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We theoretically study the quantum interference induced photon blockade phenomenon in atom
cavity QED system, where the destructive interference between two different transition pathways
prohibits the two-photon excitation. To begin with, we study the single atom cavity QED system
where the atom or cavity is driven by a coherent pump field. We show that the cavity-driven case
will lead to the quantum interference induced photon blockade under a specific condition, but such
interference induced photon blockade can’t be realized in the atom-driven case. This being an im-
portant consequence of the pathways possible for the two types of drives. Then, we investigate the
two atoms case, and find that an additional transition pathway appears in the atom-driven case.
We show that this additional transition pathway results in the quantum interference induced pho-
ton blockade only when the atomic resonant frequency is different from the cavity mode frequency.
Moreover, in this case, the condition for realizing the interference induced photon blockade is inde-
pendent of the system’s intrinsic parameters, which can be used to generate antibunched photons
both in weak and strong coupling regimes.

I. INTRODUCTION

The phenomenon of quantum interference (QI) ef-
fect [1] occurs between different photon transmission
pathways, leading to the inhibition/attenuation of ab-
sorption by the destructive interference [2]. With its fas-
cinating properties, many novel quantum effects and cor-
responding applications have emerged, e.g., electromag-
netically induced transparency (EIT) [3], coherent pop-
ulation trapping (CPT) [4], laser without inversion [5],
light with ultraslow group velocity [6] and so on. Now,
the QI between two photons has also been observed in
experiments [7, 8], and results in a new type of photon
blockade (PB) phenomenon in cavity QED systems [9].
The traditional PB results from the anharmonicity of

the Jaynes Cummings ladder in atom cavity QED sys-
tems [10], where the absorption of the first photon blocks
the transmission of the second photon. As a result, one
can observe an orderly output of photons one by one
with strong photon antibunching and the sub-Poissonian
statistics. Up to now, the traditional PB has been ex-
perimentally demonstrated in various quantum systems,
including atoms [11, 12], quantum dot [13] and ions cav-
ity quantum electrodynamics systems [14] as well as the
circuit-QED systems [15, 16].
Although the anharmonicity induced traditional PB

is demonstrated widely, the PB effect is very weak. To
blockade the transmission of the second photon, strong
coupling limit is required in the traditional PB, which is
challenging in experiments, especially for semiconductor
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cavity QED systems. In addition, with current experi-
mental techniques, the second order correlation function
g(2), which is a signature for PB, can’t be small enough
to achieve strongly antibunched photons. This is be-
cause the two-photon and multiphoton excitations still
exist due to the linewidth broadening by the pump field
intensity. In the light of these disadvantages, a novel
physical mechanism based on quantum destructive inter-
ference (QDI) effect is proposed to generate strong PB
phenomenon [17]. In literature, this QDI induced PB is
known as the unconventional photon blockade (UPB). In
general, there exist two methods to open an additional
transition pathway for realizing the QDI effect. One is
by adding an auxiliary cavity with the coherent coupling
between two cavity modes [17–19], while the other is by
adding an auxiliary driving field so that the cavity and
atoms are driven simultaneously. [20, 21].

To date, the UPB has been theoretically investi-
gated in various systems, such as two tunnel-coupled
cavity system [22–26], quantum dots [27–29], quantum
well [22], nanomechanical resonator [30], optomechanical
system [31, 32], optical parametric amplifier system [33],
as well as the hybrid quantum plasmonic system [34].
Recently, the UPBs are experimentally demonstrated in
two coupled superconducting resonators [35] and a single
quantum dot cavity QED system driven by two orthog-
onally polarized modes [36].

In this paper, we theoretically investigate the quan-
tum interference induced photon blockade in atom cav-
ity QED systems where the atom or cavity is driven by a
pump field (corresponding to the atom or cavity drive).
Using the amplitude method, we obtain the condition for
observing the interference induced photon blockade in the
atom cavity QED system via a cavity drive, i.e., equa-
tion (5). To the best of our knowledge, this condition has
not yet been reported in the literature. Opposite to the
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work in Ref. [9], we show that the interference induced
photon blockade can be realized without requiring the
weak nonlinearity or auxiliary pumping field. Moreover,
we show that additional transition pathways take place
by adding another atom in the cavity. These additional
transition pathways result in the QDI induced photon
blockade even via an atom drive. Therefore, extremely
strong antibunching photons can be accomplished, lead-
ing to the value of the second-order correlation function
smaller than unity.
The paper is arranged as follows. In section II, we first

study the single atom case via a cavity drive or an atom
drive, which has been experimentally studied in Ref. [37].
We show that the destructive interference can only be
observed in the case of the cavity drive because the de-
structive interference can be achieved between transition
pathways with odd number of photons. However, there is
no interference in the case of the atom drive. This is con-
trary to intuition as one generally views that atom drive
and cavity drive should be similar physics. In section III,
we study the two atoms case also via a cavity drive or an
atom drive. We show that the odd-photon transition in-
duced destructive interference in cavity driven case (i.e.,
the pump field drives the cavity) can be improved by the
collective coupling enhancement, leading to a significant
improvement of the photon blockade phenomenon. In the
atom-driven case (i.e., the pump field drives the atoms),
surprisingly, we find that an additional transition path-
way appears in the presence of the second atom, yield-
ing interference between transitions with even number of
photons. If the atomic resonant frequency is the same as
the cavity mode frequency, we show that this interference
is constructive, so that the photon blockade can not be
observed. In section IV, we show that this even-photon
interference becomes destructive when the atomic reso-
nant frequency is different to the cavity mode frequency.
As a result, two transition pathways become distinguish-
able, leading to the interference induced photon blockade.
We also show that the condition for realizing this even-
photon interference induced PB in atom-driven scheme is
insensitive to the atom-cavity coupling strength. Thus,
one can increase the coupling strength to obtain reason-
able photon number with strong PB effect.

II. SINGLE ATOM CAVITY QED SYSTEM

First, we consider a typical single atom cavity QED
system as shown in Fig. 1(a). In the frame rotating at the
driving frequency ωd, the system Hamiltonian is written
as [37] (setting ~ = 1)

H1 = −∆ca
†a−∆aσ

†σ + g(σa† + σ†a) +Hd, (1)

where Hd is the driving term. Its explicit form de-
pends on whether the atom is driven or the cavity is
driven. Assuming that the cavity (atom) is driven by
a continuous-wave (CW) coherent field, Hd = η(a + a†)

[Hd = η(σj + σ†
j )] with η being the driving strength.

(a)

(b) (c)

FIG. 1. (Color online) (a) Sketch of a two-level atom with
resonant frequency ωa trapped in a single-mode cavity. The
red (purple) arrow corresponds to the atom (cavity) drive
with driving strength η. For atomic drive the atom is driven
from the side. |g〉 (|e〉) is the ground (excited) state of the
atom. γ and κ are the atomic and cavity decay rates, respec-
tively. Panels (b) and (c) show the transition pathways in
an atom- and cavity-driven cases, respectively. Here yellow
arrows represent the atom-cavity coupling with strength g.
|α, n〉 (α = g, e) is the product state of atomic state |α〉 and
photon state |n〉.

It is noted that the CW field has been widely used
in a large amount of cavity QED experiments ranging
from atoms [2] to superconducting qubits [38, 39]. Here,
∆c = ωd−ωc and ∆a = ωd−ωa are the detunings for the
cavity and atom, respectively. a (a†) is the annihilation
(creation) operator of the cavity mode with the resonant
frequency ωc. σ (σ†) denotes the lowering (raising) op-
erator of the two-level atom with the resonant transition
frequency ωa. g is the atom-cavity coupling strength.
The dynamics of this open quantum system is governed

by the master equation, i.e.,

∂ρ

∂t
= −i[H, ρ] + Lκρ+ Lγρ, (2)

where Lκρ = κ(2aρa† − a†aρ − ρa†a) and Lγρ =
γ(2σρσ† − σ†σρ − ρσ†σ) describe the dissipations of
the cavity and atom with the decay rate κ and γ, re-
spectively. Numerically solving Eq. (2), one can ob-
tain the second-order photon-photon correlation function
g(2)(0) = 〈a†a†aa〉/〈a†a〉2 in the steady state. In gen-
eral, the value of g(2)(0) characterizes the probability of
detecting two photons at the same time. If g(2)(0) > 1,
two photons will be detected simultaneously. However,
if g(2)(0) < 1, the output of photons has antibunching
behavior, i.e., detecting photons one by one. In the fol-
lowing, we will discuss this phenomenon in detail.
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Cavity-driven scheme. - We consider that the cavity is
driven by a coherent field and assume ∆a = ∆c = 0
for simplicity. Thus, the transition pathways of this
cavity-driven scheme is shown in Fig. 1(b), where |α, n〉
represent the states in the atom-cavity product space.
Obviously, there exist two transition pathways corre-
sponding to the transition from |g, 1〉 to |g, 2〉. The first

one is |g, 1〉
√
2η−→ |g, 2〉 transition, and the second one is

|g, 1〉 g←→ |e, 0〉 η−→ |e, 1〉
√
2g←→ |g, 2〉 transition. If the

destructive interference takes place between these two
transition pathways, the two-photon excitation will be
not allowed and the probability for detecting the state
|g, 2〉 will be zero. Then, one can achieve quantum inter-
ference induced photon blockade phenomenon, leading to
an output of antibunched photons.
To obtain the condition for this destructive inter-

ference, we assume the system wavefunction Ψ ≈
∑2

n=0 Cg,n|g, n〉 +
∑1

n=0 Ce,n|e, n〉, where |Cα,n|2 (α =
g, e) is the probability for detecting the state |α, n〉. Here,
other states in larger photon-number spaces have been
neglected since the driving field is not strong enough to
excite these states. Then, the dynamical equations for
the amplitudes of each state can be written as

iĊg,1 = gCe,0 − i
κ

2
Cg,1 + ηCg,0 +

√
2ηCg,2, (3a)

iĊg,2 =
√
2gCe,1 − iκCg,2 +

√
2ηCg,1, (3b)

iĊe,0 = gCg,1 − i
γ

2
Ce,0 +

√
2ηCe,1, (3c)

iĊe,1 =
√
2gCg,2 − i

(

κ+ γ

2

)

Ce,1 + ηCe,0. (3d)

Using the perturbation method [9, 40] and solving
above equations under the steady state approximation,
one can obtain

Cg,2 =
2
√
2η2

(

−γ2 − γκ+ 4g2 − 4η2
)

(γκ+ 4g2) (γκ+ 4g2 + κ2) + 4η2X
, (4)

with X = 4η2− 8g2 + γ2 + κ2 + γκ. Clearly, the optimal
condition for Cg,2 = 0 is

g =
1

2

√

γ2 + γκ+ 4η2. (5)

Under the weak driving condition, the second-order
correlation function can be expressed as g(2)(0) ≈
2|Cg,2|2/|Cg,1|4, yielding g(2)(0) → 0 if Eq. (5) is sat-
isfied.
It is worth to point out that Eq. (5) is the condition for

achieving destructive interference induced photon block-
ade in a single atom cavity QED system, as far as we
known, which has not yet been reported before. Com-
pared with the works in Refs. [35, 36, 40], our system is
much simpler than their proposals, where the destructive
interference results from the transition pathways between
two cavity modes and weak nonlinearity is essential to
realize the destructive interference. Eq. (5) implies that,
under weak atom cavity coupling, the photon blockade

can also be accomplished in a typical single atom cav-
ity QED system via the destructive interference. It is
noted that Eq. (5) is only valid for the weak driving field
since high-order photon states are assumed to be unex-
cited. For strong driving field, however, Eq. (5) is invalid
and one can not observe the interference induced photon
blockade since high-order photon states will be excited,
yielding g(2) larger than unity.
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FIG. 2. (Color online) The equal-time second-order correla-

tion function g(2)(0) versus the normalized coupling strength
g/κ in the (a) cavity-driven and (b) atom-driven systems,
respectively. In panel (a), we choose γ = κ (blue dashed
curve) and γ = κ/2 (red solid curve), respectively. The driv-
ing strength η = 0.01κ. In panel (b), we choose γ = κ, but the
driving strength is chosen as η = 0.01κ (blue dashed curve),
η = 0.3κ (red solid curve) and η = κ (green dash dotted
curve), respectively.

To verify the above analysis, we numerically solve
Eq. (2). In Fig. 2(a), we plot the equal-time second-order
correlation function g(2)(0) as a function of atom-cavity
coupling strength with atomic decay rate γ = κ (blue
dashed curve) and γ = κ/2 (red solid curve), respectively.
Other system parameters are given by ∆a = ∆c = 0
and η = 0.01κ. It is clear to see that there exist
a minimum in the second-order correlation function at
g =

√

γ(γ + κ) + 4η2/2 due to the destructive interfere
effect. Moreover, the smaller the atomic decay rate is,
the smaller the value of g(2)(0) is, leading to a stronger
photon blockade effect as shown in Fig. 2(a).

No quantum interference for atom-driven scheme. -
Contrary to the cavity-driven case, there exists only one
transition pathway for the two-photon excitation, i.e.,

|g, 0〉 η→ |e, 0〉 g→ |g, 1〉 η→ |e, 1〉
√
2g→ |g, 2〉 [see Fig. 1(c)] if

one drive the atom directly. Therefore, the two-photon
excitations can’t be blockaded by the quantum interfer-
ence effect. In the case of weak driving strength, e.g.,
η = 0.01κ (blue dashed curve) and η = 0.3κ (red solid
curve), the value of g(2)(0) is smaller than unity for small
coupling strengths because the high-order states can’t
be excited by such weak driving fields. With the in-
crease of the atom-cavity coupling strength, the energy
splitting become dominant so that the driving field be-
comes far off-resonant to all states in the system, yielding
g(2)(0) → 1 as shown in Fig. 2(b). However, in the case
of strong driving strength, e.g., η = κ (green dash dotted
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curve), states in two-photon space will be excited and one
can obtain g(2)(0) > 1 for small coupling strength g. As
g increases, it is clear to see that g(2)(0) < 1 because the
anharmonic energy splitting prevents the states in two-
photon space from being excited [see the green curve in
Fig. 2(b)]. Furthering increasing g, one can also observe
g(2)(0) → 1 since the driving field is in far off-resonant
state.

III. TWO ATOMS CAVITY QED SYSTEM

(b) (c)

(a)

FIG. 3. (Color online) (a) Sketch of two two-level atoms
trapped in a single-mode cavity. The red (purple) arrow cor-
responds to the atom (cavity) drive with driving strength η.
Panels (b) and (c) show the transition pathways in cavity-
and atom-driven systems, respectively.

Next, we consider that two identical atoms are trapped
in a single-mode cavity with the same atom-cavity cou-
pling strengths as shown in Fig. 3(a). The corresponding
Hamiltonian is then written as

H2 = −∆ca
†a+

2
∑

j=1

[−∆aσ
†
jσj+g(σja

†+σ†
ja)]+Hd, (6)

where the subscript j indicates the j-th atom. Likewise,
the drive term is given by Hd = η(a† + a) for the cavity

drive, and Hd = η
∑2

j=1(σj + σ†
j ) for the atom drive,

respectively. Then, the master equation describing the
dynamics of the system is written as

∂ρ

∂t
= −i[H2, ρ] + Lκρ+

2
∑

j=1

L(j)γ ρ, (7)

where L(j)γ ρ represents the dissipation term of the j-th
atom.

For mathematical simplicity, we assume ∆a = ∆c = 0.
In general, such system can be described by using the
collective states {|gg〉, |±〉, |ee〉} as the basis. Here, we

define the states |±〉 = (|eg〉±|ge〉)/
√
2 as the symmetric

and anti-symmetric Dicke states, respectively.

Cavity-driven scheme. - Since two atoms have the
same coupling strength (i.e., in-phase radiation), the
anit-symmetric Dicke states |−, n〉 are dark states, de-
coupling to other states in this system [41, 42]. In the
cavity driven scheme, therefore, one can also observe two
different transition pathways for the two-photon excita-

tions, corresponding to |gg, 1〉
√
2η→ |gg, 2〉 and |gg, 1〉

√
2g→

|+, 0〉
√
2η→ (|+, 1〉

√
2g←→ |ee, 0〉) 2g→ |gg, 2〉, respectively [see

Fig. 3(b)].
To obtain the optimal condition for achieving the de-

structive quantum interference between these two path-
ways, we also solve the amplitude equations [similar to
Eqs. (3)] by assuming the system wavefunction Ψ ≈
Σ2

n=0Cgg,n|gg, n〉+Σ1
n=0C±,n|±, n〉+Cee,0|ee, 0〉. Under

the steady state approximation, the probability ampli-
tude of state |gg, 2〉 is given by

Cgg,2 ≈
2
√
2γη2

(

4g2 − γ2 − γκ− 4η2
)

(γκ+ 8g2) (γ2κ+ γκ2 + 8γg2 + 4g2κ)
. (8)

Obviously, one can obtain the same optimal condition
for Cgg,2 = 0 as given by Eq. (5), yielding strong photon
blockade effect induced by the destructive interference
between these two transition pathways.
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FIG. 4. (Color online) The equal-time second-order correla-

tion function g(2)(0) versus the normalized coupling strength
g/κ in the (a) cavity driven and (b) atom driven systems,
respectively. The blue dashed curves correspond to the one
atom case, while the red solid curves correspond to the two
atoms case. The system parameters are given by ∆a = ∆c =
0, γ = κ and η = 0.01κ, respectively.

In Fig. 4(a), we plot the equal-time second-order cor-
relation function g(2)(0) as a function of the atom-
cavity coupling g. The system parameters are given by
∆a = ∆c = 0, γ = κ and η = 0.01κ, respectively.
It is clear to see that there also exists a minimum at
g =

√

γ(γ + κ) + 4η2/2 for two atoms system. Com-

pared with the single atom case, the value of g(2)(0) at

g =
√

γ(γ + κ) + 4η2/2 decreases significantly [see red
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curve], leading to an improvement of the photon block-
ade phenomenon. The physical mechanism of this PB
improvement attributes to the enhanced destructive in-
terference effect resulting from the collective coupling en-
hancement [see Fig. 3(b)].

Constructive quantum interference leading to no pho-

ton blockade in atom-driven scheme. - Let’s consider
that two atoms are driven by the coherent field. As
shown in Fig. 3(c), there exist two different transition
pathways for two-photon excitations, which is opposite
to the single atom case. Using the same basis states,
these two transition pathways can be represented by

|gg, 0〉
√
2η→ |+, 0〉

√
2g→ |gg, 1〉

√
2η→ |+, 1〉 2g→ |gg, 2〉 and

|+, 0〉
√
2η→ |ee, 0〉

√
2g→ |+, 1〉 2g→ |gg, 2〉, respectively. To

realize the PB, the excitation of the state |+, 1〉 is re-
quired to be inhibited by the destructive interference so
that the state |gg, 2〉 remains unexcited. However, these
two transitions are symmetric and indistinguishable so
that the interference between these two transitions are
constructive [43]. Thus, the excitation of the state |+, 1〉
is allowed in this case, and can be significantly enhanced
via the constructive interference. As shown in Fig. 4(b),
the value of g(2)(0) becomes much larger than that in
single atom-driven case.

IV. TWO ATOMS-DRIVEN CAVITY QED

SYSTEM WITH ωa 6= ωc

(b) Energy(a)

FIG. 5. (Color online) (a) Sketch of two atoms-driven cav-
ity QED system, where two atoms are driven by a coherent
field η and the atomic resonant frequency ωa 6= ωc. (b) The
corresponding transition pathways show the destructive inter-
ference process.

Here, we also study the two atoms-driven case but
ωa 6= ωc, i.e., the atomic and cavity resonant frequency
are different [see Fig. 5(a)]. In this system, the amplitude

equations are given by

iĊgg,1 =
√
2gC+,0 −

(

i
κ

2
+ ∆c

)

Cgg,1 +
√
2ηC+,1, (9a)

iĊgg,2 =2gC+,1 + (−2∆c − iκ)Cgg,2, (9b)

iĊ+,0 =
√
2ηCgg,0 −

(

∆a + i
γ

2

)

C+,0 +
√
2gCgg,1

+
√
2ηCee,0, (9c)

iĊ+,1 =
√
2ηCgg,1 −

(

∆a +∆c + i
γ + κ

2

)

C+,1

+ 2gCgg,2 +
√
2gCee,0, (9d)

iĊee,0 =
√
2ηC+,0 − (2∆a + iγ)Cee,0 +

√
2gC+,1. (9e)

Under the steady state approximation and assuming
Cgg,0 ≫ {Cgg,1, C+,0} ≫ {Cgg,2, C+,1, Cee,0} and
Cgg,0 ≃ 1, one can obtain

Cgg,2 =
16
√
2g2η2[−2i(2∆a +∆c) + 2γ + κ]

X(Y − 2i∆aZ)
, (10a)

Cgg,1 = − 8gη

8g2 −∆a (4∆c + 2iκ)− 2iγ∆c + γκ
, (10b)

C+,1 =
8
√
2gη2 (κ− 2i∆c) [2(2∆a +∆c) + i(2γ + κ)]

X(Y − 2i∆aZ)
,

(10c)

where X = ∆a (−4∆c − 2iκ)−2iγ∆c+γκ+8g2 and Y =
−4∆2

a (κ− 2i∆c)+γ2κ−4γ∆2
c−2i∆c

(

γ2 + 2γκ+ 4g2
)

+

γκ2+8γg2+4g2κ and Z = −4i∆c(γ+κ)− 4∆2
c +2γκ+

8g2 + κ2. Assuming {∆a,∆c} ≫ {γ, κ}, the equal-time
second-order correlation can be expressed as

g(2)(0) ≃ 2|Cgg,2|2
|Cgg,1|4

≃ (2∆a +∆c)
2(8g2 − 4∆a∆c)

2

D
,

(11)

where D = [−8∆a∆c(γ + κ) − 4κ∆2
a + γ2κ − 4γ∆2

c +
γκ2+8γg2+4g2κ]2+[8∆2

a∆c−2∆a(−4∆2
c+2γκ+8g2+

κ2)− 2∆c(γ
2 + 2γκ+ 4g2)]2. Obviously, there exist two

conditions to achieve g(2)(0) → 0, yielding an output of
antibunched photons.
The first condition is ∆a∆c = 2g2, corresponding to

the traditional PB. In particular, this condition can be
reduced to ∆a = ±

√
2g if one assume ∆c = ∆a, which

is widely known as the condition for vacuum Rabi split-
ting and photon blockade phenomenon in strong coupling
regime [42]. It is worth to point out that the atom-cavity
coupling strength must be strong enough to observe the
PB at the frequencies ∆a∆c = 2g2, i.e. the strong cou-
pling is critically important.
The second condition is ∆c = −2∆a. Surprisingly, we

find that it is independent to the atom-cavity coupling
strength. To understand the physical mechanism of this
condition, we examine these two transition pathways for
two-photon excitations again. As shown in Fig. 5(b),
transitions (I) |+, 0〉 → |gg, 1〉 → |+, 1〉 → |gg, 2〉 and
(II) |+, 0〉 → |ee, 0〉 → |+, 1〉 → |gg, 2〉 are distinct as
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opposite to the case of ωa = ωc. Thus, the destructive
interference will take place if this specific condition is
satisfied. In general, the occupying probability of state
|+, 1〉 obeys the second-order Fermi golden rule [43, 44],
yielding

|C+,1|2 ∝
π

~

∣

∣

∣

∣

1

ωa + ωc − 2ωp

+
1

ωa − ωp

∣

∣

∣

∣

2

. (12)

Clearly, the destructive interference will result in
|C+,1|2 → 0 if −(ωa+ωc−2ωp) = ωa−ωp is satisfied. As
a result, there is no population in the state |gg, 2〉 and
the second-order correlation function g(2)(0) → 0. This
condition implies that the quantum interference induced
PB can be implemented in two atoms-driven cavity QED
system if ωa 6= ωc. It is worth to point out that the phys-
ical mechanism of this destructive interference between
even-photon transitions is different from that extensively
studied in literature, where the interference occurs via
the odd-photon transitions.
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FIG. 6. (Color online) Plots of the equal-time second-order

correlation function g(2)(0) (red solid curves) and the prob-
ability for detecting state |C+,1|

2 (blue dashed curves) as a
function of the normalized detuning ∆a/κ. Here, we choose
κ/2π = 2.8 MHz, γ/2π = 3.0 MHz, ∆c = 20κ and η = 0.5κ,
respectively [45]. The coupling strength is given by (a)
g = 0.5κ and (b) g = 5κ, respectively.

To verify these analytical results, we carry out numer-
ical simulation by solving the master equation with sys-
tem parameters ∆c = 20κ, κ/2π = 2.8 MHz, γ/2π = 3.0
MHz and η = 0.5κ. Such system parameters can be re-
alized in 87Rb atomic system [45]. Experimentally, the
second- and even the third-order correlation functions
are detectable both in cavity and atom drives with a CW
pump field [37]. For weak atom-cavity coupling strength,
e.g., g = 0.5κ, a deep dip at the frequency ∆a = −∆c/2
can be observed in the second-order correlation function
[see Fig. 6(a), red curve]. As shown in Fig. 6(a), the
value of g(2)(0) is close to 10−2 due to the destructive
interference, resulting in a strong PB effect. To show
the origin of the QDI induced photon blockade, we also
plot |C+,1|2 (blue curve). A very small value of |C+,1|2
leads to almost zero population of the state |gg, 2〉 (i.e.,
|Cgg,2|2 → 0) showing that there is photon blockade. For
strong atom-cavity coupling strength (e.g., g = 5κ), how-
ever, there exist two dips in the second-order correlation

function, corresponding to the frequencies ∆a = −∆c/2
and ∆a = 2g2/∆c, respectively [see Fig. 6(b), red curve].
The left one is resulted from the quantum destructive in-
terference where |Cgg,2|2 also reaches its minimum [see
the blue curve], while the right one attributes to the an-
harmonic energy splitting which is sensitive to the atom-
cavity coupling strength. It is clear to see that the value
of g(2)(0) at ∆a = −∆c/2 is much smaller than that at
∆a = 2g2/∆c. Although there is a little change in the
value of g(2)(0) at ∆a = −∆c/2, the counting rate en-
hances significantly as the atom-cavity coupling strength
increases. For g = 5κ, the counting rate reaches about 6
kHz which is detectable in experiments [37].
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FIG. 7. (Color online) Equal-time second-order correlation

function g(2)(0) versus the cavity detuning ∆c and atomic
detuning ∆a, respectively. Here, the coupling strength is
chosen as (a) g = 0.5κ and (b) g = 5κ, respectively. The
white dashed curves represent the traditional PB condition
(∆a∆c = 2g2) and the white dash dotted curves denote the
condition of the interference induced PB (∆c = −2∆a). The
other parameters are same as those used in Fig. 6.

In Fig. 7(a), we plot the second-order correlation func-
tion g(2)(0) as functions of the detunings ∆a and ∆c,
respectively. In panels (a) and (b), we chose the atom-
cavity coupling strength g = 0.5κ and g = 5κ, re-
spectively. Other system parameters are the same as
those used in Fig. (6). The dashed and dash-dotted
curves indicate the analytical expressions ∆a = −∆c/2
and ∆a∆c = 2g2, respectively. It is clear to see that
the second order correlation function at ∆a = −∆c/2
is always smaller than unity in both weak and strong
coupling regimes. However, the correlation function at
∆a∆c = 2g2 is smaller than unity only when the system
enters into the strong coupling regime, which matches
the analytical results very well.
In Fig. 8(a), we fix ∆ ≡ ∆a = −∆c/2 and plot the

second-order correlation function g(2)(0) against the nor-
malized atom-cavity coupling strength g/κ and detuning
∆/κ, respectively. Here, we choose η/2π = 1.4 MHz
and other system parameters are the same as those used
in Fig. 6. We notice that g(2)(0) decreases quickly as
the detuning ∆ increases, but experience a little change
with the increase of the atom-cavity coupling strength
g. Contrary to the second order correlation function,
the counting rate of cavity photons [see Fig. 8(b)] grows
significantly as the atom-cavity coupling strength g in-
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FIG. 8. (Color online) Plots of the equal-time second-order

correlation function g(2)(0) [panel (a)] and the counting rate
[panel (b)] as functions of the detuning ∆ ≡ ∆a = −∆c/2 and
the coupling strength g, respectively. The pump field Rabi
frequency is η/2π = 1.4 MHz, and other system parameters
are the same as those used in Fig. 6.

creases. Therefore, detectable photons with strong an-
tibunching behavior can be accomplished under strong
coupling regime.

V. CONCLUSION

In summary, we have theoretically investigated the na-
ture of the interference induced photon blockade in cavity
QED with one and two atoms. In a single atom cav-
ity QED system, we show that the interference induced
photon blockade can only be observed when the exter-
nal field drives the cavity directly. In the atom driven
scheme, there exists a single transition pathway for the
two-photon excitation so that the interference induced
photon blockade cannot be observed. In two atoms cav-

ity QED system, the quantum interference induced pho-
ton blockade still exists in cavity driven scheme. In the
atom-driven case, we show that there exist two transi-
tion pathways for the two-photon excitation as opposite
to the single atom case. If the atomic and cavity reso-
nant frequencies are the same, these two transition path-
ways are indistinct and lead to constructive interference,
which is harmful to the photon blockade effect. How-
ever, if the atomic and cavity resonant frequencies are
different, these two transition pathways become distinct
and lead to a new kind of photon blockade effect based
on the even photon destructive interference. Moreover,
we show that the condition for this novel interference in-
duced photon blockade is robust to the atom-cavity cou-
pling strength, which provides us the possibility for ob-
serving large photon number with strong antibunching
behavior in the strong coupling regime.
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