
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Machine learning for optimal parameter prediction in
quantum key distribution

Wenyuan Wang and Hoi-Kwong Lo
Phys. Rev. A 100, 062334 — Published 27 December 2019

DOI: 10.1103/PhysRevA.100.062334

http://dx.doi.org/10.1103/PhysRevA.100.062334

Machine Learning for Optimal Parameter Prediction in Quantum Key Distribution

Wenyuan Wang1, ∗ and Hoi-Kwong Lo1, †

1Centre for Quantum Information and Quantum Control (CQIQC),
Dept. of Electrical & Computer Engineering and Dept. of Physics,

University of Toronto, Toronto, Ontario, M5S 3G4, Canada
(Dated: November 7, 2019)

For a practical quantum key distribution (QKD) system, parameter optimization - the choice of
intensities and probabilities of sending them - is a crucial step in gaining optimal performance, espe-
cially when one realistically considers finite communication time. With the increasing interest in the
field to implement QKD over free-space on moving platforms, such as drones, handheld systems, and
even satellites, one needs to perform parameter optimization with low latency and with very limited
computing power. Moreover, with the advent of the Internet of Things (IoT), a highly attractive
direction of QKD could be a quantum network with multiple devices and numerous connections,
which provides a huge computational challenge for the controller that optimizes parameters for a
large-scale network. Traditionally, such an optimization relies on brute-force search or local search
algorithms, which are computationally intensive, and will be slow on low-power platforms (which
increases latency in the system) or infeasible for even moderately large networks. In this work we
present a new method that uses a neural network to directly predict the optimal parameters for
QKD systems. We test our machine learning algorithm on hardware devices including a Raspberry
Pi 3 single-board computer (similar devices are commonly used on drones) and a mobile phone,
both of which have a power consumption of less than 5 watts, and we find a speedup of up to 2-4
orders of magnitude when compared to standard local search algorithms. The predicted parameters
are highly accurate and can preserve e.g. over 95-99% of the optimal secure key rate for a given
protocol. Moreover, our approach is highly general and can be applied to various kinds of common
QKD protocols effectively.

I. BACKGROUND

A. Parameter Optimization in QKD

Quantum key distribution (QKD)[1–4] provides uncon-
ditional security in generating a pair of secure key be-
tween two parties, Alice and Bob. To address imperfec-
tions in realistic sources and detectors, decoy-state QKD
[5–7] uses multiple intensities to estimate single-photon
contributions, and allows the secure use of Weak Co-
herent Pulse (WCP) sources, while measurement-device-
independent QKD (MDI-QKD) [8] addresses suscepti-
bility of detectors to hacking by eliminating detector
side channels and allowing Alice and Bob to send sig-
nals to an untrusted third party, Charles, who per-
forms the measurement. A recently proposed protocol,
Twin-Field (TF) QKD protocol [9], maintains a similar
measurement-device-independence, but can significantly
extend the maximum distance and overcome the max-
imum key rate versus distance tradeoff for repeaterless
QKD [10, 11], and it has generated much interest in the
community [12–16].

In reality, a QKD experiment always has a limited
transmission time, therefore the total number of sig-
nals is finite. This means that, when estimating the
single-photon contributions with decoy-state analysis,
one would need to take into consideration the statisti-
cal fluctuations of the observables: the Gain and Quan-
tum Bit Error Rate (QBER). This is called the finite-key
analysis of QKD. When considering the above finite-size

∗ wenyuan.wang@mail.utoronto.ca
† hklo@comm.utoronto.ca

effects, the choice of intensities and probabilities of send-
ing these intensities is crucial to getting the optimal rate.
Therefore, we would need to perform an optimization for
the search of parameters.

Note that in this paper, by “parameter optimization”,
we mainly discuss the optimization of the intensities of
laser signals and the probabilities of choosing each inten-
sity setting, specifically in the finite-size scenario (similar
to the model outlined in Ref. [17] for MDI-QKD). There
is also previous literature [18–20] discussing e.g. the opti-
mization of the number of decoy states, but the subject of
study is different here. Also, some of the above literature
[18] discusses optimization of intensities in the asymp-
totic (infinite-data) limit, but here in the finite-size case
that we study, the parameter space is much larger, mak-
ing the problem much more computationally challenging.
Additionally, in this paper we discuss a broader picture
where our method can be applied to various kinds of
QKD protocols (and potentially other optimization prob-
lems outside QKD or even in classical systems).

There have been various studies on BB84 [21, 22],
MDI-QKD [17, 23, 24], and TF-QKD [25] under finite-
size effects. Here in the paper, we will employ Ref.[22]’s
method for BB84 under finite size effects, and use a stan-
dard error analysis for MDI-QKD [23, 26] and asymmet-
ric TF-QKD [27]. Note that, our method is not really
dependent on the security analysis model - in fact it is
not really dependent on any specific protocol at all - and
in principle Chernoff bound can be applied too, but for
simplicity in this paper we only use a simple Gaussian as-
sumption for the probability distribution of observables.

Traditionally, the optimization of parameters is imple-
mented as either a brute-force global search for smaller
number of parameters, or a local search for larger number
of parameters. For instance, in several papers studying

2

FIG. 1. Left: Raspberry Pi 3 single-board computer equipped
with an Intel Movidius neural compute stick. Right: A smart-
phone (iPhone XR) running parameter prediction for a QKD
protocol with an on-device neural network. In the same app
one can also choose to run local search on the device (and
compare its running time to that of neural networks).

MDI-QKD protocols with symmetric [17] and asymmet-
ric channels [26], a local search method called coordinate
descent algorithm is used to find the optimal set of in-
tensity and probabilities.

However, optimization of parameters often requires
significant computational power. This means that, a
QKD system either has to to wait for an optimization off-
line (and suffer from delay), or use sub-optimal or even
unoptimized parameters in real-time. Moreover, due to
the amount of computing resource required, parameter
optimization is usually limited to relatively powerful de-
vices such as a desktop PC.

There is increasing interest in implementing QKD over
free-space on mobile platforms, such as drones [28], hand-
held systems [29], and even satellites [30]. Such de-
vices (e.g. single-board computers and mobile system-
on-chips) are usually limited in computational power.
As low-latency is important in such free-space applica-
tions, fast and accurate parameter optimization based
on a changing environment in real time is a difficult task
on such low-power platforms.

Moreover, with the advent of the internet of things
(IoT), a highly attractive future direction of QKD is a
quantum network that connects multiple devices, each of
which could be portable and mobile, and numerous con-
nections are present at the same time. This will present
a great computational challenge for the controller of a
quantum network with many pairs of users (where real-
time optimization might simply be infeasible for even a
moderate number of connections).

With the development of machine learning technologies
based on neural networks in recent years, and with more
and more low-power devices implementing on-board ac-
celeration chips for neural networks, here we present a
new method of using neural networks to help predict op-
timal parameters efficiently on low-power devices. We
test our machine learning algorithm on real-life devices
such as a single-board computer and a smart phone (see
Fig. 1), and find that with our method they can easily
perform parameter optimization in milliseconds, within
a power consumption of less than 5 watts. We list some

time benchmarking results in Table I. Such a method
makes it possible to support real-time parameter opti-
mization for free-space QKD systems, or large-scale QKD
networks with thousands of connections.

B. Neural Network

FIG. 2. An example of a neural network (in fact, here it is an
illustration of the neural network used in our work). It has
an input layer and an output layer of 4 and 6 neurons, respec-
tively, and has two fully-connected “hidden” layers with 400
and 200 neurons with rectified linear unit (ReLU) function
as activation. The cost function (not shown here) is mean
squared error.

In this subsection we present a very brief introduction
to machine learning with neural networks.

Neural networks are multiple-layered structures built
from “neurons”, which simulate the behavior of biologi-
cal neurons in brains. Each neuron takes a linear com-
bination of inputs xi, with weight wi and offset b, and
calculates the activation. For instance:

σ(
∑

wixi + b) =
1

1 + e−(
∑
wixi+b)

(1)

where the example activation function is a commonly
used sigmoid function σ(x) = 1

1+e−x , but it can have

other forms, such as a rectified linear unit (ReLU) [33]
function max(0,

∑
wixi + b), a step function, or even a

linear function y = x.
Each layer of the neural network consists of many neu-

rons, and after accepting input from the previous layer
and calculating the activation, it outputs the signals to
the next layer. Overall, the effect of the neural network
is to compute an output ~y = N(~x) from the vector ~x. A
“cost function” (e.g. mean squared error) is defined on
the output layer by comparing the network’s calculated

output {~yi} = {N(~xi0)} on a set of input data { ~xi0}, ver-

sus the set of desired output {~yi0}. It uses an algorithm

3

TABLE I. Time benchmarking between previous local search algorithm and our new algorithm using neural network (NN) for
parameter optimization on various devices. Here as an example we consider two protocols: symmetric MDI-QKD [23] and
asymmetric TF-QKD [27]. Devices include a desktop PC with an Intel i7-4790k quad-core CPU equipped with an Nvidia
Titan Xp GPU, a modern mobile phone Apple iPhone XR with an on-board neural engine, and a low-power single-board
computer Raspberry Pi 3 with quad-core CPU, equipped with an Intel Movidius neural compute stick a. As can be seen,
neural network generally can provide over 2-4 orders of magnitude higher speed than local search depending on the protocol,
enabling millisecond-level parameter optimization. Moreover, note that the smartphone and single-board computer provide
similar performance with only less than 1/70 the power consumption of a PC, making them ideal for free-space QKD or a
quantum internet-of-things with portable devices. More details on the benchmarking are provided in Section IV.

Protocol Device NN accelerator Local search NN Power consumption
MDI-QKD Desktop PC Titan Xp GPU 0.1s 0.5-1.0ms ∼350w
TF-QKD Desktop PC Titan Xp GPU 2s 0.5-1.0ms ∼350w

MDI-QKD iPhone XR on-board neural engine 0.2s ∼1ms <5w
TF-QKD iPhone XR on-board neural engine N/A ∼1ms <5w

MDI-QKD Raspberry Pi 3 Intel neural compute stick 3-5s 2-3ms <5w
TF-QKD Raspberry Pi 3 Intel neural compute stick 15-16s 3ms <5w

a The CPU on an iPhone XR has dual big cores + four small cores, but here for simplicity we use a single-threaded program for local
search, since OpenMP multithreading library is not supported on Apple devices. OpenMP is supported on the PC and on Raspberry
Pi 3, so multithreading is used for local search on these devices. Also, TF-QKD requires a linear solver, but all commercial linear
solvers cannot be used on iPhone (while open-source solvers in principle can be compiled for iPhone, in practice the porting is highly
non-trivial and very difficult). Therefore local search for TF-QKD cannot be performed on an iPhone - but note that the neural
network can still predict the optimal parameters regardless of software library limitations, which is in fact an additional advantage of
using a neural network. For TF-QKD, the PC and Raspberry Pi respectively use the commercial solver Gurobi [31] and the
open-source solver Coin-OR [32] (as commercial solvers are not available for Raspberry Pi either).

called “backpropagation”[34] to quickly solve the partial
derivatives of the cost function to the internal weights in
the network, and adjusts the weights accordingly via an
optimizer algorithm such as stochastic gradient descent

(SGD) to minimize the cost function and let {~yi} ap-

proach {~yi0} as much as possible. Over many iterations,
the neural network will be able to learn the behavior of
{ ~xi0} → {~yi0}, so that people can use it to accept a new
incoming data ~x, and predict the corresponding ~y. The
universal approximation theorem of neural network [35]
states that it is possible to infinitely approximate any
given bounded, continuous function on a given defined
domain with a neural network with even just a single
hidden layer, which suggests that neural networks are
highly flexible and robust structures that can be used in
a wide range of scenarios where such mappings between
two finite input/output vectors exist.

There is an increasing interest in the field in applying
machine learning to improve the performance of quantum
communication. For instance, there is recent literature
that e.g. apply machine learning to continuous-variable
(CV) QKD to improve the noise-filtering [36] and the
prediction/compensation of intensity evolution of light
over time [37], respectively.

In this work, we apply machine learning to predict the
optimal intensity and probability parameters for QKD
(based on given experimental parameters, such as chan-
nel loss, detector efficiency, misalignment, dark count
rate, and data size), and show that with a simple fully-
connected neural network with two layers, we can very
accurately and efficiently predict parameters (that can
achieve e.g. 95-99%, or even 99.9% the key rate depend-
ing on the protocol).

Our work demonstrates the feasibility of deploying

neural networks on actual low-power devices, to make
them perform fast QKD parameter optimization in real
time, with up to 2-4 orders of magnitudes higher speed.
This enables potential new applications in free-space or
portable QKD devices, such as on a satellite[30], drone
[28], or handheld [29] QKD system, where power con-
sumption of devices is a crucial factor and computational
power is severely limited, and traditional CPU-intensive
optimization approaches based on local or global search
are infeasible.

Additionally, we point out that with the higher op-
timization speed, we can also enable applications in a
large-scale quantum internet-of-things (IoT) where many
small devices can be interconnected (thus generating a
large number of connections), and now with neural net-
works, even low-power devices such as a mobile phone
will be able to optimize the parameters for hundreds of
users in real-time in a quantum network.

Our paper is organized as follows: In Section II we
will describe how we can formulate parameter optimiza-
tion as a function that can be approximated by a neural
network. We then describe the structure of the neural
network we use, and how we train it such that it learns
to predict optimal parameters. In Section III we test our
neural network approach with four example protocols,
and show that neural networks can accurately predict
parameters, which can be used to obtain near-optimal se-
cure key rate for the protocols. In Section IV we describe
two important use cases for our method and benchmark
them: enabling real-time parameter optimization on low-
power and low-latency portable devices, and paving the
road for large-scale quantum networks. We conclude our
paper in Section V.

4

II. METHODS

In this section we describe the process of training and
validating a neural network for parameter optimization.
As mentioned in Sec. I, the universal approximation the-
orem implies that the approach is not limited to any
specific protocol. Here for simplicity, in this section
when describing the methods we will first use a sim-
ple symmetric “4-intensity MDI-QKD protocol” [23] as
an example protocol. Later in the next section when
presenting the numerical results, we also include three
other protocols, the asymmetric “7-intensity” MDI-QKD
protocol[26], the BB84 protocol (under finite-size effects)
[22], and the asymmetric TF-QKD protocol [27] to show
that the method applies to them effectively too.

A. Optimal Parameters as a Function

Let us consider the symmetric-channel case for MDI-
QKD. Alice and Bob have the same distance to Charles,
hence they can choose the same parameters. When
taking finite-size effects into consideration, the vari-
ables to be optimized will be a set of 6 parameters,
[s, µ, ν, Ps, Pµ, Pν], where s, µ, ν are the signal and decoy
intensities, and Ps, Pµ, Pν are the probabilities of send-
ing them. Here there are also two other parameters, the
vacuum state ω and the vacuum state probability Pω,
but we assume the former is a constant, and the latter
satisfies Pω = 1−Ps−Pµ−Pν , so neither are included as
variables. Note that, since only the signal intensity s in
the Z basis is used for key generation, and µ, ν in X basis
are used for parameter estimation, Ps is also the basis
choice probability. We will unite these 6 parameters into
one parameter vector ~p.

The calculation of the key rate depends not only on the
intensities and the probabilities, but also on the experi-
mental parameters, namely the distance L between Alice
and Bob (or equivalently LBC , the distance between the
relay Charles and Bob), the detector efficiency ηd, the
dark count probability Y0, the basis misalignment ed, the
error-correction efficiency fe, and the number of signals
N sent by Alice. We will unite these parameters into one
vector ~e, which we call the “experimental parameters”.

Therefore, we see that the QKD key rate can be ex-
pressed as

Rate = R(~e, ~p) (2)

which is a function of the experimental parameters ~e,
which cannot be controlled by the users, and the “user
parameters” ~p (or just “parameters” for short, in the rest
of the paper if not specifically mentioned), which can be
adjusted by the users.

However, this only calculates the rate for a given fixed
set of parameters and experimental parameters. To cal-
culate the optimal rate, we need to calculate

Rmax(~e) = max~p∈PR(~e, ~p) (3)

which is the optimal rate for a given ~e. By maximizing
R, we also end up with a set of optimal parameters ~popt.
Note that ~popt is a function of ~e only, and the key ob-
jective in QKD optimization is to find the optimal set of
~popt based on the given ~e:

~popt(~e) = argmax~p∈PR(~e, ~p) (4)

Up so far, the optimal parameters are usually found
by performing local or global searches [17, 26], which
evaluate the function R(~e, ~p) many times with different
parameters to find the maximum. However, we make the
key observation that the functions Rmax(~e) and ~popt(~e)
are still single-valued, deterministic functions (despite
that their mathematical forms are defined by max and
argmax and not analytically attainable).

As mentioned in Section I, the universal approxima-
tion theorem of neural network states that it is possible
to infinitely approximate any given bounded, continuous
function on a given defined domain with a neural network
(with a few or even a single hidden layer). Therefore, this
suggests that it might be possible to use a neural network
to fully described the behavior of the aforementioned op-
timal parameters function ~popt(~e). Once such a neural
network is trained, it can be used to directly find the
optimal parameters and the key rate based on any input
~e by evaluating ~popt(~e) and R(e, ~popt) once each (rather
than the traditional approach of evaluating the function
R(~e, ~p) many times), hence greatly accelerating the pa-
rameter optimization process. As we will later show, this
method works for several common types of protocol as
long as we can formulate a good analytical form of the
key rate function. Nonetheless, this method also relies
on the fact that the given protocol has a convex key
rate versus parameters function (and has a bounded do-
main - which in practice is mostly just a “square” domain
with acceptable constant upper/lower bound values for
each dimension of ~p), such that the optimization prob-
lem is a convex optimization and a local search works
(or that the function is not too highly non-convex such
that some simple global search techniques can address
the non-convexity).

B. Design and Training of Network

Here we proceed to train a neural network to predict
the optimal parameters. We first write a program that
randomly samples the input data space to pick a random
combination of ~e experimental parameters, and use lo-
cal search algorithm [17] to calculate their corresponding
optimal rate and parameters. The experimental parame-
ter - optimal parameter data sets (for which we generate
10000 sets of data for 40 points from LBC =0-200km,
over the course of 6 hours) are then fed into the neural
network trainer, to let it learn the characteristics of the
function ~popt(~e). The neural network structure is shown
in Fig.2. With 4 input and 6 output elements, and two
hidden layers with 200 and 400 ReLU neurons each. We
use a mean squared error cost function.

5

FIG. 3. Data flow of the training and testing of the neu-
ral network (NN). The rounded-corner boxes represent pro-
grams, and rectangular boxes represent data. The generator
program generates many random sets of experimental param-
eters ~e and calculates the corresponding optimal parameters
~popt. These data are used to train the neural network. After

the training is complete, the network can be used to predict
optimal parameters based on arbitrary new sets of random ex-
perimental data and generate ~ppred (for instance, to plot the
results of Fig. 4 and Fig. 5, for each protocol a single random
set of data is used as input). Finally, another “validation”
program calculates the key rate based on the actual optimal
parameters ~popt found by local search and the predicted ~ppred
respectively, and compares their performances.

For input parameters, since ηd is physically no different
from the transmittance (e.g. having half the ηd is equiv-
alent to having 3dB more loss in the channel - note that
here we will assume that loss from detector efficiency can
be controlled by Eve and therefore can be merged into
channel loss, and that all detectors have equal ηd), here
as an example we fix it to 80% to simplify the network
structure (so the input dimension is 4 instead of 5) -
when using the network for inference, a different ηd can
be simply multiplied onto the channel loss while keeping
ηd = 80%. We also normalize parameters by setting

e1 = LBC/100

e2 = −log10(Y0)

e3 = ed × 100

e4 = log10(N)

(5)

to keep them at a similar order of magnitude of 1 (which
the neural network is most comfortable with) - what
we’re doing is a simple scaling of inputs, and this pre-
processing doesn’t modify the actual data. The out-
put parameters (intensities and probabilities) are within
(0, 1) to begin with (we don’t consider intensities larger
than 1 since these values usually provide poor or zero
performance) so they don’t need pre-processing. When
generating random sets of experimental parameters for
training, here as an example we use a range of common
values for e1 ∈ [0, 2], e2 ∈ [5, 7], e3 ∈ [1, 3], e4 ∈ [11, 14]

which correspond to LBC ∈ [0, 200], Y0 ∈ [10−7, 10−5],
ed ∈ [0.01, 0.03], N ∈ [1011, 1014]. The normalized pa-
rameters are sampled uniformly from the range (i.e. some
parameters Y0, N are uniformly sampled in log scale).
Also, note that, the range we set here (with commonly
encountered values in experiment) is a testing example,
but in practice one can train with a wider range for the
input values to encompass more possible scenarios for ex-
perimental parameters (and reasonably with more sam-
ple training data).

We can also easily modify the setup to accommodate
for other protocols by adjusting the number of input and
output parameters. For the asymmetric MDI-QKD sce-
nario, one can add an additional input parameter, the
channel mismatch x = ηA/ηB , where ηA, ηB are the
transmittances in Alice’s and Bob’s channels. We can
normalize the mismatch too and make it an additional
input variable:

e5 = −log10(x) (6)

For the random training data, we sample e5 ∈ [0, 2],
i.e. channel mismatch x ∈ [0.01, 1]. In this
case the output parameter vector ~p would be
[sA, µA, νA, PsA , PµA

, PνA , sB , µB , νB , PsB , PµB
, PνB].

For BB84 under finite-size effects, the input vector
is the same as in symmetric MDI-QKD, while the out-
put parameter vector ~p would be [µ, ν, Pµ, Pν , PX], where
vacuum+weak decoy states are used (i.e. intensities
are [µ, ν, ω], which correspond respectively to the signal,
weak decoy, and vacuum states) and only one basis - for
instance the X basis - is used for encoding. Here PX is the
probability of choosing the X basis. Since the parameter
space of BB84 is slightly non-convex, when generating
the training set, we have modified the local search to
start from multiple random starting points (and choose
the highest local maximum). This is a simple form of
global search, and can mostly overcome the small non-
convexity for the key rate versus parameters function for
BB84.

For asymmetric TF-QKD, the input vector is the same
as in asymmetric MDI-QKD, while the output parame-
ter vector ~p is [sA, sB , µ, ν, Ps, Pµ, Pν], where, as shown
in Ref. [27], to compensate for channel asymmetry, we
employ asymmetric signal states sA, sB while using the
identical vacuum+weak decoy states (and probabilities)
for Alice and Bob, while leads to 2+5 output parameters.
For the detector efficiency ηd, we assume it is part of the
channel loss and merge it as part of LBC , i.e. in the
program ηd is set to 100% (and like for MDI-QKD, we
assume the two detectors have equal detector efficiency).
An additional note for TF-QKD is that it uses a linear
program to calculate the key rate R(~e, ~p), which makes it
over an order of magnitude slower than e.g. MDI-QKD,
which uses analytical functions to solve for the key rate.
Due to the large amount of computation involved, we
performed the data generation on the Niagara supercom-
puter (using about 4 nodes × 8 hours, or 1280 core hours
as each node has 40 Intel Xeon cores, after which we chose
4500 sets of random data collected from multiple runs),

6

FIG. 4. Comparison of expected key rate using neural net-
work (NN) predicted parameters vs using optimal parame-
ters found by local search for various protocols, using ex-
perimental parameters from Table III, at different distances
between Alice (or Charles) and Bob. We compare the key
rate generated with either sets of parameters (dots with NN-
predicted parameters, and lines with local search generated
parameters). We tested four protocols: (a) symmetric MDI-
QKD (4-intensity protocol) [23], (b) asymmetric MDI-QKD
(7-intensity protocol) [26], (c) BB84 protocol [22], and (d)
asymmetric TF-QKD protocol [27]. As can be seen, the
key rate obtained using predicted parameters is very close
to that obtained from using optimal parameters found with
local search.

but note that, these computations can be considered of-
fline. That is, once one takes the time to generate the
training set and obtain a neural network, end users can
simply deploy the neural network to compute all future
sets of data online in milliseconds.

We train the neural network using Adam [38] as the
optimizer algorithm for 120 epochs (iterations), which
takes roughly 40 minutes on an Nvidia Titan Xp GPU.

Note that, here to prevent overfitting, we have crudely
employed early-stopping when training the model, by
checking the validation set (20% of the data) and stop-
ping the training when the validation set loss no longer
decreases (despite that the training set still shows in-
creasingly smaller error), which helps with preventing
overfitting. We test in increments of 60 epochs at a time,
and choose 120 epochs as the stopping point. We have
also tested with adding e.g. Dropout layers, but the re-
sults change very little. Likely, since the data size itself
(41 samples × 10000 data sets) is larger than the number
of weights in the network (at the order of 200× 400), the
overfitting problem is not severe here.

III. NUMERICAL RESULTS

After the training is complete, we use the trained net-
work for 4-intensity MDI-QKD protocol to take in three

FIG. 5. Comparison of neural network (NN) predicted param-
eters vs optimal parameters found by local search for various
protocols, using experimental parameters from Table III, at
different distances between Alice (or Charles) and Bob. We
compare neural network (NN) predicted parameters (dots)
versus optimal parameters found by local search (lines), for
four protocols: (a) symmetric MDI-QKD (4-intensity pro-
tocol), (b) asymmetric MDI-QKD (7-intensity protocol), (c)
BB84 protocol, and (d) asymmetric TF-QKD protocol. Sim-
ilar to Fig. 4, as can be seen, the NN-predicted parameters
are very close to optimal values found with local search. Note
that there are some noise present for the BB84 protocol. This
is because the key rate versus parameters function shows some
levels of non-convexity, and we combined local search with a
randomized approach (similar to global search) that chooses
results from multiple random starting points. Therefore there
is some level of noise for the probability parameters (which are
insensitive to small perturbations), while the neural network
is shown to learn the overall shape of the global maximum
of the parameters and return a smooth function. Similar ap-
plies for TF-QKD, which has small levels of non-convexity due
to linear solvers being inherently non-convex, although due to
the limitation in training time, we did not apply global search
for TF-QKD.

sets of random data, and record the results in Table II.
As can be seen, the predicted parameters and the cor-
responding key rate are very close to the actual optimal
values obtained by local search, with the NN-predicted
parameters achieving up to 99.99% the optimal key rate.

Here we also fix one random set of experimental param-
eters as seen in Table III, and scan the neural network
over LBC =0-200km. The results are shown in Fig.4(a)
and 5(a). As we can see, again the neural network works
extremely well at predicting the optimal values for the
parameters, and achieves very similar levels of key rate
compared to using the traditional local search method.

We also use a similar approach to select a random set
of input parameters and compare predicted key rate ver-
sus optimal key rate for each of 7-intensity (asymmetric
MDI-QKD), BB84, and TF-QKD protocol. The results
are included in Fig.4(b-d) and 5(b-d). As can be seen,

7

TABLE II. Optimal parameters found by local search vs neural network (NN) predicted parameters for symmetric MDI-QKD
(4-intensity protocol) using three different random sets of experimental parameters (set b we include here is the same one used
for Fig. 4(a) and Fig. 5(a), as listed in Table III), at the same distance LBC of 50km between Charles and Bob. Y0 is the dark
count probability, ed is the basis misalignment, and N is the number of signals sent by Alice. Here for simplicity, the detector
efficiency is fixed at ηd = 80% (since it is equivalent to channel loss). Fibre loss per km is assumed to be α = 0.2dB/km, the
error-correction efficiency is fe = 1.16, and finite-size security failure probability is ε = 10−7. As can be seen, the predicted
parameters from our neural network are very close to the optimal parameters found by local search, within an 1% error.
Moreover, the key rate is even closer, where the rate calculated with predicted parameters can achieve up to 99.99% (sometimes
even higher than) the key rate found by local search for this protocol.

Set Method R LBC Y0 ed N s µ ν Ps Pµ Pν

a Local search 5.5390× 10−5 50km 7.50× 10−6 0.0115 3.14× 1013 0.431 0.170 0.0256 0.862 0.00736 0.0906
a NN 5.5385× 10−5 50km 7.50× 10−6 0.0115 3.14× 1013 0.431 0.169 0.0257 0.861 0.00729 0.0901
b Local search 3.2559× 10−6 50km 1.75× 10−7 0.0287 2.99× 1012 0.176 0.183 0.0290 0.670 0.0200 0.216
b NN 3.2559× 10−6 50km 1.75× 10−7 0.0287 2.99× 1012 0.177 0.184 0.0289 0.670 0.0193 0.216
c Local search 2.7738× 10−6 50km 4.29× 10−7 0.0196 2.11× 1011 0.209 0.241 0.0442 0.540 0.0339 0.298
c NN 2.7739× 10−6 50km 4.29× 10−7 0.0196 2.11× 1011 0.210 0.242 0.0441 0.538 0.0338 0.298

TABLE III. Random experimental parameter sets we use for
simulation of Fig. 4 and Fig. 5 for the four protocols (sym-
metric/asymmetric MDI-QKD, BB84, TF-QKD). Y0 is the
dark count probability, ed is the basis misalignment, and N is
the number of signals sent by Alice (and Bob, in MDI-QKD
and TF-QKD). Here for simplicity, the detector efficiency is
fixed at ηd = 80% for MDI-QKD and BB84, and 100% for
TF-QKD (detector loss is included in the channel loss). The
channel mismatch x for MDI-QKD and TF-QKD is the ratio
of transmittances between Alice’s and Bob’s channels, ηA/ηB .

Protocol x ed Y0 N ηd
4-intensity MDI 1 0.029 1.7× 10−7 3.0× 1012 80%
7-intensity MDI 0.10 0.026 2.7× 10−6 2.6× 1013 80%

BB84 - 0.011 3.6× 10−6 3.2× 1012 80%
TF-QKD 0.54 0.024 1.8× 10−6 1.9× 1013 100%

the accuracy of neural network is very high in these cases
too, with up to 95-99% the key rate for 7-intensity pro-
tocol, up to 99.99% for BB84, and ∼80-95% for asym-
metric TF-QKD (the accuracy for TF-QKD is smaller,
likely because of either the smaller training set, or the
linear solvers used in TF-QKD bringing in inherent non-
convexities, which make the data more noisy and more
difficult to fit).

IV. APPLICATIONS AND BENCHMARKING

In the previous section we have demonstrated that a
neural network (NN) can be trained to very accurately
simulate the optimal parameter function ~popt(~e) and
be used to effectively predict the optimal parameters
for QKD. The question is, since we already have an
efficient coordinate descent (CD) algorithm, what is the
potential use for such a NN-prediction approach? Here
in this section, we will discuss two important use cases

for the neural network.

1. Real-time optimization on low-power de-
vices. While it takes considerable computing power to
“train” a neural network (e.g. on a dedicated GPU),
using it to predict (commonly called “inference”) is com-
putationally much cheaper, and will be much faster than
performing a local search, even if the neural network is
run on the same CPU. Moreover, in recent years, with
the fast development and wide deployment of neural net-
works, many manufacturers have opted to develop dedi-
cated chips that accelerate NN-inference on mobile low-
power systems. Such chips can further improve inference
speed with very little required power, and can also of-
fload the computing tasks from the CPU (which is often
reserved for more crucial tasks, such as camera signal pro-
cessing or motor control on drones, or system operations
and background applications on mobile phones).

Therefore, it would be more power-efficient (and much
faster) to use a neural network running on inference
chips, rather than using the computationally intensive
local search algorithm with CPU on low-power devices.
This can be especially important for free-space QKD sce-
narios such as drone-based, handheld, or satellite-ground
QKD, which not only have very limited power budget,
but also require low latency in real-time.

Note that, some protocols we use for demonstration
here (BB84, and MDI-QKD with “independent bounds”
finite key analysis as in [26]) are pretty fast to optimize to
begin with, on the order of seconds even on a single-board
computer. However, there are cases where optimization
itself is much slower, for instance when global search
and/or linear solver are needed. For instance, the asym-
metric TF-QKD protocol [27] or the “9-intensity” MDI-
QKD protocol (an asymmetric MDI-QKD protocol where
Alice and Bob each use four instead of three decoy states,
as described in Ref. [26], which requires using both lin-
ear solver and global search) would respectively take 2
seconds and 11 seconds to generate just one point even
on a fast desktop PC. On single-board computers it is
generally 10-30 times slower, meaning that an optimiza-

8

tion would likely take tens of seconds to even minutes,
which is quite long since many free-space sessions might
only have a window of minutes (e.g. satellite-ground or
handheld QKD). Also, some alternative finite-key anal-
ysis, such as the “joint bounds” analysis (as opposed to
using “independent bounds”) proposed in [23], will in-
troduce similar problems, as it involves linear solver and
non-convexities in the key rate versus parameters func-
tion (which often necessitate global search).

Moreover, there are some practical reasons where soft-
ware/hardware limitations might favor using neural net-
work over performing local search on CPU on low-power
platforms. For instance, as mentioned above, perform-
ing local search uses up all CPU resource, which would
be non-ideal for drones and handheld systems that need
the CPU for the control system, while a neural network
running on a separate accelerator chip offloads the com-
putational requirement. Also, software-wise, computing
the key rate and performing optimization on CPU mean
requiring the entire software stack to be set up on the
mobile device - however, many software libraries, e.g. all
commercial linear solver libraries, dont even work on mo-
bile architecture such as ARM CPUs but a neural net-
work pre-trained with data generated by linear solvers
can still be run on these platforms. This can be shown
in Table I where iPhones don’t support linear solvers re-
quired for calculating the key rate, but a neural network
can be used to directly output the parameters (without
needing to calculate the key rate first).

Lastly, atmospheric turbulence causes the channel
transmittance to quickly fluctuate at a time scale of
10-100 ms order [39] (and QKD over moving platforms
can have average channel losses constantly changing with
time e.g. due to changing distances). With a neural net-
work it would be potentially feasible to quickly tune laser
intensities based on sampled channel loss in real time.
Nonetheless, a set of changing laser intensities would re-
quire modified finite-size analysis, so we only propose it
as a possibility here and will leave the details for future
discussions.

To benchmark the performance of neural networks on
low-power devices, as examples, we choose the 4-intensity
MDI-QKD protocol and the TF-QKD protocol, and test
our neural network models on two popular mobile low-
power platforms: a single-board computer, and a com-
mon mobile phone, as shown in Fig. 1. We implement
both CPU-based local search algorithm and neural net-
work prediction on the devices, and list the running time
in Table I, where we compare neural networks to local
search on the portable devices and on a powerful desk-
top PC. As shown in Table I, using neural networks, we
can find the optimal parameters in milliseconds regard-
less of the protocol 1 (which is 2-4 orders of magnitude

1 Note that, for neural networks it generally takes some time to
load the model into the device when first used (about 0.2-0.3s
on Titan Xp GPU and neural engine on the iPhone, and 3s on
Raspberry Pi with the neural compute stick), but this only needs
to be done once at boot time, and can be considered part of the
startup time of the device - once the network is running, the

faster than local search on CPU), in a power footprint
less than 1/70 that of a desktop PC.

In Table I we used the 4-intensity MDI-QKD pro-
tocol and the TF-QKD protocol as two examples, al-
though note that for other protocols, e.g. 7-intensity
MDI-QKD or BB84 protocol, the advantage of NN still
holds, since the NN prediction time is little affected by
the input/output size (for instance, in Fig. 2, there are
400×200 connections between the two middle hidden lay-
ers, and only 4 × 400 and 6 × 200 connections involving
output or input neurons. This means that the numbers of
input/output nodes have little impact on the overall com-
plexity of the network), while local search time increases
almost linearly with the number of output (searched) pa-
rameters. For instance, running 7-intensity MDI-QKD
protocol, which has 12 output parameters, takes about
0.4s using local search on an iPhone XR - which is double
the time of the 4-intensity MDI-QKD protocol, which has
6 output parameters - but with a NN it still takes about
1ms (making the advantage of using NN even greater in
this case).

Additionally, note that even without neural network
acceleration chips, many devices can still choose to (1)
run the neural network on CPU (at the expense of
some CPU resource), and this option is still much faster
than local search (for instance, running neural network
on iPhone XR with CPU takes between 1.3 − 2.0ms,
which is not that much slower than the dedicated neural
accelerator chip). (2) generate a static “lookup table”
for all possible inputs down to a given resolution. This
is ideal for systems with extremely limited compute
power or with software/hardware restrictions, such that
neural networks cannot be run in real time. The lookup
table can be generated using a GPU on a desktop com-
puter first and stored on a mobile system to check when
needed. This is slower than directly running a neural net-
work, but it is still considerably faster than performing
a local search. More details are discussed in Appendix A.

2. Quantum networks. In addition to free-space
QKD applications which require low-power, low-latency
devices, the neural network can also be very useful in
a network setting, such as a quantum internet-of-things
(IoT) where numerous small devices might be intercon-
nected in networks as users or relays. For an untrusted
relay network, MDI-QKD or TF-QKD protocol are de-
sirable. However, the number of pairs of connections be-
tween users will increase quadratically with the number
of users, which might quickly overload the compute re-
sources of the relay/users.

With the neural network, any low-power device such
as a single-board computer or a mobile phone can eas-
ily serve as a relay that connects to numerous users and
optimizes e.g. ∼5000 pairs of connections (100 users) in
under 5 seconds for MDI-QKD or TF-QKD. This is a task
previously unimaginable even for a powerful desktop PC,
for which even supporting a network with 20 users would

predictions can be performed on many sets of data taking only
milliseconds for each operation.

9

take from 20s (MDI-QKD) to 6 minutes (TF-QKD) to
even 30 minutes (“9-intensity MDI-QKD”), if the pro-
tocol chosen is difficult to optimize. Therefore, our new
method can greatly reduce the required compute power
of devices and the latency of the systems when building
a quantum Internet of Things.

V. CONCLUSION AND DISCUSSIONS

In this work we have presented a simple way to train
a neural network that accurately and efficiently predicts
the optimal parameters for a given QKD protocol, based
on the characterization of devices and channels. We show
that the approach is general and not limited to any spe-
cific form of protocol, and demonstrate its effectiveness
for four examples: symmetric/asymmetric MDI-QKD,
BB84, and TF-QKD.

We show that an important use case for such an ap-
proach is to enable efficient parameter optimization on
low-power devices. We can achieve 2-4 orders of magni-
tude faster optimization speed compared to local search,
with a fraction of the power consumption. Our method
can be implemented on either the increasingly popular
neural network acceleration chips, or on common CPUs
that have relatively weak performance. This can be
highly useful not only for free-space QKD applications
that require low latency and but have limited power
budget, but also for a quantum internet-of-things (IoT)
where even a small portable device connected to numer-
ous users can easily optimize the parameters for all con-
nections in real-time.

Here we have demonstrated that the technique of
machine learning can indeed be used to optimize the
performance of QKD protocols. The effectiveness of this
simple demonstration suggests that it may be possible
to apply similar methods to other optimization tasks,
which are common in the designing and control of
practical QKD systems, such as determining the optimal
threshold for post-selection in free-space QKD, tuning
the polarization controller motors for misalignment
control, etc.. Such a method might even be applicable
for optimization and control tasks in classical systems,
to use a pre-trained neural network in accelerating
well-defined but computationally intensive tasks. We

hope that our work can further inspire future works
in investigating how machine learning could help us in
building better performing, more robust QKD systems.

Note added: After our posting of a first draft of this
work on the preprint server [40], another work on a
similar subject was subsequently posted on the preprint
server [41] and later published at [42]. While both our
work and the other work [41, 42] have similar approaches
in parameter optimization with neural networks, and
observe the huge speedup neural network has over CPU
local search, a few important differences remain. Firstly,
we show that the neural network method is a general
approach not limited to any specific protocol (and show
its versatile applications with four examples), while Ref.
[41, 42] is limited to discussing asymmetric MDI-QKD
only. Secondly, we point out that a key use case of this
approach would be performing parameter optimization
on low-power devices with neural networks. This was
only briefly mentioned in passing in Ref. [41, 42]. In
contrast, we perform testing and benchmarking on real
hardware devices. Our work not only will allow more
types of smaller portable devices to join a network
setting, but also can be important for free-space QKD
applications where low power consumption and low
latency are crucial.

VI. ACKNOWLEDGMENTS

This work was supported by the Natural Sciences and
Engineering Research Council of Canada (NSERC), U.S.
Office of Naval Research (ONR). We sincerely thank
Nvidia for generously providing a Titan Xp GPU through
the GPU Grant Program. Some simulation results are
generated on the Niagara supercomputer, and we thank
SciNet [43] for providing the compute platform. We
would also like to thank ZH Wang for kindly providing
an Intel neural compute stick for testing.

All training data are generated from simulations based
on models in Refs. [22, 23, 26, 27], using local/global
search algorithm. The generated datasets, and the neu-
ral networks trained from them, are available upon rea-
sonable request to the authors by email.

[1] C Bennett, G Brassard, “ Quantum cryptography: Pub-
lic key distribution and coin tossing.” International Con-
ference on Computer System and Signal Processing,
IEEE (1984).

[2] AK Ekert, “Quantum cryptography based on Bells the-
orem.” Physical review letters 67.6:661 (1991).

[3] P Shor, J Preskill, ”Simple proof of security of the BB84
quantum key distribution protocol.” Physical review let-
ters 85.2 (2000): 441.

[4] N Gisin, G Ribordy, W Tittel, H Zbinden, “Quan-
tum cryptography.” Reviews of modern physics 74.1:145
(2002).

[5] WY Hwang, “Quantum key distribution with high loss:
toward global secure communication.” Physical Review

Letters 91.5 (2003): 057901.
[6] HK Lo, XF Ma, and K Chen, “Decoy state quantum

key distribution.” Physical review letters 94.23 (2005):
230504.

[7] XB Wang, “Beating the photon-number-splitting attack
in practical quantum cryptography.” Physical review let-
ters 94.23 (2005): 230503.

[8] HK Lo, M Curty, and B Qi, ”Measurement-device-
independent quantum key distribution.” Physical review
letters 108.13 (2012): 130503.

[9] M Lucamarini, ZL Yuan, JF Dynes, AJ Shields, Over-
coming the ratedistance limit of quantum key distribu-
tion without quantum repeaters. Nature 557.7705:400
(2018).

10

[10] M Takeoka, S Guha, and M Wilde, Fundamental rate-
loss tradeoff for optical quantum key distribution, Nature
communications 5:5235 (2014).

[11] S Pirandola, R Laurenza, C Ottaviani, L Banchi, Funda-
mental limits of repeaterless quantum communications.”
Nature communications 8:15043 (2017).

[12] K Tamaki, HK Lo, W Wang, M Lucamarini, Informa-
tion theoretic security of quantum key distribution over-
coming the repeaterless secret key capacity bound. arXiv
preprint arXiv:1805.05511 (2018).

[13] XF Ma, P Zeng, H Zhou, Phase-matching quantum key
distribution. Physical Review X 8.3 (2018): 031043.

[14] XB Wang, ZW Yu, XL Hu, Twin-field quantum key dis-
tribution with large misalignment error. Physical Review
A 98.6 (2018): 062323.

[15] J Lin, N Lütkenhaus. Simple security analysis of phase-
matching measurement-device-independent quantum key
distribution. Physical Review A 98.4 (2018): 042332.

[16] M Curty, K Azuma, HK Lo, Simple security proof of
twin-field type quantum key distribution protocol. arXiv
preprint arXiv:1807.07667 (2018).

[17] F Xu, H Xu, and HK Lo, “Protocol choice and param-
eter optimization in decoy-state measurement-device-
independent quantum key distribution.” Physical Review
A 89.5 (2014): 052333.

[18] M Hayashi, “General theory for decoy-state quantum
key distribution with an arbitrary number of intensities.”
New Journal of Physics 9.8 (2007): 284.

[19] T Tsurumaru, A Soujaeff, and S Takeuchi. “Exact mini-
mum and maximum of yield with a finite number of decoy
light intensities.” Physical Review A 77.2 (2008): 022319.

[20] M Hayashi, “Optimal decoy intensity for decoy quantum
key distribution.” Journal of Physics A: Mathematical
and Theoretical 49.16 (2016): 165301.

[21] M Hayashi, and R Nakayama. “Security analysis of the
decoy method with the bennettbrassard 1984 protocol for
finite key lengths.” New Journal of Physics 16.6 (2014):
063009.

[22] CCW Lim, M Curty, N Walenta, F Xu and H Zbinden,
“Concise security bounds for practical decoy-state quan-
tum key distribution.” Physical Review A 89.2 (2014):
022307.

[23] YH Zhou, ZW Yu, and XB Wang, “Making the decoy-
state measurement-device-independent quantum key dis-
tribution practically useful.” Physical Review A 93.4
(2016): 042324.

[24] M Curty, F Xu, W Cui, CCW Lim, K Tamaki,
HK Lo, “Finite-key analysis for measurement-device-
independent quantum key distribution.” Nature commu-
nications 5 (2014): 3732.

[25] K Maeda, T Sasaki, and M Koashi. “Repeaterless quan-
tum key distribution with efficient finite-key analysis
overcoming the rate-distance limit.” Nature communica-
tions 10.1 (2019): 3140.

[26] W Wang, F Xu, and HK Lo. “Enabling a scalable
high-rate measurement-device-independent quantum key
distribution network.” arXiv preprint arXiv:1807.03466
(2018).

[27] W Wang, HK Lo, Simple Method for Asymmetric Twin
Field Quantum Key Distribution, arXiv preprint, arxiv:
1907.05291 (2019).

[28] AD Hill, J Chapman, K Herndon, C Chopp, DJ Gau-
thier, P Kwiat, “Drone-based Quantum Key Distribu-
tion”, QCRYPT 2017 (2017).

[29] G Mlen, P Freiwang, J Luhn, T Vogl, M Rau, C Sonnleit-
ner, W Rosenfeld, and H Weinfurter, “Handheld Quan-
tum Key Distribution.” Quantum Information and Mea-
surement. Optical Society of America (2017).

[30] S-K Liao et al. “Satellite-to-ground quantum key distri-
bution.” Nature 549.7670 (2017): 43-47.

[31] Gurobi Optimization, LLC, “Gurobi Optimizer Refer-
ence Manual” http://www.gurobi.com (2019).

[32] R Lougee-Heimer “The Common Optimization INterface
for Operations Research: Promoting open-source soft-
ware in the operations research community.” IBM Jour-
nal of Research and Development 47.1:57-66 (2003).

[33] V Nair and GE Hinton. “Rectified linear units improve
restricted boltzmann machines.” Proceedings of the 27th
international conference on machine learning (ICML-10).
2010.

[34] R Hecht-Nielsen, “Theory of the backpropagation neural
network.” Neural networks for perception. 1992. 65-93.

[35] K Hornik, MStinchcombe, and H White. “Multilayer
feedforward networks are universal approximators.” Neu-
ral networks 2.5 (1989): 359-366.

[36] W Lu, C Huang, K Hou, L Shi, H Zhao, Z Li, J Qiu,
“Recurrent neural network approach to quantum signal:
coherent state restoration for continuous-variable quan-
tum key distribution.” Quantum Information Processing
17.5 (2018): 109.

[37] W Liu, P Huang, J Peng, J Fan, G Zeng, “Integrat-
ing machine learning to achieve an automatic parameter
prediction for practical continuous-variable quantum key
distribution.” Physical Review A 97.2 (2018): 022316.

[38] DP Kingma and LJ Ba, “Adam: A method for stochastic
optimization.” arXiv preprint arXiv:1412.6980 (2014).

[39] JP Bourgoin, “Experimental and Theoretical Demon-
stration of the Feasibility of Global Quantum Cryptog-
raphy Using Satellites”, PhD thesis at University of Wa-
terloo (2014)

[40] W Wang, HK Lo, “Machine Learning for Optimal Pa-
rameter Prediction in Quantum Key Distribution.” arXiv
preprint arXiv:1812.07724 (2018).

[41] FY Lu, et al. “Parameter optimization and real-time
calibration of measurement-device-independent quantum
key distribution network based on back propagation ar-
tificial neural network.” arXiv preprint arXiv:1812.08388
(2018).

[42] FY Lu, et al. “Parameter optimization and real-time cal-
ibration of a measurement-device-independent quantum
key distribution network based on a back propagation ar-
tificial neural network.” JOSA B 36.3: B92-B98 (2019).

[43] Chris Loken et al 2010 J. Phys.: Conf. Ser. 256 012026
doi: (10.1088/1742-6596/256/1/012026)

Appendix A: Lookup Table

As an alternative solution for devices with hardware
limitations (very little CPU power and no GPU/AI-chip)
or software limitations (libraries unsupported on the plat-
form) that prevent them from directly running a neural
network, it is still possible to get a speedup, by using a
pre-generated lookup table of optimal parameters. For
instance, for 4-intensity MDI-QKD, we can set a 100
point resolution to Y0, ed, and N , and 100 points from
LBC = 0− 200km. This will result in a total of 1× 108

data points that need to be calculated. Such a task is
only possible with the parallelizable nature of the neu-
ral network, and the immense parallel processing power
of the GPU. Predicting all the data points with a neural
network on a desktop GPU would take an estimated time
of 25 minutes. On the other hand, the local search algo-

11

TABLE IV. Time benchmarking of using local search algorithm versus using neural network (NN) inference and using pre-
generated lookup table, for the 4-intensity MDI-QKD protocol. The desktop PC has an Intel i7-4790k quad-core CPU (with
16GB of RAM) and an Nvidia Titan Xp GPU. The single-board computers are a Raspberry Pi 3 with a quad-core CPU
(with 1GB of RAM), and a Raspberry Pi Zero W with a single-core CPU (with 500MB of RAM). As can be seen, on the
single-board computers, using a pre-generated lookup table is slower than directly using a neural network for inference, but it
is still significantly faster than performing local search on CPU. By pre-generating a lookup table offline (e.g. on a desktop
PC with GPU) and storing them on devices, we can still gain 15-25 times faster speed over local search on low-power devices,
making the method suitable for devices where directly running neural networks is not feasible.

Device Local search NN Lookup table

Desktop PC with GPU 0.1s 0.5-1.0ms 0.05s
Raspberry Pi 3 3-5s 2-3ms 0.2s

Raspberry Pi 0W 11-14s N/A 0.5s

rithm takes 6 hours to generate the 4×105 training data
alone, and would take as many as two months to sample
all 1×108 input sets. The fast generation of such a lookup
table is possible because we only take a small random
sample (4 × 105) in the 4-dimensional input space, and
use the neural network to learn the overall function shape
with these data. Afterwards, once we have ”learned” the
function, we can predict (or, intuitively, interpolate) all
the 1× 108 points over the entire input parameter space
with ease.

In Table IV we show a simple time benchmarking of
the neural network inference and pre-generated lookup
table versus local search algorithm on different devices
including a powerful desktop PC and two models of low-
power single board computers, for the 4-intensity MDI-
QKD protocol. We can see that although using a lookup
table is slower than directly running a neural network,
it still has a significant advantage over local search on
a CPU. This means that, the lookup table method is
ideal for systems with extremely limited compute power
or with software/hardware restrictions that prevent them
from running a neural network (for instance, the Rasp-
berry Pi 0W system has an older armv6 architecture, and
neither Intel compute stick nor tensorflow are officially
supported on the platform). The lookup table can be
generated using a neural network running on a GPU on
a desktop computer first, and stored on a mobile system

to check when needed. Note that, this does not contra-
dict a neural network’s necessity, but rather is one of its
application, since only with a neural network can we pos-
sibly generate a lookup table over such a large parameter
space.

Nonetheless, such a database would take up more stor-
age resource (generating, for instance, a 100-point reso-
lution lookup table for 4-intensity MDI-QKD would take
up roughly 2.4GB of space (assuming single-precision
floating point of 4 bytes is used for each output parame-
ter), which we can choose to divide into 10 smaller tables,
each taking up 240MB space, to avoid loading the entire
table in memory), for such low-power devices, storage
space is a lot cheaper than the extremely-limited CPU
and memory resource (for instance, Raspberry Pis can
read SD cards, which can easily have 64-256GB of stor-
age space), and using small but many databases, they can
be quickly loaded in parts into Raspberry Pi’s memory,
too.

Therefore, here we show a simple solution to find opti-
mal parameters using a lookup table pre-generated by a
neural network offline, such that a speedup of up to 15-
25 times can still be gained over running local search on
a low-power device, even when directly running a neural
network on the device is infeasible due to either hardware
or software restrictions.

	Machine Learning for Optimal Parameter Prediction in Quantum Key Distribution
	Abstract
	Background
	Parameter Optimization in QKD
	Neural Network

	Methods
	Optimal Parameters as a Function
	Design and Training of Network

	Numerical Results
	Applications and Benchmarking
	Conclusion and Discussions
	Acknowledgments
	References
	Lookup Table

