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We investigate experimentally and theoretically the lasing behavior of dielectric microcavity lasers
with chaotic ray dynamics. Experiments show multimode lasing for both D-shaped and stadium-
shaped wave-chaotic cavities. Theoretical calculations also find multimode lasing for different shapes,
sizes and refractive indices. While there are quantitative differences between the theoretical lasing
spectra of the stadium and D-cavity, due to the presence of scarred modes with anomalously high
quality factors, these differences decrease as the system size increases, and are also substantially
reduced when the effects of surface roughness are taken into account. Lasing spectra calculations
are based on Steady-State Ab Initio Laser Theory, and indicate that gain competition is not sufficient
to result in single-mode lasing in these systems.

I. INTRODUCTION

There has been a great deal of interest in the proper-
ties of dielectric microcavity lasers or resonators based
on quasi-two-dimensional cavities, for which different
boundary shapes can generate chaotic, mixed or regu-
lar ray dynamics [1], with corresponding implications for
the resonant wave solutions and lasing modes of such
cavities. We will use the term wave-chaotic cavity to re-
fer to cavity shapes for which the ray dynamics based
on specular reflection of rays at the boundary and ne-
glecting refractive escape satisfy standard definitions of
chaotic or partially chaotic dynamics [2]. The motiva-
tion for this work are recent experimental results and
theoretical arguments concerning semiconductor micro-
lasers with fully chaotic ray dynamics (i.e., no stable peri-
odic orbits or quasi-periodic Kolmogorov-Arnold-Moser,
or KAM orbits), and in this article we will only consider
cavity shapes with either fully chaotic ray dynamics or
with fully integrable ray dynamics (such as the ellipse).
The circumstances under which a laser exhibits single- or
multi-mode lasing is both a fundamental question of laser
physics, and, as discussed below, of significant practical
importance since it impacts the spatial coherence prop-
erties of the emission in a manner which can impair or
facilitate imaging applications. It should be emphasized
that we do not concern ourselves with the temporal dy-
namics, which for semiconductor lasers can be unstable
or chaotic for a number of reasons [3], and in the theo-
retical work presented below we confine ourselves to the
study of single- or multimode steady-state solutions of
the laser equations.

The earliest dielectric cavity lasers were microdisk
lasers with whispering gallery type high-Q modes con-
fined by total internal reflection [4]. Not long after these
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first microdisk lasers were demonstrated, the idea of de-
forming the resonator boundary to non-circular shapes
was introduced [5, 6] to explore the implications of fully
or partially chaotic ray dynamics on the wave solutions
and lasing properties. A major focus of this earlier work
was on obtaining directional emission from smoothly de-
formed cavity shapes, and on using properties of the
phase space of the ray dynamics to predict and control
the emission patterns [7–9]. In addition, many of these
early studies considered laser cavities much larger than
the wavelength for which one could not resolve individual
lasing lines, motivating a statistical treatment via ray es-
cape models. However when wave-chaotic microcavities
with sizes of the order of the wavelength were fabricated
and studied [10, 11], the lasing spectrum was generally
found to be multimode [12, 13]. The nature of their lasing
modes and their relationship to passive cavity modes and
the classical ray dynamics have been studied extensively
[1].

Motivated by wave-chaotic and random microcavity
lasers the Steady State Ab Initio Laser Theory (SALT)
was developed starting in 2006 [14–19], an approach
which can be employed for arbitrary complex geometries
and yields the active mode spectra of microcavity lasers.
SALT is based on the Stationary Inversion Approxi-
mation (SIA), which becomes reasonable for sufficiently
small cavities, as emphasized first by Fu and Haken [20].
The quantitative validity of SALT for microlasers in the
appropriate regime has been confirmed by comparison
with full time-dependent solutions of the two-level and
multi-level semiclassical laser equations [21]. The the-
ory is designed to describe multimode steady-state las-
ing and takes gain competition and gain saturation into
account to all orders, within the SIA. SALT and a fur-
ther ”single-pole approximation”, known as SPA-SALT,
has been used to study how spatially selective pumping
can be used to control the lasing spectra of wave-chaotic,
random and circular microlasers [17].

More recently, wave-chaotic cavity lasers or random
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lasers have been proposed and demonstrated by several
of the authors as novel bright sources emitting spatially
incoherent light for imaging and microscopy applications
[22–25]. For these applications, wave-chaotic GaAs D-
cavity lasers with sizes of the order of 102 − 103µm and
pulsed electrical pumping were tested and compared to
circular disk and Fabry-Perot cavity lasers fabricated in
a similar manner [22]. Speckle contrast measurements of
the D-laser emission indicated NM ∼ 102 − 103 lasing
modes with distinct spatial profiles, many orders of mag-
nitude greater than the number of spatial modes found in
traditional lasers such as Fabry-Perot broad-area lasers of
comparable surface area. The incoherent superposition of
so many different spatial modes results in low spatial co-
herence which suppresses coherent artifacts. It was thus
argued that wave-chaotic microlasers were particularly
good devices for generating highly-multimode, spatially
incoherent lasing emission, since they exhibit many spa-
tially distinct modes with similar Q-factors, and their
modes have speckle-like intensity distributions filling the
entire cavity, utilizing the entire available gain medium.

Very different lasing behavior was found by Sunada
et al. in other recent experiments with stadium-shaped
GaAs microlasers of a somewhat smaller size. In Ref. [26]
it was found that the stadium microlasers transitioned
from multimode lasing when pumped with very short
pulses to single-mode lasing for pump pulses longer than
100 µs. Experiments in the steady-state regime [27] with
continuous wave (cw) pumping showed single-mode lasing
for the wave-chaotic stadium lasers, whereas multimode
lasing was found for elliptical microlasers, which have
integrable ray dynamics since an elliptical billiard fea-
tures a second constant of motion [28] in contrast to the
stadium and D-cavity. The authors argued, based on nu-
merical calculations, that the modes of wave-chaotic res-
onators overlap so strongly in space that their cross gain-
saturation results in single-mode lasing, whereas whisper-
ing gallery modes with different radial quantum numbers
in the elliptic resonator have small enough overlap to al-
low multimode lasing. Subsequent theoretical and nu-
merical work indicated that single-mode lasing may be
typical for wave-chaotic microlasers in certain parameter
regimes [29]. These two sets of experiments (Refs. [26, 27]
and Ref. [22]) raise fundamental questions about the las-
ing dynamics of wave-chaotic semiconductor microlasers,
and the aim of this article is to elucidate the influence
of different experimental parameters and physical mech-
anisms on the number of lasing modes given that the mi-
crolasers used in the two sets of experiments are very sim-
ilar, though not identical. In particular, we consider the
effects of mode competition, the size, refractive index and
surface roughness of the cavities, as well as non-universal
features of different wave-chaotic resonator geometries.

In the first part of the article we present new ex-
perimental measurements of the lasing spectra of both
D-cavity and stadium-shaped wave-chaotic GaAs micro-
lasers with time resolution in order to address the ques-
tions raised above. In the second part of the paper we
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Figure 1. Top view SEM images of (a) a D-cavity with radius
R = 200 µm and (b) a stadium cavity with L = 238 µm.
(c, d) Perspective SEM images of the curved sidewall of a D-
cavity, highlighting its verticality and low surface roughness.

present the results of SPA-SALT calculations that shed
light on the role of mode competition in wave-chaotic cav-
ity lasers. It should be noted that the microlaser cavities
used in experiments are too large to be directly simu-
lated either by time domain or frequency domain (e.g.,
steady-state) approaches. Moreover, SALT loses quanti-
tative validity when the lasing spectra becomes too dense
with increasing cavity size. Hence our calculations do not
allow quantitative modeling, but provide evidence and
physical insight into the role of wave chaos and mode
competition in multimode lasing.

II. EXPERIMENTAL RESULTS

We investigated edge-emitting GaAs quantum well
semiconductor lasers fabricated from a commercial epi-
wafer (Q-Photonics QEWLD-808) by photolithography
and dry etching (see Ref. [30] for details of the fabrica-
tion process). Microlasers in the shape of a D-cavity, a
stadium and an ellipse were created. Scanning-electron
microscope (SEM) images of two cavities are shown in
Figs. 1(a, b), respectively. The dry-etching process en-
sured vertical sidewalls [see Fig. 1(c)] and a low degree
of surface roughness [see Fig. 1(d)].

The D-cavity shape is a circle with radius R from which
a segment has been cut off R/2 away from the center as
shown in the inset of Fig. 2(a). The stadium cavities
considered in this article consist of a square with side
length L to which two semicircles with radius L/2 are
attached as shown in the inset of Fig. 2(b). The ray-
dynamics of both cavity types is fully chaotic [31, 32].
The ellipse cavities we investigated have an aspect ratio
of b/a = 2 where a, b are the two diameters [see inset of
Fig. 2(c)]. Their ray dynamics is integrable.

The cavities were mounted on a large Cu block which
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Figure 2. Lasing spectra integrated over a 2 µs-long pump
pulse with 500 mA pump current [30] for (a) a D-cavity with
R = 100 µm, (b) a stadium with L = 119 µm, and (c) an
ellipse with a = 127 µm and b = 254 µm. The insets illustrate
the geometry of the cavities.

acted as a passive heat sink and pumped electrically with
2 to 500 µs-long pulses by a diode driver (DEI Scientific
PCX-7401). All experiments were performed at ambient
temperature. The laser emission from the cavities was
collected by an objective and transmitted to an imag-
ing spectrometer (Acton SP300i) with a multimode fiber
bundle. An intensified CCD camera (ICCD, Andor iStar
DH312T-18U-73) attached to the spectrometer was used
to measure the evolution of the emission spectrum during
a pulse with microsecond resolution. The experimental
setup and measurement procedures are described in more
detail in Ref. [30].

The lasing spectra integrated over 2 µs-long pulses for
a D-cavity, a stadium and an ellipse are shown in Fig. 2.

Cavity 〈Ith〉 (mA) 〈jth〉 (A cm−2)

D-cavity, R = 100 µm 125± 6 494.6

Stadium, L = 119 µm 100± 2 395.5

Ellipse, a = b/2 = 127 µm 68± 4 269.6

Table I. Average threshold currents 〈Ith〉 and corresponding
threshold current densities 〈jth〉 for cavities with the same
size as those presented in Fig. 2.

All three cavities have approximately the same area of
25, 300 µm2 and hence the same resonance density. The
spectra for 500 mA pump current show multimode lasing
with about 20 peaks for all three geometries. The emis-
sion has transverse electric (TE) polarization with the
electric field parallel to the cavity plane. Similar results
were obtained for cavities with two times larger linear di-
mension. The actual number of lasing modes cannot be
determined from the spectra as our spectrometer cannot
resolve closely-spaced lasing modes due to its finite spec-
tral resolution. Nevertheless, the appearance of multiple
peaks in the emission spectrum clearly evidences multi-
mode lasing in D-cavities and stadia of this size.

The threshold currents vary very little between cavi-
ties of the same type and size, but depend on the cavity
geometry. An overview of the average threshold currents
〈Ith〉 for the three cavity shapes shown in Fig. 2 is given
in Table I. The stadium cavities have somewhat lower
thresholds than the D-cavities. The ellipse cavities have
clearly lower thresholds than the two wave-chaotic cavi-
ties. In addition to lower thresholds for lasing in the el-
lipse, the ellipse is observed to have lower slope efficiency
than the chaotic cavities, as would be expected for high-
Q whispering gallery modes with lower mode volume. We
would, however, expect orders of magnitude lower lasing
thresholds for elliptical cavities due to the existence of
ideal whispering gallery modes (WGMs) with ultra-high
Q-factors. We attribute the observed moderate differ-
ence in threshold to the small, but not negligible surface
roughness. These results motivate a detailed study of
how the cavity geometry and surface roughness deter-
mine the passive mode quality factors presented further
below.

For a detailed understanding of the multimode lasing
dynamics, it is important to take into account thermal
effects. The cavities heat up quickly during current in-
jection, which leads to a red-shift of the gain curve and
changes of the active lasing modes during the pump pulse
[30]. The temperature and hence the emission spectrum
gradually stabilizes, however, over the course of longer
pulses. A D-cavity with R = 200 µm and a stadium
with L = 238 µm were pumped with 500 µs-long pulses
at 800 mA pump current. The threshold currents are
Ith = 270 mA (jth = 267.1 A cm−2) for the D-cavity and
Ith = 230 mA (jth = 227.4 A cm−2) for the stadium,
respectively. Both cavities have approximately the same
area of 101, 100 µm2. Excerpts of the spectrochrono-
grams of the D-cavity and the stadium measured with
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Figure 3. Spectrochrongram of (a) a D-cavity with R = 200 µm and (b) a stadium with L = 238 µm during a 500 µs-long pulse
measured with 1 µs time resolution. The emission spectra show no discernible change over the course of 10 µs. The pump
current was 800 mA in both cases. (c) Emission spectrum of the D-cavity during the time interval 460–461 µs and (d) of the
stadium during the time interval 450–451 µs, showing multiple lasing peaks.

1 µs time resolution are shown in Figs. 3(a, b), respec-
tively. After more than 400 µs, the lasers have stabi-
lized so well that the emission spectrum does not change
over the course of 10 µs. It has also been verified that
the lasers do not exhibit any fast, nanosecond time-scale
dynamics [30]. Thus, a quasi-steady state of the lasing
dynamics is reached. Even though thermal equilibrium
is not reached due to the lack of active cooling, the re-
maining thermally-induced fluctuations of the emission
spectrum with a time scale longer than 10 µs are sev-
eral orders of magnitude slower than the intrinsic dy-
namical time scales of semiconductor lasers. Hence, a
steady-state model such as SALT is appropriate to inves-
tigate the interactions of the lasing modes via the active
medium in this regime.

The spectra of both D-cavity and stadium lasers at
any given time exhibit multiple lasing peaks as shown
in the spectra in Figs. 3(c, d). It should be noted that
the actual number of lasing modes is higher than the
number of peaks observed in the spectra due to the finite
resolution of the imaging spectrometer. Both stadium
and D-cavities evidently always exhibit multimode lasing
as proven by the presence of several peaks in the spectra.
Furthermore, the typical number of lasing peaks is similar
for both cavity geometries, and there is no qualitative
difference between the lasing spectra of D-cavities and
stadia.

The similarities between D-cavity and stadium lasers
are attributed to the common features of wave-chaotic

modes in these resonators. However, the lasing modes
typically correspond to the highest-Q modes, which may
have different characteristics than the majority of the res-
onance spectrum in wave-chaotic cavities. Specifically, it
is known that wave-chaotic microlasers can exhibit lasing
on localized scar modes [33, 34], which can have higher
Q-factors than expected from statistical analysis of wave-
chaotic lasers [35, 36]. Such effects will vary with the
cavity shape and size and may be affected significantly
by surface roughness. Therefore, a detailed analysis of
geometry-specific properties of wave-chaotic microlasers
as well as the effect of surface roughness on the mode
competition is needed to shed further light on the exper-
imental results.

III. THEORETICAL STUDY

The experimental results presented above are consis-
tent with earlier work by our group on wave-chaotic D-
cavity lasers [22], and provide more insight into the time
evolution of the lasing spectra. They confirm the qual-
itatively different behavior of the lasers we have stud-
ied from those reported in references [26, 27], and these
different results present a challenge to obtain a consis-
tent understanding of the lasing behavior of wave-chaotic
semiconductor lasers. As noted earlier, there is no possi-
bility to simply perform ab initio integration of the laser
equations for two-dimensional complex cavities with a
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size of over 100 µm. The largest cavities to be treated
by brute force integration are two orders of magnitude
smaller in linear dimensions [37–39] and thus have a
four order of magnitude smaller resonance density than
the experimental microlasers. Our partially analytic ap-
proach based on SALT can do somewhat better, provid-
ing results for resonators on a 60 µm scale, but with some
caveats described below. Thus there is at present no ab-
solutely rigorous computational method [40] to decide the
validity of the conjecture in Refs. [26, 27, 29] that fully
wave-chaotic cavities are intrinsically single-mode lasers
in steady-state.

However, one can use existing methods for such lasers
at smaller scale to analyze the physical processes which
are known to determine the number of lasing modes.
Multimode lasing is known to result from the interplay
between gain saturation, which tends to clamp the gain
once a single mode starts lasing, and spatial hole burning,
which refers to the spatial non-uniformity of gain satura-
tion in standing wave cavities. Near the intensity minima
of a lasing mode there is only a small field stimulating
emission and the local inversion (gain) is not saturated,
and therefore continues to increase with increasing pump-
ing in such regions. This allows new, lower-Q modes with
different intensity minima or, more generally, weaker spa-
tial overlap to reach threshold and begin lasing. For ex-
ample, in conventional stable resonators with Gaussian
modes, higher order transverse modes have significant in-
tensity away from the optical axis of the resonator, and
can thus exploit distinct regions of the gain medium to
lase in addition to the fundamental transverse mode.

In wave-chaotic cavities, resonances tend to fill the
entire resonator with a speckle-like intensity distribu-
tion. In Ref. [27] it was proposed that significant spa-
tial overlap of the intensity distributions was the origin
of single-mode lasing: wave-chaotic modes always over-
lap so strongly that a single mode clamps the gain in
spite of spatial fluctuations of its intensity distribution.
The spatially extended nature of the intensity distribu-
tions was argued to be the relevant difference between
a wave-chaotic shape, such as the stadium, and a non-
wave-chaotic shape with similar aspect ratio, such as the
ellipse, which showed multimode lasing. This conjecture
apparently contradicts the numerical results in Ref. [22]
for D-cavity lasers, which found eight modes lased in a D-
cavity with area≈ 63 µm2. Here we extend the numerical
studies of Ref. [22] to study in more detail the conjecture
that strong gain clamping and cross-saturation lead to
single-mode lasing in wave-chaotic microlasers.

The method we use, Steady-State Ab-Initio Laser The-
ory (SALT), is an approach specifically developed to
study microcavity lasers with complex geometries, and
was used in earlier works on microcavity lasers [14–
17, 21, 41]. Not only was SALT developed to treat com-
plex 2D (and in principle 3D) cavities, it was also de-
signed to deal with multimode lasing and spatial hole
burning quantitatively. SALT is a semiclassical theory
and does not include quantum fluctuation effects, which

are not relevant to this study. The version of SALT most
relevant to the current work, and its limitations, are de-
scribed in detail in [17].

A. Review of Steady-State Ab-Initio Laser Theory

The SALT equations for steady-state multimode las-
ing are derived from the semiclassical laser equations by
neglecting time-dependent non-linear terms in the equa-
tions, which drive oscillations in the inversion. They
are a set of non-linear wave equations to be solved self-
consistently with purely outgoing boundary conditions,
and have the form[
∇2 +

(
εc(x) +

γ⊥D0(x)

ωµ − ωa + iγ⊥

× 1

1 +
∑NL

ν Γν |Ψν |2

)
ω2
µ

c2

]
Ψµ(x) = 0, x ∈ C .

(1)

They determine the number of lasing modes, their opti-
cal field distributions, Ψµ(x), and lasing frequencies, ωµ.
The approximation used to derive the SALT equations is
that the inversion density (which only appears implicitly
in the SALT equations) is time-independent. The inputs
to the SALT equations are the dielectric function of the
passive cavity, εc(x), the dephasing rate of the polariza-
tion, γ⊥, the atomic transition frequency, ωa, and the ex-
ternal pump profile, D0(x). For two-level atoms the gain
curve is Lorentzian and centered at ωa with width γ⊥.
The Stationary Inversion Approximation (SIA) requires
that γ⊥ and the typical frequency spacing between lasing
modes, ∆ω, are much larger than the population relax-
ation rate, γ‖. The latter condition becomes harder to
meet in the highly-multimode regime and for larger laser
cavities. In the regime where the SIA holds, excellent
agreement is found between SALT and full integration of
the semiclassical laser equations [21].

Here we have written the SALT equations as scalar
equations since we consider modes with transverse mag-
netic (TM) polarization, for which Ψν corresponds to the
z-component of the electric field. We have calculated
Q value distributions for the TE modes and find qual-
itatively similar behavior to that described below. The
dielectric function is 1 outside of the cavity region C.
The number of non-trivial purely outgoing solutions in-
creases by one at each lasing threshold as the pump D0

is increased starting from zero. The non-linear denom-
inator represents the saturable gain susceptibility, and
enforces self-saturation and cross-saturation of the gain
in a spatially-varying manner, which takes into account
spatial hole-burning exactly. The Lorentzian gain factor
of mode ν is Γν = γ2⊥/[(ων − ωa)2 + γ2⊥]. Ψ and D0

are written in dimensionless form in terms of the natu-
ral units of the electric field, ec = ~√γ‖γ⊥/(2g), and the

inversion, dc = ~γ⊥/(4πg2), where g is the dipole matrix
element of the transition.

Two main types of algorithms have been developed
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to solve the SALT equations [14, 17, 18]. The first ap-
proach, which is the basis for the algorithm used in this
work, expands the solution of the SALT equations in a
complete set of biorthogonal outgoing wave functions at a
given frequency, known as the Threshold Constant Flux
(TCF) states. One of these TCF functions is the ex-
act solution of the semiclassical equations at the lasing
threshold, denoted as the threshold lasing mode (TLM);
the others take into account the change in the spatial
pattern of the mode and its non-linear frequency shift
above threshold. While this solution method is relatively
efficient compared to FDTD [41], it is still quite com-
putationally expensive when applied to 2D wave-chaotic
cavities, so we use two further approximations to SALT
which enable us to treat larger laser cavities.

B. Single Pole Approximation - SPA-SALT

The first one, the “Single Pole Approximation” (SPA-
SALT) [17], assumes that the field distribution and fre-
quency of each lasing mode are fixed to their values at
threshold, as given by the TLMs. Hence as the pump
is increased only the overall amplitudes of the modes
change and need to be determined. Moreover, since
SALT neglects the beating of lasing modes, the phases
of the modes do not enter the solution, and one can re-
duce the full SALT equations to the following equations
for the intensities, Iµ, of each mode as a function of the
pump,

D0

Dµ
0

− 1 =
∑
ν

ΓνχµνIν , (2)

χµν =

∫
d2rΨ2

µ|Ψν |2. (3)

Here, the Dµ
0 are the non-interacting thresholds of the

Threshold Lasing Modes (TLM), which reflect their Q-
factors and their proximity to the gain center, but neglect
effects of gain competition. The coefficients χµν represent
modal overlaps. In general they have a small imaginary
part for high-Q modes, which we will neglect by using
only the real part, χµν ≈ Re[χµν ]. We rewrite these
equations as

D0

Dµ
0

− 1 =
∑
ν

AµνIν , (4)

Aµν = Γνχµν . (5)

The matrix Aµν represents the cross-saturation interac-
tion of all pairs of lasing modes for a given value of the
pump power D0. Equation (4) is nominally linear, how-
ever the set of lasing modes to include at each pump value
is not known, and is determined implicitly by the non-
linear interactions contained in the Aµν . The threshold

of the first mode to turn on is given directly by the TLM
calculation, but subsequent mode thresholds are deter-
mined by the constraint that all intensities fulfill Iν ≥ 0.
Hence we must search at each pump value for the largest
set of modes which yields positive semi-definite values for
the Iν , and only then invert Eq. (4) using the appropriate
matrix Aµν . Between modal thresholds, when the matrix
Aµν is fixed, the non-zero Iν vary linearly with pump and
are given by

Iµ = cµD0 − bµ, (6)

cµ =

N∑
ν=1

(A−1)µν
Dν

0

, (7)

bµ =

N∑
ν=1

(A−1)µν . (8)

The solution over the full pump range of interest has a
kink at each of the thresholds Dµ

0,int, where the subscript
int denotes the threshold in the presence of modal inter-
actions. These interacting thresholds are given by [17]

DN
0,int = DN

0

[
1 +

N∑
ν=1

ANν(cνD
N
0,int − bν)

]
. (9)

This equation follows from the condition that as the N th

mode turns on its intensity passes through zero from
negative values; the matrix A and the constants bν , cν
then change appropriately above this pump threshold.
This approach has been validated by comparing numeri-
cal results between the SPA-SALT and full SALT meth-
ods [17].

C. Resonance SPA-SALT

The necessary first stage of a SPA-SALT calculation
is the calculation of the TLMs and their non-interacting
thresholds and frequencies. This can be done by tracking
cavity resonances and quasi-modes as the gain increases
until they reach the real axis [17, 18, 41]. To avoid this
step, recently Cerjan et al. [42] proposed an analytic ap-
proximation for the evolution of poles as the pump in-
creases, so that standard codes for calculating passive
cavity modes such as COMSOL can be used. For high-Q
modes, the lasing modes will differ little from the passive
cavity modes (within the cavity), and thus the passive
cavity modes can replace the TLMs in SPA-SALT. We
call the resulting method resonance SPA-SALT; a work-
ing code for this method is available for download [43].
This approach was used in our earlier work on D-cavity
lasers and was compared with results from full SALT,
finding reasonable agreement. We will use this method
in the current work to allow us to consider even larger



7

cavities and explore more of the parameter space of inter-
est. Resonance SPA-SALT expresses the non-interacting
thresholds needed for SPA-SALT in terms of the complex
frequencies of the passive cavity resonances

Dµ
0 =

∣∣∣(Re[ωµ]− ωa + iγ⊥
γ⊥

)(ω2
µ − Re[ωµ]2

Re[ωµ]2
.
)∣∣∣ . (10)

The lasing frequencies ωµ are approximated by the real
part of the passive cavity resonance frequencies, and las-
ing modes within the cavity by the passive cavity mode
field distributions.

IV. RESULTS

As noted, the number of lasing modes will be deter-
mined ultimately by the passive cavity mode Q-factors,
the width, γ⊥, and center, ωa, of the gain curve, and by
the non-linear interactions between modes due to gain
competition/saturation. The Q-factor distribution de-
pends only on the passive cavity geometry and refractive
index; examples are shown in Fig. 4. For resonance SPA-
SALT the non-interacting thresholds follow immediately
from Eq. (10). The effects of mode competition are as-
sessed by analysis of the SPA-SALT lasing equations and
their predictions. We will explore both aspects in the
following section.

A. Lasing in Wave-Chaotic Cavities and Q-Factor
Distributions

We begin by examining the Q-factor distributions of
two resonator geometries, the stadium and the D-cavity,
that each have completely chaotic ray dynamics [31]. The
stadium consists of a rectangle capped by two semicir-
cles on two opposite sides and is shown in the inset of
Fig. 2(b). Its aspect ratio is defined as the ratio between
the length L of the rectangle and the radius R of the
semicircles, ρS = L

R . Our simulation results are for the
aspect ratio ρS = 2, for which the ray dynamics shows
the highest degree of chaos, i.e., the highest Lyapunov
exponents [31]. The D-cavity, also known as a cut circle,
consists of a circle with a part cut off along a single chord
as shown in the inset of Fig. 2(a). We define the cut pa-
rameter as is the ratio of the distance from the center of
the circle to the chord, d, and the radius of the circle, R,
as ρD = d

R . In our simulations we use ρD = 0.5, which
also maximizes the degree of chaos of its ray dynamics
[32].

The simulation results for a stadium with 2L = 10 µm
and a D-cavity with R = 4.2 µm, which have approxi-
mately the same area, and refractive index n = 3.5 are
shown in Fig. 4. Note that in later sections we show
results for larger stadium cavities, with a long axis as
large as 2L = 60 µm. Figure 4(a) shows the Q-factors
of the resonances as a function of the wavelength λ in a

wavelength window containing 1000 modes for each res-
onator geometry. The stadium resonances are indicated
by black circles whereas the D-cavity resonances are in-
dicated by red stars. As can be seen, the distribution
of Q-factors for the D-shaped cavity is much more uni-
form than that of the stadium, and does not possess any
high-Q outliers. The center wavelength of the window is
chosen to be 1 µm, which also corresponds to the cen-
ter of the gain curve for the lasing calculations below,
λa = 2πc/ωa. The width of the gain curve used in these
simulations is γ⊥ = 50 nm. This is considerably smaller
than the wavelength window in which we compute the
resonances, ∆λFW = 280 nm. Hence the simulation re-
sults include all the high-Q resonances relevant to lasing.

Figure 4(b) shows the distribution of the Q-factors of
the stadium. The bulk of the distribution shows reso-
nances with Q-factors less than 2000. However, there are
many outliers with higher Q-factors, and the inset shows
the spatial patterns of the first two lasing modes. The
first lasing mode is based on the highest-Q passive reso-
nance (Q = 7096), and is well-localized on an Unstable
Periodic Orbit known as the double diamond orbit, a phe-
nomenon known as scarring [44]. An important aspect is
that all the reflections of the double diamond orbit have
incidence angles equal to 45◦ and are thus contained by
Total Internal Reflection (TIR) for n = 3.5. The second
lasing mode is based on a resonance with Q = 3263 and
has a more uniformly distributed spatial pattern. It does
not have the second-highest Q-factor (or second-lowest
non-interacting lasing threshold) as naively expected, so
its order in the lasing turn-on sequence is due to its
weaker competition with the first lasing mode compared
to other potential lasing modes. Their non-uniform spa-
tial structure is what is expected for scarred modes, and
leads to their higher Q values. Figure 4(c) shows the
distribution of the Q-factors for the D-cavity, which does
not have any significant high-Q outliers. The inset shows
the spatial patterns of the first two lasing modes. The
first lasing mode is based on the highest-Q resonance
(Q = 1567), which does not show a strong localization
pattern. However, the second lasing mode is based on a
resonance with much lower Q-factor, Q = 1100, which is
moderately scarred by the triangle orbit. The incidence
angles of the three reflections of the triangle orbit are
47.0◦ and 21.5◦, respectively, and thus this orbit is also
contained by TIR for n = 3.5.

Since gain competition does not influence the thresh-
old of the first lasing mode, the ratio of 4.5 between the
highest-Q resonances of the stadium and the D-cavity
should lead to a substantially lower lasing threshold for
the stadium compared to the D-cavity. Taking into ac-
count the wavelength of the highest-Q modes with re-
spect to the gain center yields an about 4.6 times lower
threshold for the stadium compared to the D-cavity.
However, experimentally the stadia had an only 1.25
times lower lasing threshold (see Table I). The similar-
ity of the measured thresholds for stadia and D-cavities
could, however, be explained by the fact that the high-Q
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Figure 4. (a) Calculated spectrum (Q-factors and wavelengths of passive cavity modes) for the stadium (black circles) and
D-cavity (red stars) resonators. The spectra contain 200 resonances each in a wavelength window centered at λ = 1 µm. The
stadium data shows many resonances with higher Q-factors than the typical resonances, whereas the D-cavity data does not
have any significant outliers. (b) Distribution of the Q-factors of 1000 resonances for the stadium resonator and the (c) D-cavity
resonator. The insets show the spatial field distributions of the resonances that support the first two lasing modes. The green
lines highlight the scarring by the Double Diamond Unstable Periodic Orbit and the Triangle Unstable Periodic Orbit two of
the modes.

Figure 5. (a) Resonance SPA-SALT results for the lasing intensities of the stadium resonator as a function of the pump strength.
There are two lasing modes that turn on within a factor of 10 of the first lasing threshold. The lasing interactions prevent more
modes from turning on in this interval. (b) Resonance SPA-SALT results for the lasing intensities of the D-cavity resonator as
a function of the pump strength. There are eight lasing modes that turn on within a factor of 10 of the first lasing threshold.
The lasing interactions are not strong enough to prevent the first seven lasing modes from turning on within a factor of 2.0 of
the first lasing threshold. The gain spectrum width used in the simulations is 50 nm.

scarred modes in the stadium do not exist in much larger
cavities or when surface roughness is added as shown fur-
ther below.

The Q-factor distributions shown here are representa-
tive of our results using different wavelength windows and
central wavelengths. Moreover our wavelength window is
chosen large enough to contain typical high-Q resonances.
For example, the free spectral range (FSR) of modes lo-
calized on the shortest periodic orbits (with length `)

in each shape is λFSR = λ2

2n` = 28.5 nm for the sta-

dium and λFSR = 22.7 nm for the D-cavity. The high-
Q scarred modes correspond to even longer orbits and
shorter FSRs, so they are always contained for different
central wavelengths λa.

B. Lasing and Modal Interactions

Performing SPA-SALT calculations with the resonance
data shown in Fig. 4, we obtain the thresholds, num-



9

Resonator n Lasing Modes Gain Clamping Limit

Stadium 3.5 2 6

D-cavity 3.5 8 8

Stadium 3.0 8 9

D-cavity 3.0 14 14

Stadium 2.5 5 5

D-cavity 2.5 4 6

Table II. Number of lasing modes within a factor of 10 of the
first lasing threshold and number of lasing modes when gain
clamping sets in for cavities with different refractive indices.

ber of lasing modes and mode intensities as a function
of pump for a stadium and a D-cavity laser with the
same area. Consistent with our expectations and the
results of Ref. [22], both the stadium and the D-cavity
lasers exhibit multimode lasing, even with this small size
and the full inclusion of gain competition through cross-
saturation in the calculations. However, the rather dif-
ferent Q-factor distributions of the two wave-chaotic cav-
ities lead to quantitatively different behavior as shown in
Fig. 5. For the stadium resonator, only two modes start
lasing within a factor of 10 of the first lasing threshold,
whereas for the D-cavity resonator there are eight lasing
modes within a factor of 10 of its first lasing threshold.
As already noted, the lasing threshold for the stadium of
this size, shape and index is ∼ 4.6 times lower than for
the D-cavity laser, but here we are comparing the num-
ber of lasing modes within the same relative range of
pump for the two shapes. As we increase the normalized
pump strength beyond 10 we find that a few more modes
turn on for the stadium, reaching six modes. But be-
yond a certain pump strength no additional lasing modes
turn on; this phenomenon is known as “gain clamping”
and has already been reported before in wave-chaotic res-
onators [16, 17].

Thus our results show that cross-saturation strongly
limits the number of lasing modes in wave-chaotic lasers,
but does not lead to single-mode lasing at high relative
pump values in any case we have studied. If one mode
turns on very early because of its anomalously high Q-
factor, then it is able to saturate the gain substantially
before other modes are close to threshold, leading to
fewer modes lasing, as in the stadium. For the refrac-
tive index n = 3.5 considered so far the stadium has
such outlier modes and the D-cavity does not, leading
the latter to have more lasing modes. However this effect
depends on the refractive index, and Table II shows that
for n = 2.5 the stadium has more lasing modes within the
initial factor of 10 of relative pump values. The different
numbers of lasing modes that we find here for stadium
and D-cavity lasers result from non-universal effects of
scar modes on short periodic orbits with anomalously
high Q-factors in the tails of the Q-factor distributions.
Such effects cannot be described by statistical theories
[45, 46]. In the following we explain the different number

of lasing modes for stadium and D-cavity lasers by de-
tailed analyses of the cross-gain saturation. Furthermore,
we show that the non-universal effects due to high-Q scar
modes become weaker for larger cavities and when sur-
face roughness is added.

C. Cross-Gain Saturation

The non-universal variation of the number of lasing
modes led us to examine the interaction coefficients to
see if the results can be explained by cross-saturation.
SALT shows us that the quantity which represents modal
interactions between lasing modes is the SALT interac-
tion coefficient χ̃µν , which we define as

χ̃µν =

∣∣∣∣
∫
C
dxΨµ(x)Ψµ(x)|Ψν(x)|2∫

C
dxΨµ(x)Ψµ(x)|Ψµ(x)|2

∣∣∣∣ . (11)

Note that mode µ starts lasing before mode ν and that
the denominator of Eq. (11) normalizes the interaction
coefficient by dividing it by the self-interaction χµµ of
the mode that started lasing first. Furthermore, we have
omitted the Lorentzian factor Γµ in Aµν , which depends
on the relative location of the gain center.

We calculated the SPA-SALT interaction coefficients
for all pairs of modes that start lasing up to the onset of
gain clamping. Note that the coefficients describe both
the interaction between a pair of modes where both of the
modes are lasing, as well as the effect of a lasing mode
on a below-threshold mode before the below-threshold
mode reaches threshold. The values shown for the sta-
dium resonator, Fig. 6(a), and the D-cavity, Fig. 6(b),
show that there is significant modal interaction and that
it has an important effect. For instance, for the sta-
dium, lasing mode #4 does not turn on immediately af-
ter the first lasing mode as it would have done in the
absence of interactions because of its relatively strong
interaction with mode #1 (compared to other modes).
Indeed, as shown in the insets, their electric field spa-
tial patterns are very similar, leading to strong cross-
saturation of mode #4 by mode #1. Note that these
are the two highest-Q modes in the distribution and that
they are both strongly scarred by the double diamond
periodic orbit. This demonstrates that our results on
lasing modes and thresholds are consistent with the ex-
pectations for spatial-hole burning and cross-saturation
effects. For both the stadium and the D-cavity the inter-
actions influence significantly the order in which modes
start to lase.

In the case of the D-cavity, the interaction coefficients
are more uniform, but there is a strong hole-burning in-
teraction between modes #1 and #6. Even though these
modes are not strongly scarred by a single periodic orbit,
the insets show a non-uniform spatial pattern as well as a
strong similarity of their electric field intensity distribu-
tions. In fact there is a weak pseudo-caustic structure in
the D-cavity modes which we will discuss elsewhere [47].
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Figure 6. Normalized SALT interaction coefficients [Eq. 11] for (a) stadium and (b) D-cavity. (a) For the stadium, the
interaction between modes #1 and #4 is higher than the interaction between modes #1 and the other lasing modes, #2, 3, 5, 6,
due to their strong spatial overlap (as shown in the inset, top mode #1, bottom mode #4). (b) For the D-cavity, the interactions
are overall more uniform than for the stadium. Modes which have similar spatial patterns form two groups: modes #1, 6, 7
and modes #2, 3, 4, 5, 8. The insets show the spatial distribution of the electric field for the lasing mode #1 (top) and lasing
mode #6 (bottom). This pair has the highest SALT interaction coefficient for the D-cavity. The cavities have identical index
(n = 3.5) and identical surface area, corresponding to a stadium length of 2L = 10 µm.

Figure 7. Resonance SPA-SALT results for the sub-threshold intensities of the (a) stadium and the (b) D-cavity as a function
of the pump. The black dashed lines show the intensity variation neglecting modal interactions and intersect the x axis at
the non-interacting thresholds. The colored lines show the sub-threshold intensities of the same modes when including the
effects of interactions. The resonance SPA-SALT approximations ensure that the sub-threshold intensities are linear between
adjacent thresholds, with discontinuities of both their value and slope at the interacting thresholds, which are marked by the
colored arrows. The dashed vertical lines serve as a guide for the eye and connect the values of the sub-threshold intensities
immediately before and after a new threshold is reached. The gain curve width used in the simulations is 50 nm. The cavities
have identical index (n = 3.5) and identical surface area, corresponding to a stadium length of 2L = 10 µm.
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It appears that the main effect of the absence of high-Q
scarred modes in the D-cavity is to allow more modes
to lase simultaneously. The D-cavity hence appears to
have a Q-factor distribution closer to that expected for
an ideal wave-chaotic cavity, as described in Ref. [46].

D. Sub-Threshold Intensities

Not only does spatial-hole burning and gain satura-
tion control the order in which lasing modes turn on,
even more importantly it limits their total number. SPA-
SALT allows to study the interaction with modes below
threshold, which determine when and if a given mode
turns on. As noted above, the interacting threshold for a
given mode N corresponds to the pump value at which its
intensity passes through zero. So just below this thresh-
old, if we expand the size of the (N −1)× (N −1) matrix
Aµν , we find that in addition to the positive intensities of
the N − 1 lasing modes, SPA-SALT predicts that mode
N has a small negative intensity, approaching zero with
positive slope as the pump increases. While this negative
intensity is unphysical, its distance below zero, combined
with its slope, is a measure of the proximity of the mode
from threshold. Hence we introduce here sub-threshold
“intensity” plots to analyze further the effect of modal
interactions on modes below threshold.

As noted above, we compute the sub-threshold nega-
tive intensities by enlarging the SPA-SALT matrix Aµν
of the lasing modes given in Eq. (4), at a given value
of the pump, with each of the sub-threshold modes of
interest. Between the lasing thresholds these intensi-
ties vary continuously and linearly as well as the above
threshold modal intensities. As one of the sub-threshold
modes reaches zero intensity and turns on, it is added
to the physical matrix Aµν of the lasing modes. When
this happens, all other sub-threshold modes experience a
(typically negative) change of their slope and intensity.
This behavior contrasts with the above threshold, physi-
cal modes, which must have continuous intensities as the
number of modes increases, although they also have a
discontinuity of their slope at the thresholds.

This threshold effect is calculated separately for each
of the non-lasing modes as a way of characterizing the
modes that are suppressed from lasing, resulting in a
plot of the type shown in Fig. 7. It shows the evolution
of the “negative intensities” of several non-lasing modes
as the various lasing modes turn on. The arrows on the
top of the figure mark the thresholds of the lasing modes
at which the (negative) values of the intensities of the
sub-threshold modes have a discrete jump. Note that all
of the intensity jumps as well as the slope changes are
negative, indicating that each new lasing mode typically
reduces the gain for all other modes. Since the evolution
of the sub-threshold intensities is linear between thresh-
olds, if the intensity slope of a mode turns negative, this
mode will never turn on, no matter how strong the pump
becomes (barring the very rare, but not forbidden event

that another mode turning on increases its gain, which
is not observed in Fig. 7). When all sub-threshold modes
have negative slopes, no further mode can turn on and
we have reached the gain-clamping regime.

Figure 7(a) shows the sub-threshold intensities for the
stadium. The black dashed lines show the behavior of
the intensities in the absence of interactions; for this case
nine lasing modes would turn on within a factor of 3.5 of
the first threshold. However, once the first lasing mode
turns on, the modal interactions decrease the values and
slopes of the sub-threshold intensities of the other modes
so only one more mode turns on. When the second mode
turns on, most of the remaining modes obtain negative
slopes, so that they can never turn on. Among the modes
shown, only the cyan and blue modes in the upper right
part of the plot can still turn on, but they get pushed
up to thresholds that are many times higher than their
non-interacting values which are off the range of the plot.

Figure 7(b) shows a similar plot of the sub-threshold
intensities for the D-cavity. For this case twelve lasing
modes would turn on within a factor of 2.0 of the first
threshold in the absence of any interactions. While the
threshold of the first mode immediately pushes some of
the modes down in intensity, none acquire a negative
slope, and the three other modes close to threshold turn
on almost immediately, with three more modes turning
on within a factor of 2.0 of the first threshold. Only then
are the cumulative interactions sufficiently strong to keep
other sub-threshold modes from lasing. This plot clearly
shows the effect of the D-cavity having high-Q modes
that are closer in their Q-factors compared to the sta-
dium with its outliers in the Q-factor distribution: the
first mode does not have enough intensity to suppress
other modes before they turn on. However there are still
sufficiently strong interaction effects to keep a number of
other modes from lasing and push others to much higher
thresholds. Thus, as discussed in Ref. [22], the total num-
ber of lasing modes in steady-state is a function of both
the Q-factor distribution of the passive cavity modes and
the gain competition interactions in the active cavity.

Whereas the results presented so far were computed
for resonators with refractive index n = 3.5 (near the ex-
perimental value of n ≈ 3.37), the lasing behavior shows
significant dependence on the refractive index, as sum-
marized in Table II. In particular, the few-mode lasing
behavior observed for the stadium with n = 3.5 is not
robust against a change of the refractive index, and for
different simulation parameters we see significantly more
lasing modes. For the stadium with n = 2.5 there are
five lasing modes within a factor of 10 of the first lasing
threshold, and eight lasing modes in the same range for
n = 3.0. Moreover, none of the simulation results show
single mode lasing. We conclude that while the number
of lasing modes depends on the specific value of the in-
dex of refraction of the resonator, multimode lasing is
observed for all physically relevant refractive indices.
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E. Dependence on the Size of the Wave-Chaotic
Resonators

Our simulation results for a stadium with long axis
2L = 10 µm (area 44.6 µm2) and a D-cavity of equal
area with n = 3.5 predict a significant difference between
the absolute lasing thresholds of the stadium and the D-
cavity lasers due to the ∼ 4.5 times larger Q-factor of
the highest-Q mode in the stadium compared to that of
the D-cavity. This difference, if it could be extrapolated
to the larger cavities studied experimentally, would be
clearly observable, whereas only a ∼ 1.25 times lower
threshold for the stadium was observed. Naively one ex-
pects Q-factors to increase linearly with the linear dimen-
sions of the cavity since the Q-factor is given by the ratio
of energy stored in the resonator, which is proportional
to the area, by the energy radiated during one oscilla-
tion period, which is proportional to the circumference
of the cavity. Moreover, a typical Q-factor for long-lived
modes can be obtained by ray-tracing calculations. For
chaotic ray dynamics, the distribution of escape times
will decay exponentially after a short transient regime,
and the slope of this decay represents a classical escape
rate (or inverse escape time, which can be translated into
a Q-factor) [47]. This ”classical” Q-value is indicated by
the vertical dashed lines in Fig. 8, and indeed increases
linearly with the linear size of the cavity.

However it is not clear that the linear scaling just men-
tioned applies to scarred modes, which are sensitive to
the ratio of cavity size and wavelength. In fact, it is
known that the scarred electric field of a periodic orbit
in a given mode field distribution tends to decrease in
the semiclassical limit, i.e., when the cavity size becomes
much larger than the wavelength [48]. Furthermore, the
Q-factors of scar modes can depend sensitively on in-
terference effects and hence the ratio of cavity size and
wavelength [12]. We therefore studied the evolution of
the Q-factor distributions of stadium and D-cavity res-
onators with the cavity size to see if the Q-factors of
high-Q scar modes scale linearly with the cavity size, as
well as how the ratio between the highest Q-factors of
the distributions evolves.

We studied stadia with linear dimensions two and six
times larger than those in Fig. 4, with the same refrac-
tive index n = 3.5. The three histograms in Fig. 8 show
the Q-factor distributions for stadia with increasing size,
where the long axis 2L equals to 10 µm, 20 µm and 60 µm,
respectively. The insets show the electric field distribu-
tion of the corresponding highest-Q modes. We observe
that most of the high-Q modes have a Q-factor increas-
ing with size, but only sub-linearly. In addition, the Q-
factor distributions narrow at both the high- and low-Q
tails, comprised in the stadium by scarred modes (highQ-
factors) and Bouncing Ball modes (low Q-factors). The
dashed red vertical lines in the distributions mark the
value of the average Q-factor of the most long-lived tra-
jectories obtained from ray tracing simulations [2, 49, 50].
As expected, for each distribution this value is higher

than the mean of the distribution but lower than a signif-
icant number of the high-Q modes. The inset of Fig. 8(b)
shows the decrease in the normalized standard deviation
of the three distributions, summarizing the narrowing of
the distribution with increasing size. Examining in de-
tail the field distributions of the highest-Q modes, [insets
of Fig. 8(a) and Fig. 8(c)], we notice a significant reduc-
tion in scarred electric field intensity as the linear size
of the resonator increases, i.e., the electric field intensity
enhancement along the double-diamond orbit is smaller
for the larger stadium.

Figure 8(d) summarizes the evolution of the Q-factor
variations with size: we plot the highest Q-factors,
QMAX , the average Q-factor of the ten most long-lived
modes, 〈Q〉10, as well as the average Q-factors of the en-
tire distribution, 〈Q〉ALL, for stadia with long axis equal
to 10 µm, 20 µm and 60 µm, respectively. The dashed
green line shows that the average Q-factor of the en-
tire distribution 〈Q〉ALL increases almost linearly with
the linear size of the resonator. In contrast, the highest
Q-factors clearly increase sub-linearly (compare to the
black dashed line), and have a scaling behavior closer to
a square root law (dashed red line). These results agree
with theoretical work that suggests that the effects of
scarring decrease as the size of the resonator increases
[48, 51] and that the tail of anomalously high Q-factors
from scarred modes shrinks as well [36]. In analogous
calculations for the D-cavity comparing the results for
sizes R = 4.2 µm and R = 8.4 µm (not shown), the
average Q-factor 〈Q〉ALL scales almost linearly with the
resonator size as well. However, the highest-Q modes are
not scarred as strongly as in the case of the stadium,
and while their Q-factors also increase sub-linearly, there
is a smaller difference between the highest-Q modes and
the rest of the distribution. We thus conclude that the
non-universal effects of scars from short periodic orbits
become less important for larger cavities, leading to a
similar lasing thresholds for stadium and D-cavity as ob-
served in the experimental data.

F. Effects of Surface Roughness

Another effect that can result in more similar lasing
thresholds for cavities of different shape is surface rough-
ness. Scattering at the rough boundary can affect the
field distributions and Q-factors in particular of scarred
modes. To include this effect in our study, we performed
additional simulations in which we randomly modified
the smooth boundary of the 2D geometries for three res-
onator geometries: the stadium, the D-cavity and an el-
liptical cavity, which has integrable ray dynamics. We
introduced random variations in the direction normal to
the ideal boundary, with a variation over length scales
from 0.3 µm to 10 µm (see Ref. [52] for the explicit defi-
nition of the deformed boundary). The surface roughness
is quantified by the variance of the deviation in normal
direction, r, from the ideal boundary position, r0. In our
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Figure 8. Dependence of the Q-factor distributions on the size of the stadium resonator. (a) 2L = 10 µm. The inset shows
the electric field distribution of the highest-Q mode. (b) 2L = 20 µm. The inset shows the normalized standard deviation
of the three Q-factor distributions as a function of cavity size. (c) 2L = 30 µm. The inset shows the spatial distribution of
the electric field of the highest-Q mode. Notice the qualitative decrease in electric field compared to the highest-Q mode for
2L = 10 µm. For panels (a), (b) and (c), the red dashed vertical line marks the Q-factor of the long living ray trajectories.
(d) Size dependence, L, of Q-factors. Indicated are the highest Q-factor, QMAX (black solid line), the average of the ten highest
Q-factors, 〈Q〉10 (blue solid line), and the average of all Q-factors, 〈Q〉ALL (green solid line). The linear extrapolations of Qmax

and 〈Q〉all from their values at L = 5 µm are shown as black and green dashed lines, respectively. The red dashed line indicates
the extrapolation of Qmax according to square-root scaling.

simulations the deviations of the boundary deformation

is parameterized by σ = E[(r−r0)2]
r0

. Based on our esti-
mate of the surface roughness visible in SEM images of
the experimental devices, we used σ = 30 nm. The ef-
fects of perturbing the resonator boundary in this way
are presented in Fig. 9, which shows the Q-factor distri-
butions for the stadium, D-cavity and ellipse with surface
roughness. We notice that the Q-factor distribution for
the stadium with roughness no longer features high-Q
outliers as we suspected. The Q-factor distributions of
the stadium and D-cavity resonators are much more sim-
ilar with surface roughness than for a smooth boundary,
especially concerning the high-Q tail of the distributions.
Still, the average Q-factor for the stadium is still higher
that of the D-cavity.

The field distributions of the high-Q modes are also af-
fected as shown in the insets of Fig. 9, and they deviate
significantly from those for smooth boundaries. There-
fore the SALT interaction coefficients and thus mode
competition are affected as well by the roughness. Ta-
ble III summarizes the number of lasing modes within a
factor of 10.0 of the first lasing threshold and the evo-
lution of the Q-factors as a function of cavity size for
stadium, D-cavity and ellipse. When including surface
roughness, doubling the size leads to a roughly two-fold
increase of the number of lasing modes, i.e., a linear in-
crease with the cavity size. Note that the simulated el-
lipse has identical refraction index (n = 3.5) and surface
area (A = 44.6 µm) as the other two resonators, and the
aspect ratio b/a = 2.
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Figure 9. Q-factor distributions for the (a) stadium, (b) D-cavity and (c) ellipse resonators with surface roughness. Each
distribution contains 1000 resonances centered at λ = 1.0 µm. The random boundary roughness in each of the simulations is
drawn from the same distribution, and the average of the deviation of the boundary deformations in the normal direction is
σ = 30 nm. The insets show the spatial patterns of the modes with the highest Q-factors for each distribution. The scarring
effect observed for the highest-Q modes of cavities with smooth boundaries do not persist for this level of surface roughness.
The cavities have identical index (n = 3.5) and identical surface area, corresponding to a stadium length of 2L = 10 µm.

Reference [27], in which single-mode lasing for
stadium-shaped semiconductor microlasers was found,
also reported experiments and simulations for elliptical
cavities. The ellipse has integrable ray dynamics, and
the whispering gallery modes of a dielectric ellipse res-
onator can be labeled with radial and azimuthal quan-
tum numbers. The experiments in [27] found multimode
lasing for elliptical microlasers in contrast to the single-
mode lasing of the stadium lasers. It is challenging to
model these experiments since an ideal ellipse resonator
has extremely high-Q whispering gallery modes, which
would lead to many orders of magnitude lower thresh-
olds than those observed experimentally. We attribute
this to effects such as surface roughness, inaccurate shape
fabrication, and intrinsic absorption that reduce the Q-
factors of actual resonators. We simulated elliptical mi-
crolasers with surface roughness equal to that used for
the wave-chaotic resonators. We found that the rough
ellipse cavities always showed multimode lasing, with a
number of modes comparable to, but smaller than for the
wave-chaotic cavities, as shown in Table III. The high-
est Q-factor for the rough ellipse was four times higher
than that for the rough stadium, and the mode showed a
more regular field distribution despite the surface rough-
ness. This indicates that an integrable cavity shape, like
the ellipse or the circle, has resonance properties which
are distinct from the wave-chaotic cavities, even in the
presence of substantial surface roughness.

V. DISCUSSION AND CONCLUSION

We present an experimental and theoretical study con-
cerning the question if wave-chaotic semiconductor mi-
crolasers in cw operation generally exhibit multimode
lasing, as was found for experiments with pulsed pump-

Resonator Size QMAX 〈Q〉10 LM

Stadium 2L = 10 µm 1833 1524 9

D-cavity 2R = 8.4 µm 1034 969 11

Ellipse 2b = 10.6 µm 7662 5282 6

Stadium 2L = 20 µm 2852 2724 15

D-cavity 2R = 16.8 µm 2083 1895 22

Ellipse 2b = 21.2 µm 16495 13800 14

Table III. Highest Q-factor (QMAX) and the average of the
10 highest Q-factors (〈Q〉10), as well as the number of Lasing
Modes (LM) within a factor of 10.0 of the first lasing threshold
for the stadium, D-cavity and ellipse with surface roughness.
The refractive index is n = 3.5 and the geometrical parame-
ters are chosen such that the the different geometries in the
top half of the table have the same area, as do the ones in the
bottom half of the table.

ing in Ref. [22] and steady-state numerical simulations
in Ref. [42], or single-mode lasing as found in ex-
periments with cw pumping and theoretical studies in
Refs. [26, 27, 29].

Our new experimental results, presented in the first
part of this paper, can be summarized as follows. We
find multimode lasing for both stadium and D-cavity
lasers in qualitative agreement with our earlier results
on the D-cavity [22]. Time-resolved measurements for
long pump pulses show fewer lasing peaks at a given time
compared to integration over a whole pulse, but we do
not observe a consistent reduction of the number of ac-
tive lasing modes towards a single mode over the course of
longer pulses as was found in Ref. [26]. The time-resolved
measurements showed that the spectra were stable over
time scales very long compared to other time scales in
the system, so we believe our results are representative
of the steady-state lasing properties. The devices studied
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in the current experiments have lasing thresholds compa-
rable to those studied in Ref. [27], thus it is unlikely that
a different degree of surface roughness is responsible for
our observation of multimode lasing in contrast to single-
mode lasing in the experiments of Refs. [26, 27].

The new theoretical and simulation results presented
have the following implications in our view. Non-
universal effects, such as lasing on scarred modes, be-
come already weak in wave-chaotic cavities with dimen-
sions well below the size of the experimental cavities, and
cannot explain single-mode lasing in wave-chaotic micro-
lasers. SALT theory, which takes into account gain com-
petition and spatial hole burning very accurately, never
predicts single-mode lasing for wave-chaotic resonators
pumped well above threshold. Hence gain saturation
and spatial overlap of modes alone do not explain the
experimental results found in Ref. [27]. Hence the re-
maining theoretical uncertainties are in the dynamics of
the gain medium, which is neglected in SALT. It is well
known that for nearly degenerate lasing modes, a fre-
quency locking effect can occur above threshold due to
the population dynamics, reducing the number of lasing
modes [53]. FDTD simulations of wave-chaotic lasers by
Harayama and coworkers [29, 54] appear to show such
merging of modes as the pump is increased, but these ef-

fects are found at unphysically high relative pumps, and
at large values of the population relaxation rate γ‖. If
there is a regime where single-mode lasing is favored for
wave-chaotic lasers, it must be due to subtle dynamical
effects such as these, which go beyond standard spatial
hole-burning and gain competition. We currently lack
the theoretical and computational tools to answer defini-
tively this question and we did not explicitly consider cer-
tain effects that might impact the dynamics, such as car-
rier diffussion. Our experimental results indicate that if
there is such a regime, it is not realized in all wave-chaotic
semiconductor lasers, and needs to be better character-
ized experimentally.
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