and quantum metrology,
biological systems, ultra-cold atoms or quantum thermo-
dynamics [6]. In Sec. V we analyze the degree in which
the anharmonic environment can be well approximated
with a Gaussian map, and therefore described through its
second order moment or correlation function only. This
will allow us to explore how the non-Gaussianity of the
environment behaves for di↵erent values of the anhar-
monic parameter. Finally, in Sec. VI we draw some
conclusions and outlook.

II. A SPIN COUPLED TO A MORSE
OSCILLATOR ENVIRONMENT

We consider a system with a total Hamiltonian H =
HS + HE + HI . This corresponds to an impurity with
Hamiltonian (~ = 1)

HS =
✏

2
�z, (1)

where �z is the spin operator corresponding to the impu-
rity, that can be written in terms of its internal basis |±i
as �z = |+ih+|� |�ih�|, coupled to an anharmonic envi-
ronment composed of independent Harmonic oscillators
with a Hamiltonian HE =

P
k Hk, where

Hk =
p2

k

2m
+ Dk

�
e�2↵kxk � 2e�↵kxk

�
, (2)

is describing each k-th oscillator in terms of a Morse po-
tential. Here we have defined the position operator as

xk =
p
↵k/2m!k(bk + b†

k), where bk (b†
k) the standard

harmonic annihiliation (creation) operators. The depth
and the width of the Morse potential is described in terms
of two di↵erent parameters, Dk and ↵k, respectively. The
coupling is described through the Hamiltonian

HI = �z ⌦ B, (3)

where S and B are system and environment coupling
operators, respectively. Just like for the free Hamiltonian
we can write B =

P
k Bk, with

Bk = gk(bk + b†
k), (4)

with gk a constant that determines the coupling strength
of the k-th oscillator to the system. Thus, we consider the
coupling as linear and therefore proportional to the posi-
tion operator (also called reaction coordinate in the con-
text of electron transfer) of each Morse oscillator Bk ⇠ xk

[19, 25–27, 39? ].

V+(xk) (5)

A. Properties of the Morse potential

Proposed in 1929 [33] the Morse potential was one of
the first empirical potentials to describe anharmonicities
in the vibration of diatomic molecules, and is now widely
used to describe complex anharmonic e↵ects [31, 32, 39].
The Morse potential presents various interesting features.
First of all it is analytically solvable, yielding a finite
number of bound states with negative energies given by

Ekn := �!k⇤

2
� !k

2⇤

✓
n +

1

2

◆2

+ !k

✓
n +

1

2

◆
. (6)

These energies depend on the depth and the width of
the potential through a new parameter ⇤, such that
Dk = !k⇤

2 and ↵k =
p

!k

⇤ . Thus, !k is the frequency
of the harmonic part of the potential, while the parame-
ter ⇤ tunes the anharmonic component. Note that while
we consider the same anharmonicity parameter for all
environment oscillators, their frequencies are linearly dis-
tributed.

Besides the bound states, the Morse potential present a
continuous spectrum of positive energy eigenstates, also
know as scattering states, that will not be considered
here for simplicity. Overall, they will correspond to a
continuous bath of free particles, to which the impurity
may be coupled too and which may produce additional
dephasing. In the new eigenstate basis, with the n-th
energy eigenstate of the k-th oscillator written as |kni
and the respective eigenenergies Ekn, we find that Eqs.
(2) and (4) can be written as

Hk =
X

n

Ekn|knihkn|, (7)

Bk =
X

n,m

ck
nm|knihkm|, (8)

where ck
nm = hkn|Bk|kmi are the coe�cients for the bath

part of the interaction operator.
A second interesting property is that the number of

bound states is uniquely given by the integer part of ⇤+
1
2 , when ⇤ + 1

2 is not an integer. When ⇤ + 1
2 is an

integer, the number of bound states is ⇤� 1
2 . This allows

us to, by simply varying ⇤, tune our bath between a
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Reaction 
coordinate

Energy

FIG. 1. (Color online) Left panel represents a scheme of the
open quantum system coupled to an environment of anhar-
monic oscillators, which we model with a Morse potential.
Right panel shows a schematic of the upper and lower level
energy potential surfaces in one of the multi-dimensional reac-
tion coordinates xk that describes an energy-transfer reaction
between the electronic levels |+〉 and |−〉.

In this paper, we consider an impurity coupled to an
environment consisting of a set of independent Morse os-
cillators [34, 35] producing dephasing. Advantageously,
the Morse oscillator Hamiltonian is analytically solvable
[36], giving rise to a spectrum of discrete energy levels,
or bound states, and a set of scattering states. Such
scattering states form a continuum that produces an ad-
ditional decoherence and is describable as a harmonic
bath [37, 38]. Here, we are not interested in a complete
description of the whole Morse spectrum, but rather we
focus in its discrete part. This allows us to make a sys-
tematic study of the effects of the anharmonicity on the
open system dynamics: by tuning the anharmonicity of
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the potential we will be able to vary from a regime where
each environment oscillator has a large number of equally
spaced bound states, thus a harmonic limit, to a highly
anharmonic situation with only two bound states. In
other words, our model allows us to describe the dephas-
ing dynamics of an impurity coupled to a harmonic bath
and to a spin bath, as well as all the intermediate anhar-
monic regimes. As shown in Fig. (1) the Hamiltonian de-
scribes a star configuration, with the impurity coupled to
a set of independent oscillators, such that the harmonic
and spin limits correspond to the pure dephasing version
of the spin-boson and central spin models, respectively.

The paper is organized as follows. We first discuss gen-
eral concepts of the model in Sec. II as well as the dy-
namical map that describes the reduced dynamics of the
impurity. Then we divide the analysis in three parts: In
Sec. III we discuss the changes in the impurity dephasing
time, that is intimately related to the persistence of quan-
tum mechanical properties such as coherence and entan-
glement along the evolution, when considering two impu-
rities initially entangled [39]. In Sec. IV we consider the
ratio between the flow of information inwards and out-
wards of the impurity [40], which determines the amount
of information that is lost from the system into the en-
vironment. In turn, such ratio is strongly linked to the
presence of BLP non-Markovianity [4, 5, 41], a concept
that has gained increasing attention in various contexts
including quantum information and quantum metrology,
biological systems, ultra-cold atoms or quantum thermo-
dynamics [6]. In Sec. V we analyze the degree in which
the impurity dynamics can be well described with a Gaus-
sian map, such that it only depends on the environment
second order moment or correlation function. This will
allow us to explore when will the non-Gaussianity of the
environment become more or less relevant depending on
the environment temperature and the anharmonicity pa-
rameter. Finally, in Sec. VI we draw some conclusions
and outlook.

II. A SPIN COUPLED TO A MORSE
OSCILLATOR ENVIRONMENT

We consider a system with a total Hamiltonian H =
HS + HE + HI . This corresponds to an impurity with
Hamiltonian (~ = 1)

HS = ωsσz, (1)

where σz is a spin ladder operator that can be written in
terms of the impurity internal basis |±〉 as σz = |+〉〈+|−
|−〉〈−|, coupled to an anharmonic environment composed
of independent Harmonic oscillators with a Hamiltonian
HE =

∑
kHk (k ∈ {1, . . . , 40}), where

Hk =
p2
k

2m
+Dk

(
e−2αkxk − 2e−αkxk

)
, (2)

is describing each k-th oscillator in terms of a Morse
potential. Here we have defined the position operator

as xk =
√
αk/2mωk(bk + b†k), where bk (b†k) the stan-

dard harmonic annihiliation (creation) operators. The
depth and the width of the Morse potential is deter-
mined by two different parameters, Dk and αk, respec-
tively. Notice that this represents a specific case of
the right panel of Fig.1 in which the potential part
V (xk) = Dk

(
e−2αkxk − 2e−αkxk

)
is centered at the ori-

gin and equal for both impurity levels. Finally, the cou-
pling is described through the Hamiltonian

HI = S ⊗B, (3)

where S := σz and B are system and environment cou-
pling operators, respectively. Just like for the free Hamil-
tonian we can write B =

∑
k Bk, with

Bk = gk(bk + b†k), (4)

with gk a constant that determines the coupling strength
of the k-th oscillator to the system. Thus, we consider the
coupling as linear and therefore proportional to the posi-
tion operator (also called reaction coordinate in the con-
text of electron transfer) of each Morse oscillator Bk ∼ xk
[19, 23, 26–28, 42].

A. Properties of the Morse potential

Proposed in 1929 [36] the Morse potential was one of
the first empirical models to describe anharmonicities in
the vibration of diatomic molecules, and is now widely
used to describe complex anharmonic effects [34, 35, 42].
The Morse potential presents various interesting features.
First of all it is analytically solvable, yielding a finite
number of bound states with negative energies given by

Ekn := −ωkΛ

2
− ωk

2Λ

(
n+

1

2

)2

+ ωk

(
n+

1

2

)
. (5)

These energies depend on the depth and the width of
the potential through a new parameter Λ, such that
Dk = ωkΛ

2 and αk =
√

ωk

Λ . Thus, ωk is the frequency
of the harmonic part of the potential, while the parame-
ter Λ tunes the anharmonic component. Note that while
we consider the same anharmonicity parameter for all
environment oscillators, their frequencies are linearly dis-
tributed.

Besides the bound states, the Morse potential present a
continuous spectrum of positive energy eigenstates, also
known as scattering states, that will not be considered
here for simplicity. Overall, they will correspond to a
continuous bath of free particles, to which the impurity
may be coupled too and which may produce additional
dephasing. In the new eigenstate basis, with the n-th
energy eigenstate of the k-th oscillator written as |kn〉
and the respective eigenenergies Ekn, we find that Eqs.
(2) and (4) can be written as

Hk =
∑

n

Ekn|kn〉〈kn|, (6)

Bk =
∑

n,m

cknm|kn〉〈km|, (7)
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where cknm = 〈kn|Bk|km〉 are the coefficients for the bath
part of the interaction operator.

A second interesting property is that the number of
bound states is uniquely given by the integer part of Λ +
1
2 , when Λ + 1

2 is not an integer. When Λ + 1
2 is an

integer, the number of bound states is Λ− 1
2 . This allows

us to, by simply varying Λ, tune our bath between a spin
bath limit, corresponding to Λ ∈]3/2, 5/2], to a harmonic
limit, recovered for Λ→∞. Note that at 3/2 the Morse
oscillator has only one bound state. Between these limits,
we also find two different types of regions in Λ which will
determine very strongly the nature of the dynamics:

I) The regions where all environment states are
strongly bounded, corresponding to Λ ≡ Λn,−ε =
n + 1/2 − ε, with n integer and 0 ≤ |ε| � 1 a real
number.

II) The regions where a new bound state is formed,
which moreover is weakly bounded, corresponding
to Λ ≡ Λn,ε = n + 1/2 + ε, with n integer and
0 < ε� 1 a positive real number.

A typical situation in both regions can be observed in
Fig. 2 for the case of n = 2, when choosing ε = 0 (region
(I)) and ε = 0.1 (region (II)).
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FIG. 2. (Color online) Morse potential and eigenvalues of the
bound states for different values of the anharmonic parameter:
Region I: Λ ≡ Λn=2,ε=0 = 2.5 (upper panel) displaying two
bound states far from the dissociation limit, and region II,
Λ ≡ Λn=2,ε=0.1 = 2.51 (lower panel) giving rise to the same
bound states and a third one that corresponds to a weakly
bounded state, close to the dissociation limit.

B. Properties of the open system dynamics

We now consider an initially decorrelated state so
that the total density operator is written as ρ(t =

0) = ρ0 ⊗ ρβE , where ρ0 is the initial state of the sys-
tem, and the environment is in a thermal equilibrium

ρβE := e−βHE/TrE{e−βHE}, with the inverse tempera-
ture β = 1/kBT and kB is the Boltzmann constant. In

the general case, the reduced density matrix of the sys-
tem in the interaction picture can be written as

ρs(t) = TrE{U−1(t, t0)ρs(0)⊗ ρβB(0)U(t, t0)}, (8)

where U(t, t0) is the evolution operator in interaction pic-
ture, which can be expanded with a Dyson series as

U(t, t0) = 1− i
∫ t

t0

dt1HI(t1)

+ (−i)2

∫ t

t0

dt1

∫ t1

t0

dt2HI(t1)HI(t2) + · · · .(9)

Considering this expansion as well as the case HI = SB,
we find that the time evolution of ρs(t) can be re-written
in terms of an infinite series of l-th order correlation func-
tions which at zero times have the general form

Cl(0) = TrE{BlρE} =
∑

k1,...,kl

TrE{Bk1 · · ·BklρE}.(10)

Here, the sum covers all configurations of {k1, . . . , kl},
and can be decomposed into sums over sectors where dif-
ferent numbers of those k coincide. As noted above, our
model describes a linear system-environment coupling,
such that for each oscillator Bk ∼ xk, with xk the po-
sition operator. Three important consequences can be
extracted from such linear coupling to an anharmonic
environment:

(i) The first order term (l = 1) in the expansion (10)
needed to recover Eq. (8) is non-zero. This is be-
cause the coupling is linear and the environment
Hamiltonian describes an asymmetric potential,

such that 〈B〉βE := trB{BρβE} 6= 0. This fact can be
remedied by considering a renormalized version of
the Hamiltonian, such that H = H̃S + HE + B̃σz,

where H̃S = ωsσz + σz 〈B〉βE , and B̃ = B − 〈B〉βE .
Hence, the correlations involved in Eq. (8) are
equal to the ones in Eq. (10) but replacing each

Bk by their renormalized counterpart B̃k.

(ii) After the first order term, the most important con-
tribution, i.e. the second order term or correlation
function

α(t− s) = TrE{B̃(t)B̃(s)ρβE}, (11)

has a real part that does not decay to zero at finite
temperatures but to a constant positive value. In
terms of the eigen-values and eigenvectors of the
environment {Ekn, |kn〉}, the correlation function
(11) can be formally written as α(t) = C(t) + C0,
where

C0 =
∑

k,n

|〈kn|B̃k|kn〉|2
e−βEkn

Zk
, (12)

corresponds to an offset, while

C(t) =
∑

k

∑

p 6=n
|〈kn|B̃k|kp〉|2

e−βEkn

Zk
ei∆

k
npt, (13)
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corresponds to a time-dependent component, where
we have defined ∆k

np = Ekn−Ekp. When we have a
sufficiently large number of interfering phases, such
time dependent factor decays. However, the time
independent contribution will produce a real off-
set that will only be cancelled in the zero tem-
perature limit, i.e. when we have that C0 =∑
k |〈k0|B̃k|k0〉|2 = |〈B̃〉∞E |2 = 0.

(iii) The offset is particularly important in regions of
type (II), i.e. for values of Λ for which a weakly
bound state exists, since these correspond to highly
asymmetric bound states leading to a large over-
lap 〈km|B̃k|km〉, where we define m as the index
of such weakly bound state. The presence of the
weakly bounded state has two important conse-
quences: First, it holds that:

lim
ε→0+

〈m|x|m〉 = ln(2m+ 1)− lim
ε→0+

ψ(2ε)

− ψ(1) + ψ(m+ 1) =∞, (14)

where we have just inserted the matrix element
given in (B28) and took the limit. In consequence,
the offset becomes very large nearby such limit, and
when the temperature is high enough so as to have
a large initial population in the upper energy level.
The second consequence is that all the transitions
to the bound state with highest energy are sup-
pressed. To show this, we consider a bound state
|l〉 having lower energy than |m〉, then

limε→0+ 〈l|x|m〉 =
2(−1)m−l+1

(m− l)(m− l)

×
√
m!(m− l)Γ(m+ 1)

l!Γ(2m− l + 1)
lim
ε→0+

√
ε = 0. (15)

Here we took (B30), inserted N = m+ ε and used
that the functions containing ε are continous func-
tions so we could pull the limit into them. The
consequence is that the time-dependent term of the
correlation function, given by Eq. (13) is not af-
fected by the presence of the bound state, contrary
to the offset part.

(iv) So far we have focused on the first and the second
order moments of the expansion (10). However, in
the present anharmonic case the structure of such
expansion is much richer than in the harmonic case.
First, the terms in TrE{B̃k1 · · · B̃klρE} having an
odd number of identical kj do no longer vanish.

That is, TrE{B̃2n+1
k · · · B̃kρE} 6= 0, when n is inte-

ger. Moreover, the even order components can no
longer be decomposed as products of second order
components of the form (11). Naturally, these two
properties are fulfilled in the harmonic bath case,
leading to system dynamical equations that can be
written solely in terms of the correlation function

(11). Indeed, Wick’s theorem holds in the har-
monic case, since there Hk is quadratic and one can
decompose Bk(t) = eiHktBke

−iHkt = fk(t)bk(0) +

f∗k (t)b†k(0) (with fk(t) a time-dependent function).
Away from this limit, such a decomposition is no
longer possible and Wick’s theorem can no longer
be applied.

One way to diminish the relative weight of higher order
terms with respect to the second order one (11) is to
choose an appropriate scaling for the coupling strengths
gk present in the environment coupling operators Bk. In
detail, if we choose them to scale as gk ∼ 1/

√
K, where K

is the number of oscillators, it can be shown that higher
order correlations will eventually vanish in the limit of
large K, an idea that was originally proposed in [43] and
that is further discussed in [44].

In our case, we consider a fixed number of oscillators
K = 40 and explore to which extent the higher order
terms are relevant to the description of the system. In
order to be consistent with the harmonic oscillator limit,
we further consider the standard choice in this limit for
the frequency distribution and coupling strengths,

ωk :=
2ωc
K

k, (16)

gk :=

√
2ωc
K

J(ωk). (17)

Here J(ω) is the spectral density, which we consider to
be of ohmic type

J(ω) := Θ (2ωc − ω) η
ω

ωc
e−

ω
ωc , (18)

with a special hard cut and ωc is a cut-off frequency, and
η is a parameter with which we modulate the strength
of the system-environment coupling. For the harmonic
case, the chosen linear discretisation ωk = k∆ω, with
∆ω = 2ωc/K, gives rise to a revival time (which is the
time at which finite size effects of the environment will
start to occur) that in our case is T = π/∆ω ≈ 20.

C. The dynamical map

Because we are considering pure dephasing, we have
that [HS , S] = 0, which implies that the Hamiltonian is
in block diagonal form and can be written as

H = P+

(
ωs +

∑

k

H+
k

)
+ P−

(
− ωs +

∑

k

H−k

)
(19)

where we have defined the projectors P± := |±〉〈±| in
terms of the eigenstates |±〉 of σz with eigenvalues ±1,
and we have decomposed both HE and B in terms of
local operators, H±k := Hk ± Bk with Hk corresponding
to the k-th oscillator. Thus, the time-evolution operator
can be computed as

eiHt = P− e
−iωst

∏

k

eiH
−
k t + P+ eiωst

∏

k

eiH
+
k t. (20)
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To obtain this expression, we have used the fact that the
two terms in (19) commute, as well as the locality of the
terms in the exponential to factorize it. Thus, computing
Eq. (20) requires only having to exponentiate local op-
erators which can be done very efficiently. Indeed, the
total Hilbert space dimension scales like dK , where d
is the local dimension, and we only have to exponenti-
ate matrices of size d. Thus, the total density operator

ρ(t) = e−iHtρ0 ⊗ ρβEeiHt can be rewritten as

ρ(t) = P+ρ0P+ ⊗ e−iH
+tρβEe

iH+t

+ P−ρ0P− ⊗ e−iH
−tρβEe

iH−t

+ P−ρ0P+ ⊗ e−iH
−tρβEe

iH+te2iωst

+ P+ρ0P− ⊗ e−iH
+tρβEe

iH−te−2iωst, (21)

where we have definedH± :=
∑
kH
±
k . Taking the partial

trace over the bath degrees of freedom yields the reduced
density matrix of the system, which has the following
form

ρs(t) = Φ(t) [ρs(0)] =

(
ρ11
s (0) χ(t)ρ12

s (0)

χ∗(t)ρ21
s (0) ρ22

s (0)

)
(22)

where we have defined the decaying factor as

χ(t) = e2iωst
∏

k

trk

(
e−iH

−
k tρβke

iH+
k t
)
, (23)

where ρβk is the thermal state of the k-th oscillator with
respect to its free Hamiltonian. We note that despite
of the presence of an offset (12) which gives rise to an
ill defined weak coupling master equation, we have nu-
merically found that the map (23) is invertible for all
the parameter regimes we considered here (not shown),
which suggests that a time-local master equation is still
well-defined [45].

1. Harmonic and spin limits

In the harmonic oscillator limit, the decay factor ac-
quires the usual form

χ(t) = e2iωst−Γ(t), (24)

where

Γ(t) := 8
∑

k

g2
k

ω2
k

sin2

(
ωkt

2

)
coth

(
βωk

2

)

= 4Re

{∫ t

0

ds

∫ s

0

duα(s− u)

}
, (25)

where α(t−s) = TrE{B̃(t)B̃(s)ρβE}. Moreover, note that

in the harmonic limit B̃ = B, since 〈B〉β = 0. In addi-
tion, the offset (12) of the correlation function vanishes.

In the opposite limit of a spin bath, i.e. when 1.5 <
Λ ≤ 2.5, the operators Hk and Bk can be written in
terms of the Pauli matrices σkj which are elements of the

vector ~σk = (11k, σ
k
x, σ

k
y , σ

k
z ), where we have defined the

first element σk0 = 11k in terms of the unit operator in
the Hilbert space of the k-th oscillator. In this represen-
tation, we find that

H+
k = ~ck · ~σk,

H−k = ~dk · ~σk, (26)

where each component of ~ck and ~dk is defined as ckj =
1
2Trk(H+

k σ
k
j ) and dkj = 1

2Trk(H−k σ
k
j ), respectively. Thus,

the exponentials appearing in Eq. (23) can be simplified
as

e±iH
+
k t =

(
11 cos (‖~ck‖ t)± i

~ck · ~σk
‖~ck‖

sin
(
‖~ck‖ t

))
e±ic

k
0 t,

e±iH
−
k t =

(
11 cos

(
‖~dk‖t

)
± i

~dk · ~σk
‖~dk‖

sin
(
‖~dk‖t

))
e±id

k
0 t

(27)

III. DEPHASING TIME

We first analyze the dephasing time of the system. i.e.
the decaying of the off-diagonal elements of the reduced
density matrix. For all the numerical results we choose
frequency units of ωs = 1. Moreover, we consider the
initial state

ρ0 =
1

2

(
11 +

1

2
σx

)
. (28)

Although this choice is rather arbitrary, it ensures that
there are initial coherences that allow us to analyze de-
phasing. In other words our analysis is independent from
the initial condition as long as it contains coherences. We
define the decay time τd as the time such that

|〈0|ρS(τd)|1〉|
|〈0|ρS(t = 0)|1〉| =

1

10
, (29)

where the reduced density matrix is given by Eq. (22).
Figs. 3(a,b) display the decay time τc for different val-

ues of the anharmonicity parameter Λ and different initial
temperatures of the bath. For the following discussion it
is important to remember that as Λ increases, the anhar-
monicity decreases. In detail, in Fig. 3(a), we explore the
values of Λ ≡ Λn,ε=0 = n+1/2, which correspond to type
(I) regions where the highest energy bound state is as far
as possible from the dissociation limit, i.e. as strongly
bounded as possible. With this choice, we find that τc
has a quite smooth behavior with the anharmonicity, dis-
playing a general tendency to increase towards the har-
monic limit. Such trend reverses towards higher anhar-
monicities, where the number of bound states becomes
increasingly limited and the dephasing slows down again.

As shown in Fig. 3(b), such a smooth behavior is dis-
rupted when including a finer grid of Λ values, now taking
closer points spaced by δΛ = 0.1. One can clearly identify
that the regions of type (I) end up with a peak at values
Λ = n + 1/2 (where the top of the peaks correspond to
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FIG. 3. (Color online) Upper panels represent the dephasing
rate for a coupling strength of η = 2 in Eq. (18). The the
left panel has low resolution with values of Λ separated by a
step δΛ = 1, while the right has a high resolution with δΛ =
0.1. The lower panels represent the offset (left) and relative
value of the offset C0/C(t = 0) (right), for high resolution
δΛ = 0.01 and η = 0.01. All panels display the curves for
different inverse temperatures, β = 1, 4, 7, 10 corresponding
to solid black, dashed blue, dotted green, and dot-dashed red,
respectively.

the points shown in Fig. 3(a)), followed by a dip at values
Λn,ε with ε very small, i.e. when the regions (II) begin.
Indeed, as discussed in Fig. 3(a), at high anharmonici-
ties each oscillator has only a few energy levels, which in
principle hinders the dephasing. However, when entering
each region (II) a new bound state is formed, and the
offset becomes so large that it compensates for this effect
and leads to a strong dephasing.

Another interesting feature of the figure is that in the
spin region the decay time goes to infinity at low temper-
atures and at low ε at the beginning of region (II). Indeed,
we have seen in Eq. (15) that all the transitions to the
bound state with the highest energy are suppressed in
regions (II). Thus, when we only have two bound states
the limit ε→ 0 gives rise to bath operators H±k that are
diagonal. To see this, we find that for Λ = 1.5 + ε and
small ε,

lim
ε→0+

ckx = lim
ε→0+

(
trk(H+

k σx)− trk(Bkσx)
)

= 0,

lim
ε→0+

cky = lim
ε→0+

(
trk(H+

k σy)− trk(Bkσy)
)

= 0, (30)

and similarly limε→0+ dkx = 0 and limε→0+ dky = 0. In
addition,

ckz = trk(H+
k σz) + trk(Bkσz),

dkz = trk(H−k σz)− trk(Bkσz), (31)

and their limit ε → 0+ will diverge as predicted by the
general case eq. (14). If we now consider the eqs. (27)
for a very small ε, and ignore for this argument the phase
that comes from the c0 and the d0 contribution because

it does not affect the absolute value of the coherences, we
find

lim
ε→0+

e±iH
+
k t = 11k cos

(
φ+
k t
)
± iσz sin

(
φ+
k t
)
,

lim
ε→0+

e±iH
−
k t = 11k cos

(
φ−k t

)
∓ iσz sin

(
φ−k t

)
, (32)

where we have defined the phases φ+
k = limε→0+

∥∥~ck
∥∥

and φ−k = limε→0+

∥∥~dk
∥∥. Strictly speaking the above

equations are ill-defined in the limit limε→0. For this
reason, we look at small but not infinitesimal ε. Also, we
shall note that the sign between the two terms in the sec-
ond equation is flipped as compared to the first. This is
because the trk(Hkσz) term in equation (31) becomes in-
significant compared to the trk(Bkσz) term. The phases
φ±k are going to infinity towards the limit ε→ 0+. How-
ever, if we stay at a very small, yet not tiny value of ε
we can consider that φ±k ≈ Γ±, where Γ± are two large
phases, and define ΓT = Γ− + Γ+, such that in Eq. (23)
we now have

trk

(
e−iH

−
k tρβke

iH+
k t
)
≈ cos (ΓT t) + i sin (ΓT t) trk(σzρk),

(33)

where trk(σzρk) = tanh
(
β∆Ek

2

)
, with ∆Ek the energy

difference of the k-th spin. Thus at zero temperature we
simply find

∣∣∣trk
(
e−iH

−
k tρβke

iH+
k t
)∣∣∣ ≈ cos2 (ΓT t) + sin2 (ΓT t)

= 1. (34)

The reason why the dephasing time does not increase to
infinity at the beginning of other type (II) regions in the
plot, is because as soon as there are more bound states
some off diagonal transitions to intermediate states are
allowed, which gives rise to dynamics even in the zero
temperature case.

The large offset at the beginning of regions (II) can be
observed in Fig. 3(c), and as argued before in point (iii) it
is particularly relevant at high temperatures. From this
plot, one may be tempted to believe that the offset is only
important in such regions of type (II). However, when
representing in Fig.(3)(d) one can see that relative value
of the offset with respect to the maximal value of the time
dependent part, i.e. C0/C(t = 0) is non-negligible in all
regions of Λ, including the region (I) where there is no
weakly bounded state. Thus, on the one hand the offset
explains the short dephasing time at high temperatures
(β = 1) with respect to lower temperatures, and on the
other hand, for all temperatures it explains the tendency
for a shorter dephasing towards Λ smaller.

IV. OUTFLOW AND BACKFLOW OF
INFORMATION

We now analyze how the outflow and backflow of infor-
mation is affected by the degree of anharmonicity of the
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environment. To this aim, we consider that the back-flow
of information, as obtained from the BLP measure can
be written as [40]

N− =
∑

n

|χ(t2n)| − |χ(t1n)|, (35)

where [t1n, t2n] are the time intervals over which |χ(t))|
increases, and χ(t) is given by Eq. (23). In a similar
way as in [40] we consider the ratio between the infor-
mation backflow, given by Eq. (35) and the analogous
quantity corresponding to the information flow to the
environment, N+,

R = N−/N+. (36)

The upper panel of Fig. (4)(a) represents the ratio R
for different values of anharmonicity Λ and for the same
coupling value (η = 2) considered in the dephasing time
analysis. We find that the only region where there is
a non-negligible back-flow of information is the highly
anharmonic one, particularly the spin-bath region. Fig.
(4)(b) represents the same quantity but now for weaker
coupling, η = 0.01, showing that in this case the back-
flow of information is also significant for higher values
of Λ, particularly nearby the transition regions where a
new environment bound state has been formed. Interest-
ingly, the presence of back-flow is related to the following
features:

• At high temperatures there is almost no back-flow.
As seen before, the presence of a large offset gives
rise to a fast dephasing time which in turn elim-
inates any possibility of back-flow and therefore
non-Markovianity.

• At lower temperatures, the offset is not as impor-
tant as to eliminate all the structure in the de-
phasing dynamics, and the maximal back-flow is
observed precisely at the same values of Λ where
a new bound state has just been created (regions
(II)).

The dynamics of χ(t) can be observed in Fig. (4)(c)
(strong coupling) and Fig. (4)(d) (weak coupling) for
β = 7. In detail, one can observe that while the real
and imaginary parts of χ(t) are oscillatory, its absolute
value is a monotonically decreasing function for Λ = n+
0.5 = 2.5 and becomes non-monotonically decreasing (i.e.
giving rise to back-flow) for Λ = 2.6, i.e. for a Morse
potential value having a weak bound state.

An important comment is here in order. Since our
environment is finite, a border effect is to be expected at a
certain time. For K = 40 oscillators, the revival time can
be estimated to be T = 20 in the harmonic limit (see [46]
and references therein for details), but it is much harder
to compute in the anharmonic case. The reason is that,
while in the harmonic case the revival time is the time
at which the correlation function, having decayed, starts
to grow again, in the anharmonic case we have seen that
such function is not the only one that comes into play.

For η = 2 the system off-diagonal elements have already
decayed to zero at all considered values, which allows to
consider our analysis of dephasing time. However, this is
not the case for smaller values, like η = 0.01, where at
T = 20 there are curves that have not yet decayed. This
means that the present analysis of forward and back-flow
has been performed within a time-frame up to T = 20
where neither we can consider that the system has always
completely decayed, nor we can exclude border effects in
the anharmonic limit. A rigorous analysis of such finite
size effects produced by non-Harmonic environments is
out of the scope here, but would be very interesting. In
particular, it is interesting to ask whether the measured
back-flow is due to such finite-size effects, or to the nature
of the environment itself, as considered in the harmonic
case.

Finally, we computed the non-Markovianity by consid-
ering the Gaussian map χGauss(t) given by Eq. (24) and
the correlation function (11), finding that is zero for all
parameter regimes considered. It remains to be further
analyzed if Gaussian evolutions (or their related prop-
erties such as non-Markovianity) obey some extremality
property like that of Gaussian states [47].

FIG. 4. (Color online) The upper panels represent the rate
(36) for strong coupling η = 2 (left upper panel) and weak
coupling η = 0.01 (right panel). The lower panels represent
the evolution of χ(t) in Eq. (23) for β = 7 and for strong
coupling η = 2 (left upper panel) and weak coupling η = 0.01
(right panel). The oscillatory solid blue and dotted blue lines
correspond to the real and imaginary parts of χ(t) for Λ = 2.5,
while the yellow dashed and dot-dashed lines correspond to
the real and imaginary parts for Λ = 2.6, respectively. Solid
lines in the peaks represents the correspondings |χ(t)|.

V. NON-GAUSSIAN NATURE OF THE BATH

We have seen in the last sections that nearby the limit
where a weakly bounded upper state is present in the en-
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vironment oscillators there is a strong information back-
flow, particularly at low temperatures. In this section we
will further explore the nature of such non-Markovianity
and show that it is linked to a strong non-Gaussianity
of the bath. To this aim, we will compare the map (22)
computed with the exact non-Gaussian χ(t) correspond-
ing to the Morse environment, Eq. (23), with the Gaus-
sian χGauss(t) (again as given by Eq. (24) with the cor-
relation function (11)). Doing so, we are comparing the
exact dynamics with that obtained by assuming that the
map is Gaussian, and therefore fully determined by the
second order moment. The density plot (5) shows the

FIG. 5. (Color online) Density plot of the Eχ(t) = |χ(t) −
χGauss(t)| for β = 10 (left panel) and β = 1 (right panel).

error E(t) = |χ(t) − χGauss(t)| for low (left panel) and
high (right panel) temperatures, for different times and
anharmonicities. It can be observed in general that the
Gaussian map becomes a particularly bad approximation
in the regions nearby the formation of a new bound state
(but not only) and at low temperatures. This behavior
can be best observed in Fig. (6), which represents the
time-averaged error

E =
1

T

∫ T

0

dsD(ρs(t), ρ
Gauss
s (t)), (37)

where ρs(t) represents the exact evolution, ρGauss
s (t) the

Gaussian-approximated evolution as given by χGauss(t),

and D(A,B) = (1/2)Tr{
√

(A−B)2} represents the
trace distance between the two density matrices A and B.
It can be observed that the error is large for all temper-
atures explored except for very high values (β = 1). We
note that in the scale that we show it seems to increase
slightly with Λ. This is a local effect which disappears, as
expected, when going further to the harmonic limit. The
lower panels show how the emergence of a new bound
state (for Λ = 2.6) gives rise to a strong departure of the
Gaussian approximation with respect to the exact case.

VI. CONCLUSIONS

We have analyzed the dephasing dynamics of an impu-
rity coupled to an environment of oscillators containing

FIG. 6. (Color online) Time averaged error between the Gaus-
sian evolution and the exact one, for η = 0.01 and several tem-
peratures, β = 1, 4, 7, 10 corresponding to solid black, dashed
blue, dotted green and dot-dashed red, respectively. The max-
imal time taken is T = 20, which corresponds to the time up
to which, for the harmonic case, the system evolves without
any border effect. The lower panels represent the evolution of
the real part of the off diagonal elements of the density matrix
as predicted by the exact map (solid black) and the Gaussian-
approximated one (dashed blue). The left panel corresponds
to Λ = 2.5, and the right one Λ = 2.6, both for β = 7.

a varying degree of anharmonicity. We first analyze the
variation of the dephasing time with the anharmonic pa-
rameter of the environment, Λ, and find the following:

• On a coarse-grained scale in Λ, the decoherence
time increases towards both the harmonic and an-
harmonic limits. In the anharmonic limit the de-
coherence is slow due to the few bound states in
the environment. When the anharmonicity grows
this effect is compensated by the fact that the en-
vironment correlation function does not decay to
zero, but to a real value, the offset. Such offset oc-
curs due to the presence of bound states |p〉 that
are highly asymmetric, i.e. for which 〈p|xk|p〉 > 0
where xk is the displacement operator with respect
to the potential minimum. Hence, the offset be-
comes negligible towards the harmonic limit, which
explains the slowing down of the dephasing.

• On a finer scale, for a given integer number n
there are two different regions in Λ: type (I) re-
gions where Λ = n + 1/2 − ε, ε small, where we
have an integer number of bound states N = n
that are all strongly bounded, i.e energetically far
from the dissociation limit, and type (II) regions for
Λ = n+ 1/2 + ε, ε small, where we have N = n+ 1
bound states and the highest energy one, |m〉, is
weakly bounded. The displacement of such weakly
bounded state with respect to the center of the po-
tential is large, leading to an overlap 〈n|xk|n〉 � 1
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that produces a particularly large offset and thus a
very strong dephasing in those regions.

Secondly, we analyze the non-Markovianity or back-
flow of information, and find that it only occurs at high
anharmonicities and that it is concentrated in regions
(II). Moreover, the backflow is only relevant at low tem-
peratures, which suggests that while it is indeed linked to
a large anharmonicity it is nevertheless hindered by the
presence of the offset. Indeed, at high temperatures such
offset becomes dominant and gives rise to a dephasing
dynamics that is too fast to allow for backflow.

A similar situation occurs when considering how rele-
vant or necessary it is to account for the non-Gaussianity
of the bath. To check this we consider the correlation
function of the bath and build the corresponding Gaus-
sian map to compare it with the exact non-Gaussian one.
As it turns out, for high temperatures the effect of the
non-Gaussianity becomes negligible and both exact and
Gaussian versions give approximately the same dynam-
ics. Indeed, the offset is also present in the Gaussian
version of the map and is so large that it dominates the
decay. The non-Gaussianity, and therefore the effect of
the higher order moments, starts to be important for
lower temperatures, when the offset is not so relevant
but still a large anharmonicity is present. In addition,
the Gaussian analogue map predicts no-backflow in any
regime, which reinforces the idea that the backflow is re-
lated to the anharmonicity and non-gaussian character
of the bath.

Overall, this analysis unveils the presence of a variety
of dynamical regimes for an impurity coupled to an an-
harmonic environment, and which depend not only on
the number of bound states in the environment, |m〉, but
also on their location within the anharmonic potential
and therefore on their degree of asymmetry. While the
relevance of each of these regimes and situations remains
to be determined and analyzed in each physical situa-
tion and specific model, this study is perhaps one of the
first to systematically discuss how rich the dynamics of
an open system may become when smoothly departing
beyond the standard harmonic bath situation. In this
context, concepts such as environment size effects, origin
and nature of the information backflow [48] and other
related concepts such as divisibility [49], existence of a
dynamical equation (i.e. invertibility of the map) [41, 45]
or validity of the weak coupling approximation may need
to be revisited and further analyzed in the future.
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Appendix A: Bound states of Morse oscillators

We discuss in this section how to derive the bound
states of the Morse potential. To this aim we will follow
the derivations in [36] but describe in more detail some
of the steps that in the original paper were only sketched.
In addition we will put more emphasis on the criteria to
decide whether a solution is physical or not. We start
with the Hamiltonian:

H =
p2

2m
+D(e−2αx − 2e−αx) (A1)

We will now do a few transformations in order to solve the
stationary Schrödinger equation related to this Hamilto-
nian. First we define x′ := αx. Leading to:

H ′ = −~2α2

2m
∂2
x′ +D(e−2x′ − 2e−x

′
) (A2)

Now we rescale this to make the Hamiltonian dimension-
less: H0 = 2m

~2α2H
′. Then the Hamiltonian becomes:

H0 = −∂2
x′ +D′(e−2x′ − 2e−x

′
) (A3)

With D′ = 2m
~2α2D := (N + 1

2 )2. From now on we will
omit the primes. The bound states ψ(x) for the energy
E < 0 must fulfill the following:

−∂2
xψ(x) +

(
N +

1

2

)2

(e−2x − 2e−x)ψ(x)− Eψ(x) = 0.

In order to make this a linear differential equation we
substitute z = (2N + 1) exp(−x). Which leads us to:

z2∂2
zψ(z) + z∂zψ(z) +

(
E +

(
N +

1

2

)
z − 1

4
z2

)
ψ(z) = 0.

Now we substitute ψ(z) = zb/2 exp(−az)F (z). After a
rather long but straight forward calculation this results
in:

z∂2
zF (z) + (−2az + b+ 1)∂zF (z) +

(
a2 − 1

4

)
zF (z)

+

(
−ba− a+

(
N +

1

2

))
F (z)

+

(
E +

b2

4

)
1

z
F (z) = 0 (A4)

In order to simplify this equation we choose a = 1/2 and
b2 = −4E. Because with this choice we obtain:

z∂2
zF (z) + (b+ 1− z)∂zF (z) +

(
− b

2
− 1

2

+
(
N +

1

2

))
F (z) = 0 (A5)

This is the Laguerre equation:

zy′′ + (1 + b− z)y′ + λy = 0 (A6)

As discussed in [36], one set of solutions for this equation
are the Laguerre polynomials and indeed these are the
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only polynomial solutions. In the original paper other
possible solutions are immediately discarded as unphys-
ical. In the following we will give proof that this is the
case, which justifies the approach in [36]. Hence we start
with the series ansatz:

y(z) =

∞∑

n=0

anz
n (A7)

Inserting this into the Laguerre equation gives us:

∞∑

n=2

ann(n− 1)zn−1 +

∞∑

n=1

ann(1 + b)zn−1

−
∞∑

n=1

annz
n +

∞∑

n=0

λanz
n = 0 (A8)

Shifting the indices in the first two sums:

∞∑

n=1

n(an+1(n+ 1)− an)zn

+

∞∑

n=0

(an+1(n+ 1)(1 + b) + λan)zn = 0 (A9)

Thus for n = 0 we obtain the following relation between
the first two coefficients:

a1 =
−λ

1 + b
a0 (A10)

For n > 0 we then obtain the recurrence relation:

an+1 =
−λ+ n

(n+ 1)(1 + b+ n)
an (A11)

Iterating this equation gives us:

an =
(−λ)n

(1 + b)nn!
a0 (A12)

Where (x)n is the Pochhammer symbol defined as

(x)n = Γ(x+ n)/Γ(x), (A13)

which is equivalent to: (x)n =
∏n−1
l=0 (x+ l). Please note

that because of the definition of the Pochhammer sym-
bols the series terminates if λ is a non-negative integer.
This leaves us with two cases: One is that λ is a non-
negative integer and the other one is when this is not
the case. Lets first investigate the case where λ is not
an non-negative integer. We now show that in this case
we do not obtain physical solutions of the Schrödinger
equation. The argument is that if the series does not ter-
minate, then the wavefunction will not be normalisable,
and will therefore not represent a physical bound state.
One can see this by splitting the series into a polynomial
and a non-polynomial part and then approximate the be-
haviour of the non-polynomial part. The solution of the
Laguerre equation is:

y(z) = a0

∞∑

n=0

(−λ)n
(1 + b)nn!

zn (A14)

First of all we note that with out loss of generality we
can say that there exists an N such that for all n > N :
(−λ+N + n) > 0. Now we split the sum as

y(z) = a0

N∑

n=0

(−λ)n
(1 + b)nn!

zn + a0

∞∑

n=N+1

(−λ)n
(1 + b)nn!

zn

We can restrict ourselves to b > 0, since if b < 0 then
we would have a singularity in the wave function due to
the substitution we made earlier. This would make it
unphysical. With this the coefficients in the second sum
all have the same sign. The first sum is just a polyno-
mial and can not give us any problems, because in our
substitution from earlier we have a term that scales as
exp(−z/2). Thats why we abandon the polynomial part
in this consideration. Now if −λ > (1 + b) then we are
already done. Because then the following holds:

∣∣∣∣∣a0

∞∑

n=N+1

(−λ)n
(1 + b)nn!

zn

∣∣∣∣∣ = a0

∞∑

n=N+1

∣∣∣∣
(−λ)n

(1 + b)nn!

∣∣∣∣ zn

> a0

∞∑

n=N+1

zn

n!
= a0e

z − a0

N∑

n=0

zn

n!
(A15)

The first equality holds because we are only interested in
the solution for z in [0,∞). This means that in the case
where −λ > (1 + b) the solution scales even stronger in
z then exp(z) and thus it is unphysical, because neither
our factor of exp(−z/2) nor any polynomial can compete
with that. So now lets see how this goes for −λ < (1+b).
In this case this is a bit more difficult. First we need to
note that limn→∞(−λ+ n)/(1 + b+ n) = 1. This means
for all ε > 0 there exists an N ′ such that for all n ≥ N ′:

∣∣∣∣
−λ+ n

1 + b+ n
− 1

∣∣∣∣ < ε (A16)

From which follows that for n ≥ N ′ : −λ+n
1+b+n > 1−ε. With

this we can investigate the non-polynomial part further:

a0

∞∑

n=N+1

(−λ)n
(1 + b)nn!

zn = a0

N ′∑

n=N+1

(−λ)n
(1 + b)nn!

zn

+ a0

∞∑

n=N ′+1

(−λ)n
(1 + b)nn!

zn

Now lets just look at the non-polynomial part again:

∞∑

n=N ′+1

(−λ)n
(1 + b)nn!

zn

= cN ′
∞∑

n=N ′+1

(
n−1∏

l=0

−λ+N ′ + l

1 + b+N ′ + l

)
zn

n!

> cN ′
∞∑

n=N ′+1

(
n−1∏

l=0

(1− ε)
)
zn

n!

= cN ′ e
(1−ε)z − cN ′

N ′∑

n=0

(1− ε)n z
n

n!
(A17)
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Here cN ′ := (−λ)N′
(1+b)N′

and ε can be chosen to be any posi-

tive real number. Thus if one chooses for example ε = 1/4
one can see that the wave function is not normalisable.
Again the second term does not make it normalisable
again, since it is just a polynomial. With this exten-
sive proof we showed that the only physical solutions
are obtained for λ being a non-negative integer. With
this we obtain an equation for b and for the energy since
b2/4 = −E:

n = N − b

2
(A18)

b = 2N − 2n (A19)

En = −(N − n)2 (A20)

Here λ → n is a non-negative integer. Remember that
b is only allowed to be positive, because otherwise either
the wave functions or the probability density will have a
singularity at z = 0. This means that if N is an natural
number it is the number of bound states, if not then the
integer part of N + 1 is the number of bound states. The
wave function is then given by:

ψn(z) = z2N−2ne−z/2y2N−2n
n (z) (A21)

= z2N−2ne−z/2
n∑

m=0

(−n)m
(2N − 2n+ 1)mm!

zm (A22)

= z2N−2ne−z/2
n∑

m=0

(−1)m
(
n

m

)
zmΓ(2N − 2n+ 1)

Γ(2N − 2n+ 1 +m)

With proper normalisation this becomes:

ψn(z) = Nnz
2N−2ne−z/2

n∑

m=0

(−1)m
(
n

m

)

× zm

Γ(2N − 2n+ 1 +m)
. (A23)

Here we have defined z and Nn as follows:

z = (2N + 1) exp(−x) (A24)

Nn =

√
(2N − 2n)Γ(vNn )

n!
(A25)

Note that all these equations are still for a dimensionless
Hamiltonian. When we reintroduce the parameters we
rescaled the Hamiltonian with in the beginning we get:

En = −~2α2

2m
(N − n)2 (A26)

= −~2α2

2m

(
Λ2 +

(
n+

1

2

)2

− 2Λ

(
n+

1

2

))
.

Where Λ is defined as Λ := N+ 1
2 . Now for a given Morse

Oscillator we want the part that is proportional to n+ 1
2

to be the harmonic part thus it should be ~ω(n+ 1
2 ). So

now we change the parameters of the Morse Oscillator
from α and D to ω and Λ:

α :=

√
mω

~Λ
(A27)

D :=
~ωΛ

2
(A28)

As mentioned earlier we obtain a set {ωk, gk} by discretiz-
ing the spectral density. The ω in the above equations
corresponds to the ωk that we obtain by the discretiza-
tion. For the implementation of the Morse environment
we choose Λ to be constant for all oscillators, thus they
all have the same number of bound states.

Appendix B: Matrix elements of the position
operator

In our description, it is highly convenient to write the
Morse Hamiltonian in its diagonal form. This in turn
means that the interaction Hamiltonian should also be
expressed in such basis. To this aim, it is necessary to
write the matrix element of the position operator in such
basis, a computation that as we will see in the following
is not at all trivial. To proceed with it, we shall make use
of the wave function of the bound states, as computed in
the previous appendix. In the following, we consider the
same strategy as in Ref. [50]. That is we compute them
as:

〈n|x|m〉 = lim
η→0

Im

(
d

dη
〈n| exp(iηx)|m〉

)
(B1)

Here x is still supposed to be dimensionless, thus the
rescaling of the last section is still in place. Actu-
ally, computing 〈n| exp(iηx)|m〉 is pretty straight for-
ward apart from the fact that one has to use the gaus-
sian hypergeometric theorem and the Saalschütz theo-
rem. Those will both be stated when we use them. Nev-
ertheless, the most delicate part of the computation is
taking the limit after the derivative. Since this impor-
tant step was not detailed in [50], we will present it here
in more detail.
Let us first consider that exp(iηx) = (2N+1)iηz−iη, such
that

〈n| exp(iηx)|m〉 =

∫ ∞

−∞
dxψ∗n(z)ψm(z)(2N + 1)iηz−iη

=

∫ ∞

0

dzψ∗n(z)ψm(z)(2N + 1)iηz−iη−1

Then, considering the wave functions (A23) we can now
compute:

〈n| exp(iηx)|m〉 = (2N + 1)iηNnNm

n,m∑

n′,m′=0

(
n

n′

)(
m

m′

)

× (−1)n
′+m′ 1

Γ(uNnn + n′ + 1)Γ(uNmm +m′ + 1)

×
∫ ∞

0

dze−zzu
N
nm+n′+m′−iη−1, (B2)

where we have defined

uNnm = 2N − n−m, (B3)

vNn = 2N − n+ 1.
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Using the definition of the Γ-function: Γ(z) =∫∞
0
dte−ttz−1 one obtains:

〈n| exp(iηx)|m〉 = (2N + 1)iηNnNm

n∑

n′=0

Σ(m,n, η)

Γ(uNnn + n′ + 1)
,

(B4)

where we have defined a function that contains all terms
that depend on m′

Σ(m,n, η) :=

m∑

m′=0

(
m

m′

)
(−1)m

′ Γ(uNnm + n′ +m′ − iη)

Γ(uNmm +m′ + 1)
.

(B5)

We now we consider that

(−m)m′ =

m′−1∏

l=0

(−m+ l) = (−1)m
′ m!

(m−m′)! (B6)

in order to re-express Eq. (B5) in terms of Pochhammer
symbols (A13),

Σ(m,n, η) :=

m∑

m′=0

Γ(uNnm + n′ − iη)

Γ(uNmm + 1)

× (uNnm + n′ − iη)m′(−m)m′

(uNmm + 1)m′m′!
. (B7)

This allows us to perform the sum over m′ by using the
gaussian hypergeometric theorem, which states (see [50]
section 3.1)

∞∑

m′=0

(a)m′(b)m′

(c)m′m′!
=

Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b) (B8)

Note that (−m)m′ becomes 0, when m′ > m, which al-
lows us to apply the theorem even though it is meant for
summation up to infinity. When using this we obtain:

Σ(n,m, η) =
Γ(uNnm + n′ − iη)Γ(n− n′ + 1 + iη)

Γ(n−m+ 1− n′ + iη)Γ(vNm)

Thus the matrix element becomes:

〈n| exp(iηx)|m〉 =
(2N + 1)iηNnNm

Γ(vNm)

n∑

n′=0

(
n

n′

)
(−1)n

′

× Γ(uNnm + n′ − iη)Γ(n− n′ + 1 + iη)

Γ(n−m+ 1− n′ + iη)Γ(uNnn + n′ + 1)
(B9)

Now we want to organise this expression into two terms,
where one contains everything depending on n′. Also we
want to have the things that depend on n′ to be formu-
lated in terms of Pochhammer symbols again, so that we
can ultimatly use Saalschütz theorem. First we have to
note the following:

Γ(a) = (−1)n
′
(−a+ 1)n′Γ(a− n′) (B10)

With this we obtain:

〈n| exp(iηx)|m〉 = Amn(η)Γmn(η) (B11)

Where Amn(η) and Γmn(η) are defined as follows:

Amn(η) =
(2N + 1)iηNnNm

Γ(vNm)

Γ(uNnm − iη)Γ(n+ 1 + iη)

Γ(n−m+ 1 + iη)Γ(uNnn + 1)
Γmn(η) =3 F2(−n+m− iη, uNnm − iη,−n;uNnn + 1,

−n− iη; 1) (B12)

Where 3F2 is a generalised hypergeometrical function as
can also be seen in [50] section 3.1 eq. 18 and [51] chapter
4. The derivative can now be computed as:

d

dη
〈n| exp(iηx)|m〉 =

(
d

dη
Amn

)
(η) Γmn(η)

+Amn(η)

(
d

dη
Γmn

)
(η) (B13)

Up to now we went pretty much along the lines of [50]
apart from expressing things in a much more detailled
manner of course. Taking this derivative and the limit
afterwards is the most problematic part of this compu-
tation and since this step is skipped in [50] we are going
to do this in all detail here.
Let us distinguish two cases. The offdiagonal elements
namely m > n and the diagonal elements. Note that the
condition m > n does not imply a loss of generality since
x is hermitian. First we take a look at the offdiagonal el-
ements. For m > n one can see that in the denominator
of Amn(η) there is a term Γ(n −m + 1 + iη) which ap-
proaches a singularity in the limit η → 0. Thus Amn(η)
becomes 0 in the limit. If d

dηΓnm(η) does not have a di-

verging term in the limit this means, that we only have
to take into account the term containing the derivative
of Amn(η). By looking at the form of Γmn(η) we can
already see that taking a derivative and sending η to 0
will not give us something divergent. Thus we only care
for the derivative of Amn(η).

lim
η→0

d

dη
Amn(η) =

(2N + 1)iηNnNmΓ(n+ 1)Γ(uNnm)

Γ(vNm)Γ(uNnn + 1)

× (−i) lim
η→0

ψ(n−m+ 1 + iη)

Γ(n−m+ 1 + iη)
(B14)

where ψ(x) := d
dx ln(Γ(x)) =

d
dx Γ(x)

Γ(x) is the digamma func-

tion. Here we skipped a few steps, but they are just tak-
ing the derivative and realising, that in the limit η → 0
only this term survives, because in all the other terms
there is no singularity in the enumerator. In order to ob-
tain this limit one can do a nice trick. Namely one can
use the following two identities([51] chapter 1.2 eq. 6 and
chapter 1.7 eq. 11):

Γ(z)Γ(1− z) = π csc(πz) (B15)

ψ(1− z)− ψ(z) = π cot(πz). (B16)

With the use of these equations, the limit becomes:

lim
η→0

ψ(n−m+ 1 + iη)

Γ(n−m+ 1 + iη)
= − cos(π(n−m+ 1))Γ(m− n)

= (−1)m−nΓ(m− n) (B17)
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With this we obtain(for m > n):

lim
η→0

d

dη
Amn(η) = i(−1)m−n+1 NnNmΓ(n+ 1)

Γ(vNm)Γ(uNnn + 1)

× Γ(uNnm)Γ(m− n) (B18)

Thus the only thing that remains to be done in the offdi-
agonal case is to take the limit for Γmn(η). If one takes
this limit one obtains:

lim
η→0

Γmn(η) =3 F2(−n+m,uNnm,−n;uNnn + 1,−n; 1)

A generalized hypergeometric function 3F2 is
Saalschützian if its parameters are in the following
form and the Saalschütz theorem states that (see [51]
chapter 4.4):

3F2(a, b,−n; c, 1 + a+ b− c− n, 1) =
(c− a)n(c− b)n
(c)n(c− a− b)n

.

(B19)

In the limit η → 0 the parameters for our generalised
hypergeometric function are of exactly that form, thus:

lim
η→0

Γmn(η) =
(−m)n(−2N +m)n
(−n)n(−2N − n)n

(B20)

Here, we have considered that

(−x)n =

n−1∏

l=0

(−x+ j) = (−1)n
Γ(x+ 1)

Γ(x− n+ 1)
. (B21)

With this we obtain:

lim
η→0

Γmn(η) =
m!Γ(vNm)Γ(uNnn + 1)

n!Γ(vNn )Γ(uNnm + 1)Γ(m− n+ 1)

Now we can finally obtain the matrix elements for the
offdiagonal term with m > n:

〈n|x|m〉 =
(−1)m−n+1m!NnNmΓ(uNnm)Γ(m− n)

Γ(vNn )Γ(uNnm + 1)Γ(m− n+ 1)

=
2(−1)m−n+1

uNnm(m− n)

√
m!(N − n)(N −m)Γ(vNm)

n!Γ(vNn )

The last two lines show our result for the offdiagonal el-
ements. Now for the diagonal elements Amn(η) does not
have a singularity in the denominator, thus both terms
contribute. Let us first compute the contribution from
Ann(η):

lim
η→0

d

dη
Ann(η) = i ln(2N + 1)− iψ(uNnn)

+ iψ(n+ 1)− iψ(1) (B22)

Here we have not detailed the derivation, which basically
consists on taking the derivative of each term of Ann(η)
in Eq. (B12) and then taking the limit. Please note
that the derivation of limη→0 Γnm(η) was not relying on
m > n so it also holds here, and thus limη→0 Γnn(η) = 1.
So now comes the tricky part. In order to obtain a nice
form for the derivative of Γnn(η) we would like to use the

Saalschütz theorem of Eq. (B19). But if we are not in
the limit where η → 0 our 3F2 is not Saalschützian. This
is where we use a trick. We define another Γ̃nn(η), that
is Saalschützian and that has the same derivative in the
limit η → 0. Define Γ̃nn(η) as follows:

Γ̃nn(η) :=3 F2(−iη, uNnn − iη,−n;uNnn + 1− iη,−n− iη; 1).

First we have to check that in the limit of η → 0 this
indeed has the same derivative as Γnn(η). So lets take
a look at how this is expressed in terms of Pochhammer
symbols:

Γ̃nn(η) =

n∑

n′=0

(−iη)n′(u
N
nn − iη)n′(−n)n′

(uNnn + 1− iη)n′(−n− iη)n′
. (B23)

Because of the term (−iη)n′ this is proportional to η, so
the only term that contributes to the derivative in the
limit of η → 0 is the one where one takes the derivative
of (−iη)n′ (in other words, the derivative of the other
terms with η will always be multiplied by (−iη)n′ and
therefore vanish in the limit η → 0). This leads to:

lim
η→0

d

dη
Γ̃nn(η) = lim

η→0

n∑

n′=0

(
d
dη (−iη)n′

)
(uNnn − iη)n′(−n)n′

(uNnn + 1− iη)n′(−n− iη)n′

=

n∑

n′=0

limη→0

(
d
dη (−iη)n′

)
(uNnn)n′(−n)n′

(uNnn + 1)n′(−n)n′

Now let us compare this to Γnn(η):

Γnn(η) =

n∑

n′=0

(−iη)n′(u
N
nn − iη)n′(−n)n′

(uNnn + 1)n′(−n− iη)n′
(B24)

With the same argument as for Γ̃nn(η) we obtain:

lim
η→0

d

dη
Γnn(η)

=

n∑

n′=0

limη→0

(
d
dη (−iη)n′

)
(uNnn)n′(−n)n′

(uNnn + 1)n′(−n)n′

= lim
η→0

d

dη
Γ̃nn(η). (B25)

Now we use the Saalschütz theorem to compute Γ̃nn(η):

Γ̃nn(η) =
(uNnn + 1)n(1)n

(uNnn + 1− iη)n(1 + iη)n
(B26)

=
Γ(vNn )Γ(1 + n)Γ(uNnn + 1− iη)Γ(1 + iη)

Γ(uNnn + 1)Γ(vNn − iη)Γ(1 + iη + n)

Thus:

lim
η→0

d

dη
Γ̃nn(η) = −iψ(uNnn + 1) + iψ(1)

+ iψ(vNn )− iψ(1 + n) (B27)

Also note that limη→0Ann(η) = 1. With this we can
compute the diagonal matrix elements:

〈n|x|n〉 = Im

(
lim
η→0

d

dη
Ann(η) + lim

η→0

d

dη
Γnn(η)

)
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= ln(2N + 1)− ψ(uNnn)− ψ(uNnn + 1)

+ ψ(vNn ) (B28)

For the sake of completeness let us state the offdiagonal
elements for m > n here again:

〈n|x|m〉 =
2(−1)m−n+1

uNnm(m− n)
(B29)

×
√
m!(N − n)(N −m)Γ(vNm)

n!Γ(vNn )

Here we still refer to the dimensionless x thus in order
to obtain the matrix elements of b† + b one only has to
rescale the ones from (B28) and (B30) by a factor

√
2/Λ,

namely

b† + b =

√
2mω

α~
x =

√
2

Λ
x. (B30)
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