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We produce a trimerized kagome lattice for ultracold atoms using an optical superlattice formed
by overlaying triangular lattices generated with two colors of light at a 2:1 wavelength ratio. Adjust-
ing the depth of each lattice tunes the strong intra-trimer (J) and weak inter-trimer (J ′) tunneling
energies, and also the on-site interaction energy U . Two different trimerization patterns are distin-
guished using matter-wave diffraction. We characterize the coherence of a strongly interacting Bose
gas in this lattice, observing persistent nearest-neighbor spatial coherence in the large U/J ′ limit,
and that such coherence displays asymmetry between the strongly and the weakly coupled bonds.

Ultracold atoms in optical lattices provide tunable im-
plementations of condensed matter models. The lattices
realized thus far include plaquette lattices, in which iden-
tical few-site plaquettes, with strong intra-plaquette cou-
pling, are regularly arrayed and weakly coupled to one
another. Both experimentally and theoretically, such pla-
quette lattices allow for a controlled approach to the com-
plexity of many-body quantum systems. At the limit of
weak inter-plaquette coupling, the few-body states within
isolated plaquettes can be precisely determined and finely
controlled, enabling, for example, cold-atom demonstra-
tions of superexchange, resonant valence states, quantum
magnetism, and anyonic statistics [1–4]. These single-
plaquette states serve as starting points for describing
strongly correlated states that arise when inter-plaquette
tunneling is increased.

In this work, we realize a lattice of triangular plaque-
ttes known as the trimerized (or “breathing”) kagome
lattice (TKL). The TKL (Fig. 1d) is obtained by choos-
ing one orientation of triangular plaquettes of the kagome
lattice to have strong intersite tunnelling (J) while pla-
quettes of the other orientation have weak intersite tun-
nelling (J ′). This lattice has received theoretical interest
[5–7] as a route to understanding quantum antiferromag-
netism in the kagome lattice. For antiferromagnetically
coupled spins, the strongly coupled trimers support mi-
croscopic spin frustration. Weak inter-trimer coupling
then leads to robust spin-liquid ground states on macro-
scopic scales [5–7]. Solid-state matierals with a TKL
structure have been synthesized and studied in recent
experiments. [8, 9]

Our focus here is on the behavior of strongly inter-
acting bosons in a plaquette lattice. Specifically, we
consider interacting Bose gases of 87Rb atoms within a
TKL with widely tunable trimerization ratio J/J ′. In the
tight-binding limit, our system is modeled by the Bose-
Hubbard Hamiltonian

H = −
∑
〈p,q〉

Jpq
(
a†paq + h.c.

)
+
U

2

∑
p

np(np − 1) (1)

where 〈p, q〉 denotes summation over all pairs of neigh-

boring lattice sites p and q, Jpq = J(J ′) for strongly
(weakly) coupled bonds, and np is the number operator
for site p. Here, J and J ′ > 0. For strong trimeriza-
tion (J/J ′ � 1) and strong interactions U/J ′ � 1), the
TKL is predicted to support Mott insulating states in
which atoms remain coherently delocalized within trimer
plaquettes while inter-trimer coherence is suppressed by
interactions [10–12].

We present two main results. First, we develop an
atom optical technique in which the momentum distri-
bution of a superfluid trapped and transiently excited
within the TKL reveals the inversion asymmetry of the
TKL and distinguishes lattices of opposite trimerization.

Second, analyzing the distribution of atoms released
from the lattice, we find that lattice trimerization causes
the nearest-neighbor coherence to remain strong even in
the deep Mott insulating limit (U/J ′ � 1). By an inter-
ferometric technique, we demonstrate that this spatial
coherence resides almost exclusively within the trimer
plaquettes.

We form the TKL by overlaying two commensurate tri-
angular lattices, one with twice the spacing of the other
[13, 14]. Each triangular lattice is formed by the intersec-
tion of three focused laser beams at equal angles and lying
in a single (horizontal) plane [15]. The short-wavelength
(SW) lattice (lattice spacing a4 = 355 nm) is formed by
in-plane polarized, 532-nm-wavelength light, while the
long-wavelength (LW) lattice is formed by out-of plane
polarized 1064-nm-wavelength light. The relative posi-
tion of these two lattices is stabilized interferometrically
to better than 2 nm. Note that in our previous work
on the regular kagome lattice, both sets of lattice beams
were polarized in plane.

The unit cell of the superlattice contains four sites of
the SW lattice (labeled in Fig. 1), and one site of the LW
lattice. The TKL is obtained when the LW lattice site
is centered between three equidistant nearest-neighbor
sites of the SW lattice, which now form the trimer of
the trimerized lattice. For example, two trimerizations,
with opposite spatial inversion asymmetry, are obtained
by centering the LW lattice sites at locations shown in
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FIG. 1. Construction of the optical TKL. (a) A SW triangular lattice of spacing a4 = 355 nm is formed by in-plane polarized
532-nm-wavelength light. Sites of a 2×2 unit cell are labeled A–D. Two locations of the LW lattice site, corresponding to
right and left trimerizations are shown as filled and open white dots, respectively. (b) A LW triangular lattice of spacing
2a4 is formed by out-of-plane polarized 1064-nm-wavelength light. Black dots indicate sites of the SW lattice. (C) Combined
superlattice potential for the right TKL. (d) Tight binding model of the TKL, with strong intra-trimer tunneling J and weak
inter-trimer tunneling J ′.

Fig. 1a.
The LW lattice has three effects on the overall su-

perlattice. First, the energies of the three sites in the
trimer are lowered relative to the fourth one roughly by
∆V ≈ 1

2VLW where VLW is the depth of the LW lattice
potential. When ∆V is sufficiently high, the fourth site
is unoccupied and a kagome structure is realized. Sec-
ond, the tunneling barrier between sites within a trimer
is decreased, while the barrier between trimers is in-
creased, leading to the trimerization of tunneling energies
(J > J ′). Third, the combined lattice “breathes,” with
the spacing between trimer sites (a) decreasing, and the
nearest-neighbor spacing between trimers (a′) increasing.

We visualize the spatial asymmetry of the TKL
through the coherent diffraction of a superfluid from the
lattice. For this, we prepare nearly pure Bose-Einstein
condensates of 5 × 104 87Rb atoms in a hybrid opti-
cal and magnetic harmonic trap, with trap frequencies
(ωx, ωy, ωz) = 2π × (40, 70, 80) Hz, with z being the ver-
tical axis. The atoms are loaded into the superlattice
by simultaneously increasing depths of the SW and LW
lattices to VSW /h = 45 kHz and VLW /h = 15 kHz by
an exponential ramp [16]. The relative position of the
two lattices is adjusted to produce C6 symmetric diffrac-
tion patterns of gases released from the lattice. The gas
remains only loosely confined along the transverse (ver-
tical) direction.

The momentum space distribution of this superfluid
in equilibrium, shown in Fig. 2 (a), does not manifest
the broken inversion symmetry and reduced rotational
symmetry of the lattice, since the superfluid order pa-
rameter has uniform phase. To fully characterize the
lattice, we imprint complex phases onto the superfluid
wavefunction through transient dynamics. After allow-
ing the superfluid 20 ms to equilibrate in the TKL, we
suddenly extinguish the SW lattice potential and allow
the atoms to evolve for a variable time 0 < τ < 150µs
in the remaining LW lattice. We then switch off all po-
tentials, allow the atoms to expand freely for 20 ms, and

image their spatial distribution by absorption imaging.
The two lattice trimerizations lead to strong but op-

posite inversion-asymmetric diffraction patterns. We fo-
cus on the first order diffraction peaks, occurring at
reciprocal lattice vectors G1 = k2 − k3 (et cycl.),
where ki are wavevectors of the LW lattice beams.
We observe the diffracted populations PGi at wavevec-
tors Gi to differ from those at −Gi (Fig. 2(b)).
Quantifying the asymmetry by the parameter A =
(
∑
i (PGi

− P−Gi
)) / (

∑
i (PGi

+ P−Gi
)) [17], we observe

equal and opposite oscillations of A as a function of τ
(Fig. 2 c), distinguishing the opposite inversion asymme-
try of the two trimerization patterns. The data match
non-interacting band theory well for 0 < τ < 80µs. We
attribute the discrepancy between theory and data at
later times (τ > 80µs) to dephasing caused by interac-
tions.

To realize the strongly interacting Bose-Hubbard
Hamiltonian, we introduce an additional one-dimensional
optical lattice, formed by a retroreflected 1064-nm-
wavelength light beam propagating along z. This lat-
tice, with depth V⊥/h = 50 kHz, divides the gas into
about 40 layers, each with trap frequencies (ωx, ωy, ωz) =
2π×(61, 61, 22×103) Hz. As the tunneling time between
layers of 400 ms is slower than the timescale of the ex-
periment, the system can be considered as an ensemble
of isolated, two dimensional systems [18].

The superlattice is ramped up as above, but to variable
final lattice depths. The ramp is adiabatic with respect
to U , J , J ′ and the band gap. During the ramp, an
additional single-pass, vertically propagating, 1064-nm-
wavelength light beam provides confinement and main-
tains a constant Thomas-Fermi radius in each layer.

After being held on for 40 ms, all potentials are simul-
taneously switched off, and the gas is allowed to expand
for 16 ms before being imaged. The observed distribution
approximates the momentum distribution of the lattice-
trapped gas [19].

In the tight binding limit, the momentum distribution
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FIG. 2. Trimerization-dependent momentum space asymme-
try. (a) Momentum distribution of a superfluid within the
TKL shows no asymmetry between Gi (solid circles) and −Gi

(dashed circles). (b) Strong inversion asymmetry is seen af-
ter τ = 20µs of evolution in the LW lattice potential, with
opposite sign for right (blue triangle) and left (red triangle)
trimerzations. (c) Oscillations of the asymmetry parameter
A vs. τ occur with opposite sign for the right and left trimer-
izations. Data points represent average over 2-7 iterations.
Dashed line is calculated by non-interacting band theory. Er-
ror bars are standard errors of mean. (d) Explanation of the
population asymmetry at early τ . Red arrows show the di-
rection of acceleration experienced by the Wannier functions
at sites A, B and C for the two different trimerizations. The
resultant impulses displace the Wannier functions (contours
shown as blue circles) in momentum space. Imbalance be-
tween PG2 and P−G2 results from interference of displaced
Wannier functions.

of a lattice-trapped Bose gas is given by

n(k) = w∗p(k)wq (k)

all∑
p,q

eik·(rp−rq)〈b†pbq〉 (2)

where 〈b†pbq〉 is the coherence between site p and q, with
rp being the position and wp(k) the Fourier-space Wan-
nier function at site p, and the summation runs over all
lattice sites [19].

For large U/J ′, 〈b†pbq〉 vanishes rapidly for distant p
and q. To leading order we consider only the nearest
neighbor (n.n.) terms, so that momentum distribution is
approximated as [15, 20, 21]

n(k)

N
' |w̃(k)|2

(
1+

cell∑
p<q

Re
[
ζpqe

ik·apq +ζ ′pqe
ik·a′

pq
])

(3)
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FIG. 3. Time-of-flight images of strongly interacting atoms
released from either the (a) TKL or (c) triangular lattice. As
U/J ′ is increased at constant U/J , sharp diffraction peaks
are lost, leaving a broad sixfold symmetric modulation. This
modulation persists at large U/J ′ in the TKL, but disappears
in the triangular lattice. The color scale is the same as that
in Fig. 2. (b) Extracted n.n. coherence α for the trimerized
kagome (blue, green circles) and triangular lattice (triangles).
Data points are the average of 3-9 measurements. Error bars
are standard errors of mean.

where N is the total atom number, ν is the average fill-
ing per site, and the indices p and q now run over sites
in the unit cell. Here, apq = rp − rq is the (intra-trimer)
distance vector between sites p and q, and ζpq = 2

ν 〈b
†
pbq〉

, where ν is the filling per site, quantifies their mutual
coherence, evaluated over an intra-trimer bond. Simi-
larly, a′, ζ ′ are evaluated over an inter-trimer bond. For
simplicity, we assume an identical cylindrically symmet-
ric Wannier function w̃(k) at each site, neglecting small
site-dependent ellipticity at the settings of our experi-
ment.

We measure spatial coherence in the trimerized kagome
lattice at two fixed intra-trimer interaction strengths,
U/J = 5.9 and 19 [22]. As we increase U/J ′, the sharply
peaked momentum distribution of the superfluid gives
way to a broad momentum distribution, indicating the
loss of long-range phase coherence. However, even in the
strongly interacting regime, the momentum distribution
still shows modulations that indicate the persistence of
short-ranged spatial coherence.

We quantify the n.n. coherence by fitting the observed
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distribution with the function

n(k)

N
= |w̃(k)|2

(
1+

cell∑
p<q

[
αpq cos(k·apq)+βpq sin(k·apq)

])
.

(4)
Compared with Eq. 3, this expression is simplified by
including only one momentum-space periodicity along
each lattice direction. This simplification is justified
both for weak trimerization, where the lengths a and
a′ are nearly equal, and also for strong trimerization,
where (as we show) the intra-trimer coherence dominates
over the inter-trimer coherence. As such, we identify
αAB ' Re(ζAB + ζ ′BA) and βAB ' Im(ζAB + ζ ′BA), and
similar for other bond directions. Both the Gaussian
width of w̃(k) and also the bond lengths apq are used
as fitting parameters and extracted from the images.

For the data of Fig. 3, we set βpq = 0 since the coher-
ence in this case is expected to be real valued. A single
value for the n.n. coherence function α is taken as the
average of αpq along the three bond directions [23].

Our measurements on the TKL are benchmarked by
similar measurements performed on atoms in the prim-
itive triangular lattice. For this, we prepare the gas as
before, with the exception that the LW lattice light is left
off.

The fitted n.n. coherences demonstrate the influence
of lattice trimerization.At low U/J ′, in the superfluid
regime, the n.n. coherences of the triangular and TKL
are similar. At large U/J ′, there is a stark difference. In
the triangular lattice, the n.n. coherence tends to zero in
the Mott insulating limit, scaling as α ∝ (U/J)−0.87(9),
which is roughly consistent with a perturbative treat-
ment of a Mott insulator with uniform tunneling energies
[15, 20, 21]. In contrast, for the TKL, n.n. coherence re-
mains large due to persistent tunnelling within trimers.
We also observe that α is smaller for larger U/J , show-
ing the effect of interactions to suppress coherence in a
few-site system.

The simultaneous lack of long-range coherence and
persistence of nearest-neighbor coherence implies that
spatial coherence in the TKL is spatially asymmetric,
with large differences between 〈b†pbq〉J and 〈b†pbq〉J′ . We
confirm this fact by an interferometric measurement, in
which we imprint a site-specific phase on the spatial co-
herence [24]. For this, we turn off one beam of the LW
lattice for a brief time τ , raising the energy of one site in
each trimer (A) above the energy of the other two sites
(B and C) by ∆V ' 0.2×VLW . This energy offset causes
the coherence functions to become complex, evolving as
ζAB(τ) = eiφζAB(0) and ζ ′AB(τ) = e−iφζ ′AB(0), and sim-
ilar for ζAC and ζ ′AC , with φ = ∆V τ/~.

This phase imprint has a pronounced effect on the mo-
mentum distribution (Fig. 4). In the limit that n.n. co-
herence remains only on the intra-trimer bonds, we ex-
pect αAB ∝ cos(φ) and βAB ∝ sin(φ) to oscillate out of
phase and with equal amplitude with τ . Fitting the ob-
served momentum distribution using Eq. 4 while allow-
ing for non-zero βpq and time-varying spacings apq, we
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FIG. 4. Revealing coherence asymmetry via phase imprint-
ing. (A) Change in the TKL potential when one LW lattice
beam is switched off. Site A is detuned from sites B and C
by ∆V . (b) The phase imprint from applying this energy
offset for variable τ causes the initially symmetric momen-
tum distribution (τ = 0) to evolve. Dashed lines have the
same directions as the lattice distance vectors and indicate
the directions of modulation. The color scale is the same as
that in Fig. 2. (c) Similar distributions are calculated for
a superposition of three identical Gaussian wavefunctions at
the sites of a trimer, with a complex phase applied at one
site. The width of the Gaussian function and the visibility of
interference are based on experimental parameters. (d) Co-
herence functions αAB and βAB obtained from fitting Eq. 4 to
the observed momentum distributions oscillate out of phase.
The equal amplitudes of oscillation for strong trimerization
(U/J ′ = 215 and 571) show that n.n. coherence resides nearly
exclusively on the strongly coupled bonds. Data points are
averages of 2-3 measurements. Error bars are standard errors
of mean.

observe such equal amplitude oscillations for the case of
strong interactions and strong trimerization, demonstrat-
ing that, for these settings, n.n. coherence resides nearly
exclusively on the intra-trimer bonds. In the case of
weaker trimerization and closer to the superfluid regime,
we still observe oscillations in βAC , but with diminished
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FIG. 5. Comparison of the nearest neighbor coherence data
(circles) to an exact solution of the three site Bose-Hubbard
model (solid lines) for the phase imprint experiment. Theory
lines have been uniformly scaled by 2/3 in the y-axis. The
multiple theory lines correspond to different particle number
ν per trimer.

amplitude with respect to those in αAC . This observa-
tion demonstrates that, while n.n. coherences in this case
are still stronger on the intra-trimer bonds, there exists
discernible coherence also on the inter-trimer bonds.

The temporal oscillations of α(τ) (β(τ)) are not purely
cosinusoidal (sinusoidal), and appear to decay in time.
To model this behavior, we study dynamics of a three-site
Bose Hubbard model. The ground state is calculated and
projected onto the eigenstates of a new HamiltonianH∆V

that accounts for an energy offset ∆VA on site A. We do
not account for changes to U and J in the new potential.
We also neglect the transport of atoms into nearby pla-
quettes or onto the now-accessible D sites of the lattice,
assuming that such transport affects the experimental
system only over longer timescales than probed by our
measurements.

As shown in Fig. 5, we find good agreement between
the measured coherences αAB and βAB and those calcu-
lated from this model. The decay of the oscillations in
αAB and βAB is explained as a beating between several
frequencies in the few-body spectrum of H∆V . Note that
we have scaled the theoretically determined coherence by
a factor of 2/3 to obtain a good agreement, presumably
to account for effects of non-zero temperature.

The trimerized kagome lattice presents a new set-
ting for experimental quantum simulation of condensed-
matter and many-body quantum physics. Our present
work is performed at high filling, reaching ν ' 8/3 atoms
per site (8 atoms per trimer) at the center of the gas.
Reaching filling factors below ν = 1 would allow for
studies of the predicted fractional (per site) Mott insu-
lating state [11]. Future experiments may identify few-
body eigenstates within single trimers by precise spec-
troscopy. These eigenstates include circulating states,
to which atoms can be driven to to realize models for
orbital magnetism [26]. Alternately, two-state fermions
within the TKL at half filling can simulate the spin-1/2
Heisenberg antiferromagnet, which is expected to have a
spin-liquid ground state [26–28].
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