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Out-of-time-ordered correlators (OTOCs) have been proposed as a tool to witness quantum infor-
mation scrambling in many-body system dynamics. These correlators can be understood as averages
over nonclassical multi-time quasi-probability distributions (QPDs). These QPDs have more infor-
mation, and their nonclassical features witness quantum information scrambling in a more nuanced
way. However, their high dimensionality and nonclassicality make QPDs challenging to measure
experimentally. We focus on the topical case of a many-qubit system and show how to obtain such a
QPD in the laboratory using circuits with three and four sequential measurements. Averaging dis-
tinct values over the same measured distribution reveals either the OTOC or parameters of its QPD.
Stronger measurements minimize experimental resources despite increased dynamical disturbance.

I. INTRODUCTION

The out-of-time-ordered correlator (OTOC) has at-
tracted considerable recent attention in high energy
physics [1–15] and condensed matter physics [16–26].
It helps characterize quantum information scrambling
due to the spread of entanglement, and has found util-
ity in applications ranging from black hole thermaliza-
tion to quantum chaos. Alongside the theoretical ef-
fort, there has been increasing interest in finding exper-
imental methods to measure such a quantity in modern
quantum simulators (e.g., [27–31]). These controllable
quantum systems may be used to simulate and measure
exotic dynamics that are otherwise out of experimental
reach, such as quantum state teleportation through a
traversable wormhole [32, 33].

Expanding upon the idea of the OTOC, we re-
cently introduced a more refined and robust information-
scrambling witness by decomposing the OTOC into
its extended (coarse-grained) Kirkwood-Dirac [34–40]
quasiprobability distribution (QPD) [41, 42]. This QPD
has since found utility in entropic uncertainty relations
for scrambling [43], and is closely related to a witness for
quantum advantage in postselected metrology [44]. The
OTOC signals interesting scrambling behavior when it
decays to a persistently small value; to produce this de-
cay, its associated QPD must exhibit negative or non-
real values, despite satisfying all other properties of a
probability distribution. The OTOC is an average over
this QPD, so it has less information than the full QPD
about the probed system dynamics. Moreover, while the
OTOC can also decay due to decoherence in a manner
that seems qualitatively similar to the decay from infor-
mation scrambling, the nonclassical features of the corre-
sponding QPD can only diminish with decoherence. As
such, the QPD robustly distinguishes such decoherence
from scrambling [45], making it an attractive candidate
for experimental use.

The apparent problem with the QPD is that it is a 4-

argument distribution, and thus seems to require the ex-
perimental measurement of many more parameters than
the OTOC. Indeed, for a qubit OTOC there are 2 real pa-
rameters to measure, but its corresponding QPD osten-
sibly has 2× 24 = 32 real parameters in the distribution.
Without a practical method of determining all the pa-
rameters composing the QPD, its advantages compared
to an OTOC are reduced.

In this paper we show that a qubit QPD can be mea-
sured using the same sequential measurement circuit used
to determine the OTOC itself, which demonstrates that
it is no more difficult to measure in spite of its high-
dimensionality. We accomplish this feat through two
simplification steps: First, we show that the 32 real pa-
rameters of the QPD are redundant and can be reduced
to 8 independent correlators. Second, we generalize the
method that we introduced in Ref. [46] for measuring
qubit OTOCs using 2 circuits of sequential measure-
ments. We show that the same circuits also yield all 8
correlators that determine the QPD. Moreover, the sta-
tistical error is minimal when all but the first measure-
ment are projective, with the first only slightly weakened.

This paper is organized as follows. In Section II we
review the OTOC and its associated QPD. In Section III
we review sequential qubit measurements and the key
results of Ref. [46]. In Section IV we detail how to mea-
sure the QPD efficiently. In Section V we optimize the
measurement strengths to minimize statistical error. We
conclude in Section VI.

II. OTOCS AND THEIR QPDS

We consider the important case of a lattice of locally
interacting qubits, such as those used in modern quantum
computing hardware. When such a multi-qubit system
evolves with a Hamiltonian H, the dynamics can cause
initially localized information to spread through the lat-
tice. More precisely, an initially localized single-qubit
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operator A will typically evolve to have support over
multiple lattice sites in the Heisenberg picture, A(t) =
U†(t)AU(t), with i~∂tU(t) = HU(t) and U(0) = I. In-
tegrable Hamiltonians cause periodic evolution that will
relocalize such an operator at a future recurrence time.
However, non-integrable Hamiltonians can have an ex-
ponentially longer recurrence time [12, 47, 48] that per-
sistently scrambles the information of the initially local
operators to cover the lattice. An OTOC and its QPD
can witness such information-scrambling behavior [45].

We assume in this paper that local qubit operators A
and B at distinct lattice sites square to the identity A2 =
B2 = I and initially commute [A,B] = 0. At later times
t, however, B(t) can evolve to overlap the initial support
of A. We can detect such emergent overlap by averaging
the positive Hermitian-square of their commutator after
evolving only B,

C(t) :=
〈
[A,B(t)]†[A,B(t)]

〉
= 2[1− ReF (t)] ≥ 0. (1)

Since A2 = B(t)2 = I for any t, C(t) is determined by

F (t) := 〈B(t)AB(t)A〉, (2)

which is an OTOC that satisfies F (0) = 1 and ReF (t) ≤
1. For a non-integrable Hamiltonian, persistent noncom-
mutativity of A and B(t), i.e., C(t) > 0, causes ReF (t)
to drop to a small value for an extended duration [45].

The noncommutativity of A and B(t) also precludes
the existence of a classical joint probability distribution
over their eigenvalues, so prevents the OTOC from be-
ing understood as a simple eigenvalue average. Specifi-
cally, if we decompose A and B into their eigenprojec-

tion operators ΠA
a and Π

B(t)
b , A =

∑
a=0,1(−1)a ΠA

a and

B(t) =
∑
b=0,1(−1)b Π

B(t)
b , then the OTOC becomes an

eigenvalue average

F (t) =
∑

b′,a′,b,a=0,1

(−1)b
′+a′+b+a p̃t(b

′, a′, b, a) (3)

over an extended Kirkwood-Dirac QPD [41, 42]

p̃t(b
′, a′, b, a) := 〈ΠB(t)

b′ ΠA
a′Π

B(t)
b ΠA

a 〉. (4)

The QPD p̃t is normalized,
∑
p̃t = 1, and reduces to a

classical probability distribution when A and B(t) com-
mute, but can take imaginary and negative values whenA
and B(t) do not commute. Thus, the interesting behavior
of the OTOC F (t) directly corresponds to when the ag-
gregated nonclassicality of the QPD, N(t) :=

∑
|p̃t|−1 ≥

0, becomes nonzero [45]. This nonclassicality is a witness
of information scrambling that is more robust to experi-
mental imperfections than the OTOC itself [45].

III. SEQUENTIAL QUBIT MEASUREMENTS

We will measure the OTOC and its QPD with se-
quences of informative and non-informative ancilla-based

qubit measurements. Our analysis extends that of
Ref. [46], which provides explicit implementation circuits
and detailed derivations in its appendix.

An informative measurement of a qubit observable A
correlates the measured basis of an ancilla qubit with
the eigenbasis of A. Measuring a result a = 0, 1 on the
ancilla then causes (partial) collapse backaction in the
basis of A. Such a partial collapse modifies the state

ρ 7→M
(A)
φ,a ρM

†(A)
φ,a according to the Kraus operators [46]

M
(A)
φ,a :=

1√
2

[cos
φ

2
I + (−1)a sin

φ

2
A]. (5)

The parameter φ ∈ (0, π/2] is an angle that sets the mea-
surement strength [46], with φ = π/2 corresponding to a
projective measurement of the eigenbasis of A, and φ→ 0
corresponding to the weak measurement limit that leaves
ρ nearly unperturbed. For any φ, averaging the ancilla-

outcome probabilities PAφ (a) = tr(M
(A)
φ,a ρM

(A)†
φ,a ) with the

generalized eigenvalues [49–51] αφ,a = (−1)a/ sinφ re-
covers the expectation value 〈A〉 =

∑
a=0,1 αφ,aP

A
φ (a).

A noninformative measurement causes phase backac-
tion by entangling the eigenbasis of A with a mutu-
ally unbiased basis of the ancilla. Measuring the ancilla
then gives no information about A, but does produce a
measurement-controlled unitary effect generated by A on

the initial state ρ 7→ N
(A)
φ,a ρN

†(A)
φ,a , according to the Kraus

operators

N
(A)
φ,a :=

1√
2

[cos
φ

2
I − i(−1)a sin

φ

2
A]. (6)

As before, the angle φ ∈ (0, π/2] indicates the measure-
ment strength, ranging from weak perturbations with
φ→ 0 to maximally distinct rotations with φ = π/2.

Performing a sequence of n informative measurements
of observables A1, A2, . . . , An, implemented by separate
ancillas, produces a joint probability distribution

PA1,...,An

φ1,...,φn
(a1, . . . , an) := (7)

tr
(
M

(An)
φn,an

· · ·M (A1)
φ1,a1

ρM
†(A1)
φ1,a1

· · ·M†(An)
φn,an

)
,

where ai = 0, 1 is the outcome of the ith measurement.
As shown in Ref. [46], averaging this joint distribution
with the generalized eigenvalues αφi,ai = (−1)ai/ sinφi
exactly produces a correlation function involving nested
anticommutators of A1, A2, . . . , An:

CA1,...,An :=
∑

a1,...,an

αφ1,a1 · · ·αφn,an P
A1,...,An

φ1,...,φn
(a1, . . . , an)

=

〈
{...{{An, An−1}, An−2}..., A1}

2n−1

〉
(8)

for all strength angles 0 < φi ≤ π/2.
Replacing only the first informative measurement

M
(A1)
φ1,a1

with a noninformative measurement N
(A1)
φ1,ã1

in a
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separate circuit produces a modified joint distribution

P̃A1,...,An

φ1,...,φn
(ã1, . . . , an) :=

tr
(
M

(An)
φn,an

· · ·N (A1)
φ1,ã1

ρN
†(A1)
φ1,ã1

· · ·M†(An)
φn,an

)
, (9)

where the notations P̃ and ã1 are used as a reminder
of the noninformative nature of the first measurement.
Averaging in the same way as in Eq. (8) exchanges the
outermost anti-commutator with a commutator [46]

C̃A1,...,An :=
∑

ã1,...,an

αφ1,ã1 · · ·αφn,an P̃
A1,...,An

φ1,...,φn
(ã1, . . . , an)

=

〈
[...{{An, An−1}, An−2}..., A1]

2n−1i

〉
. (10)

In Ref. [46] we showed that the OTOC F (t) is
completely determined by four-measurement correlators
CAB(t)AB(t) and C̃AB(t)AB(t). We will now analyze se-
quences of both informative and noninformative mea-
surements more carefully to improve upon this result and
obtain all 8 correlators needed to construct the QPD p̃t.

IV. MEASURING A QPD

The QPD p̃t formally consists of 24 complex num-
bers, so apparently it requires experimental determina-
tion of 32 real parameters. However, we can reduce
this complexity to just 8 real parameters to measure
[42]. Since A2 = B2(t) = I, we use the identities

ΠA
a = [I + (−1)aA]/2 and Π

B(t)
b = [I + (−1)bB(t)]/2

to expand the QPD in Eq. (4) into 24 terms that contain
only 8 real-valued correlators: 〈A〉, 〈B(t)〉, Re〈B(t)A〉,
Im〈B(t)A〉, 〈B(t)AB(t)〉, 〈AB(t)A〉, Re〈B(t)AB(t)A〉,
and Im〈B(t)AB(t)A〉. Notably, two of these correlators
are the real and imaginary parts of the OTOC F (t) itself,
emphasizing that the QPD contains more information.
Once these 8 independent correlators are determined, the
entire QPD may be reconstructed.

We now consider how to measure each correlator in
turn by strategically averaging sequential measurements
as in Eqs. (8) and (10). Our goal is to measure all needed
terms with a minimum amount of experimental resources,
including both the number of measurement circuits and
the number of realizations of each required to obtain a
desired statistical error.

We show that a single circuit with four informative
measurements can determine 6 of the 8 correlators. The
remaining 2 correlators are determined by a related three-
measurement circuit that substitutes the first measure-
ment with a noninformative measurement. To be system-
atic, we construct the circuit shown in Fig. 1 by adding
one measurement at a time.

A. One-measurement sub-circuit

We start from the smallest sub-circuit in Fig. 1(a) (red,
dashed) consisting of one informative measurement of A.
According to Eq. (8), we obtain 〈A〉 by averaging the
values

ξAa := αφa,a ≡
(−1)a

sinφa
(11)

over the distribution PAφa
(a). We show later that the

other single-point correlator (i.e., expectation value)
〈B(t)〉 can be obtained by the three-measurement sub-
circuit in Fig. 1(c) (green, dot-dashed).

B. Two-measurement sub-circuit

Adding an informative measurement of B(t) produces
the two-measurement sub-circuit in Fig. 1(b) (blue, dot-
ted). As discussed in Ref [46], measuring B(t) requires
first evolving the qubit system for a duration t, then cou-
pling the eigenspace of B to an ancilla, then backward-
evolving for a duration t. The backwards evolution may
be omitted if it occurs at the end of the subcircuit. Ac-
cording to Eq. (8), averaging the simple product

ξABa,b := αφa,a αφb,b (12)

over the joint distribution PA,Bφa,φb
(a, b) produces the cor-

relator CA,B = 〈{B(t), A}〉/2 = Re〈B(t)A〉. Substituting
the first measurement with a non-informative measure-
ment as in Eq. (10) and averaging the same values ξABa,b
yields C̃A,B = 〈[B(t), A]〉/2i = Im〈B(t)A〉 instead [46].
For brevity, we omit the time-dependence of B(t) in the
remainder of the paper as understood.

To elucidate the structure of this sub-circuit, we

compute the measured distribution PA,Bφa,φb
(a, b). Using

Eq. (5) we find

PA,Bφa,φb
(a, b) =

1

4

[
1 + (−1)a sinφa 〈A〉

+ (−1)b sinφb

(
cos2

φa
2
〈B〉+ sin2 φa

2
〈ABA〉

)
+ (−1)a+b sinφa sinφb

〈{B,A}〉
2

]
. (13)

This form shows that marginalizing over b = 0, 1 can-
cels the last two lines to recover the result for the one-
measurement sub-circuit. However, marginalizing over
a = 0, 1 and averaging b with the generalized eigenval-
ues αφb,b = (−1)b/ sinφb only cancels the terms with 〈A〉
and 〈{B,A}〉 to leave a linear combination of 〈B〉 and
〈ABA〉, making it impossible to isolate those two corre-
lators independently. Intuitively, the first measurement
of A (partially) collapses the state, which correlates the
result of the second measurement with the first.
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(a) (b) (c) (d)

FIG. 1. Sequential measurement circuit. Repeated circuit realizations yield the joint distribution PA,B,A,Bφa,φb,φa′ ,φb′
(a, b, a′, b′) of

ancilla-qubit outcomes. Averaging this distribution with strategic values (see main text) yields the multi-qubit out-of-time-
ordered correlator F (t) = 〈B(t)AB(t)A〉 and 8 correlators that determine its corresponding quasiprobability distribution p̃t.
(a) Averaging the one-measurement subcircuit (red, dashed) produces 〈A〉. (b) Averaging the two-measurement subcircuit
(blue, dotted) produces Re〈B(t)A〉. (c) Averaging the three-measurement subcircuit (green, dot-dashed) produces 〈B(t)〉,
〈AB(t)A〉, and Re〈B(t)AB(t)A〉. (d) Averaging the four-measurement circuit produces 〈B(t)AB(t)〉. To obtain the final two

correlators Im〈B(t)A〉 and Im〈B(t)AB(t)A〉 that determine p̃t, the first informative measurement M̂
(A)
φa,a

should be replaced

with a non-informative measurement N̂
(A)
φa,a

(see text for details), and the last measurement may be omitted.

Note that if we perform a weak measurement of the
observable A with φa ≈ 0, then the pre-factor of 〈ABA〉
in Eq. (13) becomes negligible compared to 〈B〉 because
it is quadratic in φa. In this case, the marginalization of
Eq. (13) approximates P (b), from which we can isolate
〈B〉. However, weak measurements require more exper-
imental realizations to minimize statistical error, so in-
stead we will directly isolate both 〈B〉 and 〈ABA〉 after
adding one more measurement of A.

C. Three-measurement sub-circuit

Adding an informative measurement of A yields the
three-measurement sub-circuit in Fig. 1(c) (green, dot-
dashed). The joint probability distribution of the mea-

sured outcomes is then PA,B,Aφa,φb,φa′ (a, b, a
′). The struc-

ture of this distribution is similar to that of Eq. (13),
but we omit its full form for brevity. This joint dis-
tribution will allow us to obtain the correlators 〈B〉,
〈ABA〉, and Re〈BABA〉, while the modified distribution

P̃A,B,Aφa,φb,φa′ (ã, b, a
′) will produce Im〈BABA〉.

Following Eq. (8), averaging PA,B,Aφa,φb,φa′ (a, b, a
′) with

the product αφa,a αφb,b αφa′ ,a′ produces the correlator

CA,B,A = 〈{{A,B}, A}/4〉 = 〈B + ABA〉/2. This result
produces a second linear combination of 〈B〉 and 〈ABA〉,
which we can combine with a partial average of Eq. (13)
to isolate both 〈B〉 and 〈ABA〉 separately. Solving this
linear system to obtain 〈B〉 yields the effective values

ξBa,b,a′ :=
αφb,b − 2αφa,a αφb,b αφa′ ,a′ sin2(φa/2)

cosφa
(14)

to average over the distribution PA,B,Aφa,φb,φa′ (a, b, a
′). Simi-

larly, to obtain 〈ABA〉 we average the values

ξABAa,b,a′ := 2αφa,a αφb,b αφa′ ,a′ − ξBa,b,a′ . (15)

We note two important subtleties of this result. First,
B may be isolated in the measurement sequence (A,B,A)
because the first A measurement algebraically cancels
with the final A measurement, which is only possible
because A2 = I. Surprisingly, the later measurement
allows us to “undo” the effect of the earlier measure-
ment. Second, this cancellation is only possible when
the first measurement is not projective, φa 6= π/2. Intu-
itively, a projective measurement would irreversibly col-
lapse the state, preventing information from being re-
trieved and canceled. However, cancellation is possible
with any other measurement strength 0 < φa < π/2.

In addition to 〈B〉 and 〈ABA〉, we can also ob-
tain the OTOC itself Re〈BABA〉 from the distribution

PA,B,Aφa,φb,φa′ (a, b, a
′). Much as PA,Bφa,φb

(a, b) in Eq. (13) con-

tains 〈ABA〉, the OTOC appears in backaction terms.
To extract Re〈BABA〉 directly, we average the values

ξReBABA
a,b,a′ :=

αφa,a αφa′ ,a′ − cos2(φb/2)

sin2(φb/2)
(16)

over the joint distribution PA,B,Aφa,φb,φa′ (a, b, a
′). This result

simplifies the OTOC-measuring protocol in Ref. [46] by
removing the need for a fourth measurement.

To extract the imaginary part of the OTOC

Im〈BABA〉 we replace M
(A)
φa,a

with N
(A)
φã,ã

in Fig. 1(c) and
average the values

ξImBABAã,b,a′ :=
αφã,ã αφa′ ,a′

sin2(φb/2)
(17)

over the modified joint distribution P̃A,B,Aφã,φb,φa′ (ã, b, a
′).

So far we have obtained 7 of the 8 correlators needed
to determine the OTOC QPD, with only 〈BAB〉 remain-
ing. Unfortunately, the three-measurement circuit is not
sufficient for the same reason that 〈B〉 could not be ob-
tained from the sequence (A,B) in Eq. (13). That is,
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after marginalizing a and b then averaging a′ we find∑
a,b,a′

αφa′ ,a′P
A,B,A
φa,φb,φa′ (a, b, a

′) = cos2
φb
2
〈A〉 (18)

+ sin2 φb
2

cos2
φa
2
〈BAB〉+ sin2 φb

2
sin2 φa

2
〈ABABA〉.

The correlator 〈BAB〉 appears in a linear combination
with both 〈A〉 and 〈ABABA〉, so can not be isolated
unless the first measurement is made weak with φa ≈ 0.

D. Four-measurement circuit

Adding one last informative measurement of A pro-
duces the full circuit in Fig. 1(d). The remaining 〈BAB〉
correlator can then be isolated. As with the 〈B〉 corre-
lator, the effect of the first A measurement is undone by
subsequent measurements; however, the cancellation is
more complicated and involves measurement backaction
terms similarly to the OTOC correlators in the previous
section. To extract 〈BAB〉, we average the values

ξBABa,b,a′,b′ :=
1

cosφa

[
− αφa,a + 2αφb,b αφa′ ,a′ αφb′ ,b

′ (19)

− 2αφa,a αφb,b αφb′ ,b
′

sin2(φa/2)

sin2(φa′/2)

+ 2αφa,a
sin2(φa/2) cos2(φa′/2)

sin2(φa′/2)

]
over the joint distribution PA,B,A,Bφa,φb,φa′ ,φb′

(a, b, a′, b′). As

with the correlator 〈B〉, needed cancellations only occur
if the first measurement is not projective, φa 6= π/2.

Notably, in Ref. [46] we used precisely the same four-
measurement circuit as in Fig. 1 to obtain the real part of
the OTOC Re〈B(t)AB(t)A〉 itself. As such, once we add
this fourth measurement to the circuit, we can use the
previously derived four-measurement values ξReBABA

a,b,a′,b′ =
2αφa,a αφb,b αφa′ ,a′ αφb′ ,b

′ − 1 as an alternative to the
three-measurement values we introduced in Eq. (16).
Similarly, as an alternative to Eq. (17), Im〈BABA〉 can
be obtained by averaging the four-measurement values
ξImBABAa,b,a′,b′ = 2αφã,ã αφb,b αφa′ ,a′ αφb′ ,b

′ over the circuit
variation with a noninformative first measurement.

V. OPTIMIZING MEASUREMENT STRENGTH

All preceding derivations assumed arbitrary strength
measurements and ideal probability distributions. How-
ever, in practice one measures realization frequencies in
the lab, so both the experiment time and the statistical
error must be taken into account. For a finite ensemble of
realizations N the squared deviation of the mean value,

(∆ξ̄)2 =
∑N
k=1(ξk − ξ̄)2/N2 ≤ (maxj ξ

2
j )/N , is bounded

from above by the largest averaged value. Here k ranges
over realizations and j ranges over possible outcomes in

one realization. Fixing the experiment time for one cir-
cuit realization and the admissible realization number
N , we should minimize this deviation of the mean to
conserve experimental resources.

As an example of this procedure, we examine the sta-
tistical error for one of the 16 QPD values:

Re〈ΠA
+Π

B(t)
+ ΠA

+Π
B(t)
+ 〉 N→∞←−−−− 1

16N

N∑
k=1

[
3 + 3ξAk + 3ξBk

+ 4ξReAB
k + ξBABk + ξABAk + ξReBABA

k

]
, (20)

where each k is a particular realization of the measure-
ment sequence (a, b, a′, b′). To minimize the statistical
error, we minimize the largest averaged value in this sum
over all free parameters φa, φb, φa′ , and φb′ . Numerical
minimization yields different optimal strengths for each
QPD value, with the one in Eq. (20) having strengths

φb = φa′ = φb′ = π/2, φa ≈ (0.67)π/2. (21)

For all QPD values, all measurements are optimally pro-
jective except the first measurement, which has an opti-
mum that is still reasonably strong (φa ≈ (0.47)π/2 or
φa ≈ (0.67)π/2 ). A similar computation for the cor-

responding imaginary part Im〈ΠA
+Π

B(t)
+ ΠA

+Π
B(t)
+ 〉 shows

that projective measurements are always optimal for all
measurements.

VI. CONCLUSIONS

For multi-qubit systems possessing local observables
that square to the identity, we have reduced the prob-
lem of measuring the QPD behind the OTOC to that
of determining eight independent real-valued correlators,
in contrast to the 24 complex parameters that ostensibly
comprise the distribution. Six of these correlators can be
constructed from one data set of the four-measurement
circuit shown in Fig. 1. To minimize statistical error, all
but the first measurement can be made projective, with
only a slight strength reduction needed for the first mea-
surement. The remaining two correlators can be obtained
from a second data set from a slight variation of the same
circuit that replaces the first measurement with a non-
informative measurement and uses only three projective
measurements. These simplifications greatly reduce the
experimental difficulty for determining such a QPD.

The present work demonstrates that the same circuit
used to sequentially measure a multi-qubit OTOC can
also be used to determine all eight correlators needed
to parametrize the QPD behind the OTOC. Thus, for
qubits the QPD is no more difficult to measure with se-
quential measurements than the OTOC alone. We expect
that measurements of this sort are presently attainable in
modern quantum computing hardware. We also expect
that aspects of this work may be extended to qutrits and
higher-dimensional systems, where the assumption that
observables square to the identity breaks down.
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