aps CHCRUS

physics

This is the accepted manuscript made available via CHORUS. The article has been
published as:

Toward convergence of effective-field-theory simulations on
digital quantum computers
0. Shehab, K. Landsman, Y. Nam, D. Zhu, N. M. Linke, M. Keesan, R. C. Pooser, and C.
Monroe
Phys. Rev. A 100, 062319 — Published 16 December 2019
DOI: 10.1103/PhysRevA.100.062319


http://dx.doi.org/10.1103/PhysRevA.100.062319

Toward convergence of effective field theory simulations on digital quantum computers

O. Shehab,! K. Landsman,? Y. Nam,! D. Zhu,2 N. M. Linke,? M. Keesan,! R. C. Pooser,>* and C. Monroe?!

YTon@Q, Inc, 4505 Campus Drive College Park, MD 20740, USA
2 Joint Quantum, Institute, Department of Physics and Joint Center for Quantum Information and Computer Science,
University of Maryland, College Park, MD 20742
3 Computational Sciences and Engineering Division,
Oak Ridge National Laboratory, Oak Ridge, TN 37881, USA
4 Department of Physics and Astronomy, University of Tennessee, Knozville, TN 37996, USA
(Dated: November 22, 2019)

We report results for simulating an effective field theory to compute the binding energy of the
deuteron nucleus using a hybrid algorithm on a trapped-ion quantum computer. Two increasingly
complex unitary coupled-cluster ansaetze have been used to compute the binding energy to within
a few percent for successively more complex Hamiltonians. By increasing the complexity of the
Hamiltonian, allowing more terms in the effective field theory expansion and calculating their ex-
pectation values, we present a benchmark for quantum computers based on their ability to scalably
calculate the effective field theory with increasing accuracy. Our result of Ey = —2.220 £ 0.179MeV
may be compared with the exact Deuteron ground-state energy —2.224MeV. We also demonstrate
an error mitigation technique using Richardson extrapolation on ion traps for the first time. The
error mitigation circuit represents a record for deepest quantum circuit on a trapped-ion quantum

computer.

I. INTRODUCTION

Simulating Fermonic matter using quantum comput-
ers has recently become an active field of research. With
the advent of noisy intermediate-scale quantum (NISQ)
devices that are capable of processing quantum informa-
tion, hybrid quantum-classical computing (HQCC) has
been proposed to be a worthy strategy to harness the
advantage quantum computers provide as early as possi-
ble. A host of HQCC demonstrations, ranging from its
application in chemistry [TH4] to machine learning [5], are
in fact already available in the literature.

NISQ devices are however susceptible to errors and
defects. Thus, the quantum circuits to be run on these
machines need to be sufficiently small so that the results
that the quantum computers output are still useful. On
the other hand, in order for the quantum computational
results to be useful, the computation that the quantum
computer performs needs to be sufficiently demanding
such that readily available classical devices cannot easily
arrive at the same results. However, there is a lack of
empirical evidence for the performance scaling of HQCC
as problems become more complex. A test, or bench-
mark, of this scalability would be useful to inform future
quantum algorithm development.

Here, using the effective field theory (EFT) simula-
tion of a deuteron, first introduced in [3], we outline a
path to scalable HQCC and provide a benchmark that
determines the HQCC performance scaling of a quantum
computer. We further demonstrate that a trapped-ion
quantum computer today is capable of addressing small,
yet scalable HQCC problems, and that it shows promises
toward scaling to reliable computational results when a
quantum advantage is demonstrated.

We also demonstrate a re-parametrization technique
that yields a quantum circuit amenable to implementa-

tion on quantum computers with nearest-neighbor con-
nectivity. We report our experimental results that lever-
age known error mitigation techniques [6H9]. The theo-
retical predictions for the three- and four-qubit case are
within the error bars of the experimental results.

II. HAMILTONIAN AND ANSATZ

The N oscillator-basis deuteron Hamiltonian consid-
ered in [3] (see Supplementary material for detail) is
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where the operators af, and a, create and annihilate a
deuteron in the harmonic-oscillator s-wave state |n) and
the matrix elements of the kinetic and potential energy
are
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where fiw = 7TMeV [3] and Vy = 5.68658111 MeV [10].
Since our goal is to find the ground state energy expecta-
tion values as a function of N using a quantum computer,
we apply Jordan-Wigner transform [11] to our physical
Hamiltonian in to find the qubit Hamiltonian. For
N =23, and 4, we have

Hy =5.9071 4+ 0.2187y — 6.12577 — 2.143(X0X1 + YE)Yl)
Hy = Hy +9.625(1 — Z5) — 3.913(X1 Xs + Y1 Y2)
H,=Hs+ 13125([ — Zg) - 5671(X2X3 + }/QYL?,) (3)



For our current example of a Deuteron EFT simula-
tion, the UV cutoff determines the largest matrix ele-
ment in the nuclear Hamiltonian, which controls the scal-
ing of the coefficients of the Pauli terms in the qubit
Hamiltonian in . Since the uncertainty in determining
the expectation value of the Hamiltonian is bounded by
the largest absolute value of the coefficients in the qubit
Hamiltonian [2], the higher the UV cutoff, the larger the
uncertainty in the expectation value of the Hamiltonian
becomes. To meet the required, preset uncertainty, we
need to make a larger number of measurements for a
large-coefficient Hamiltonian. Because the largest coeffi-
cient tends to grow with basis size, this effectively induces
an implementation-level tug-of-war between the increas-
ingly accurate simulation from considering a larger os-
cillator basis and the accumulation of errors on NISQ
devices susceptible to, e.g., drifts, that occur over the
required, longer overall runtime. While frequently cali-
brating the quantum computer may help reduce the er-
rors, this may not be desirable as it would significantly
increase the resource overhead.

For the HQCC ansatz, we use the N-site unitary
coupled-cluster singles (UCCS) ansatz [12]

N-1
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where § = {01,...,0n_1} is the set of N — 1 real-
valued variational parameters and |1;) denotes the state
0,...,0,1,0,...,0) with the ith s-wave state occupied. We
compute the deuteron binding energy by minimizing the
quantum functional (¥yccs|Hn|Puccs) with respect to
f. The initial state [1o) = |1,0,0,...0) represents the oc-
cupation of the Oth s-wave state.

To implement the UCCS ansatz on our quantum com-
puter, we re-parameterized in the hyper-spherical co-
ordinate [12] [13], i.e.,
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where [1;) = [] sin(\;)|1x) with |19) = |1p). This choice

=
is deliberate and exact, since the excitation operator in
is solely composed of single-excitations. Note we have

relabeled (and re-indexed) variational parameters as X =
{)\0, . )\N—2}-

With the new parameterization shown in , we may
now synthesize the ansatz circuit straightforwardly. Let
us define the amplitude shifting unitary U; ;11(N\;) =
(Ci+1X;)(C;RY;11(\;)), where C,,, Gy, for instance, de-
notes a single-qubit gate G acting on qubit n, con-
trolled by qubit m, such that U(M)(a|00) + §]10)) =
«|00) + B(cos A|10) + sin A|01)). Applying U; ;41 in se-
ries to an initial state of |1p), we have

[Yuce) =

N—2
H Ui,i+1(>%)] o). (6)
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For the first non-trivial case of N = 2, we need to
optimize Up; acting on |lp). Since the initial state is
110), CyiRY;|10) = iRY;|10). The optimized circuit Cs

is
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For N > 2, we iteratively construct the circuit Cn as
shown below.

-
0 — ., = 10) — Cn—1

A ¢ D
oL =

III. RESULTS

We implemented our EFT simulation on an ion-trap
quantum computer that may selectively load either five
or seven "'YbT qubits. The qubit states [0) = |0,0) and
[1) = |1,0) (with quantum numbers |F, mp)) are chosen
from the hyperfine-split 2S; /2 ground level with an energy
difference of 12.64 GHz. The T5 coherence time with idle
qubits is measured to be 1.5(5) sec, limited by residual
magnetic field noise. The ions are initialized by an opti-
cal pumping scheme and are collectively read out using
state-dependent fluorescence detection [14], with each ion
being mapped to a distinct photomultiplier tube (PMT)
channel. State detection and measurement (SPAM) er-
rors are characterized and corrected for in detail by in-
ferring the state-to-state error matrix [15].

For the details of the single and two qubit gate imple-
mentations we refer the readers to Appendix A of [I6]
and to [I7H20]. For the three qubit ansatz, we load five
ions in the trap and use every other ion as qubit. For
the four qubit ansatz, we load seven ions in the trap, us-
ing the inner 5 as qubits, with the outermost pair being
used to evenly space the middle five ions. Entangling
gates are derived from normal motional modes that re-
sult from the Coulomb interaction between ions, and the
trapping potential. Off-resonantly driving both red and
blue motional modes simultaneously leads to an entan-
gling Mglmer-Sgrensen interaction [18].(See Supplemen-
tary material for circuits optimized for the native gate
set.)

In the three qubit experiment, the logical qubits 1, 2, 3,
that denote s-wave states, are mapped to physical qubits
3,1,5. In the four qubit experiment, the logical qubits
1,2, 3,4 are mapped to the physical qubits 1,2,3,5. The
single qubit rotation fidelities are ~0.995 for each ion.
The two qubit gate fidelity is given by the measured prob-
abilities Pyp and Pj; of states |00) and |01), respectively
and the contrast II. of the parity curve. The fidelity of
our operations is characterized using a widely used proxy,



the fidelity of producing a Bell state from a separable
state. The fidelity expression is F' = (Pyo + P11 + I1.)/2
[2I]. The two qubit gate fidelities of the system are
0.986(2), 0.969(8), 0.993(6), 0.980(9) , and 0.992(7) for
the qubit pairs (1,3), (1,5), (3,5), (1,2), and (2,3) re-
spectively [211[22]. Readout error sources (crosstalk, dark
count, off-resonant pumping, etc) are measured simulta-
neously by preparing a single ion in either the bright or
dark state and moving it under different PMT channels
[15]. The errors for different multi-qubit states are gener-
ated by looking at photon counts from the entire array of
PMT channels and aggregating data appropriately. By
characterizing the imaging and detection system with a
single ion we estimate that the mean detection fidelity
over all bit strings for three and four qubit experiments
are are 0.978 and 0.963 respectively [22] [23].

Figure 1] shows the experimentally determined expec-
tation value of the Hamiltonian Hj3 at the theoretically
predicted minimum Ag = 0.250 and A\; = 0.830. We
employed the error minimization technique [8, @], based
on Richardson extrapolation [24], to our circuit by re-
placing all occurrences of XX(6) with XX(0)1", where
1M = [XX(—0)XX(0)]M for M =0,1,2,3. The linearly-
extrapolated, zero-noise limit shows (H3) = —2.030 +
0.034MeV, which is in excellent agreement with the the-
oretically expected value of -2.046MeV.

Figure2]shows the analogous figure for Hy evaluated at
the theoretically optimal parameters A\g = 0.8584, A\ =
0.9584, and Ay = 0.7584. The linearly-extrapolated,
zero-noise limit shows (Hy) = —2.220+0.179MeV, again
statistically consistent with the theoretically expected
value of -2.143MeV. We note that the largest circuit
that was run on our quantum computer to generate Fig-
ure [2| involved implementing 35 two-qubit XX gates. We
observe that the curve for the expectation value of the
Hamiltonian in our plots are flatter than that of Fig. 3
of [3] which indicates lower error rates in our device.

To further corroborate the accuracy of our quantum
computational results, we also investigated the energy
expectation values at various locations in the ansatz pa-
rameter space. Specifically, we explored the four-qubit
ansatz’s parameter settings that theoretically result in
approximately 10% or 20% deviation from the theoreti-
cal minimum by varying one parameter at a time while
fixing the other two constant to their optimal values. Ta-
ble [ shows the choice of parameters and their respective,
experimentally-obtained zero-noise-limit expectation val-
ues of Hy, compared with the theoretical values. We
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FIG. 1. Expectation values of Hamiltonian terms in H3 as a
function of noise parameter r = 2M + 1 which is the number
of repetitions of noisy two qubit identity gates before a given
two qubit gate. M is defined in the Results section. Various
colored, solid symbols are the expectation values of individual
terms in H3s. Black crosses are Hs, computed according to Eq.
. Colored, solid lines are the linear fits to the corresponding
individual Hamiltonian terms in Hs. The black solid line is
the linear fit to Hs. We use the linear fits to extrapolate to
the zero noise limit. The error bars in the figure are statistical
errors based on finite sampling and a binomial distribution.
The binding energy is determined as —2.030 £ 0.034MeV
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FIG. 2. Expectation values of Hamiltonian terms in Hy as a
function of noise parameter » = 2M + 1 which is the number
of repetitions of noisy two qubit identity gates before a given
two qubit gate. M is defined in the Results section. Various
colored, solid symbols are the expectation values of individual
terms in Hy. Black crosses are H4, computed according to Eq.
. Colored, solid lines are the linear fits to the corresponding
individual Hamiltonian terms in H4. The black solid line is
the linear fit to Hy. We use the linear fits to extrapolate to
the zero noise limit. The error bars in the figure are statistical
errors based on finite sampling and a binomial distribution.
The binding energy is determined as —2.220 + 0.179MeV.

show in Fig. [3] the data reported in Table[[| as a visual
aid. The minimal binding energy can be estimated by
fitting each set of data to a quadratic form and mini-
mizing the fit. Doing so results in individual estimates of
E; = —2.080+—-0.151, —2.2004+0.149, —1.946+0.124, for
the three respective lambda parameters, with an average
minima of F = —2.088 with 2.9% error. Our computa-
tions therefore match previous error rates while increas-
ing the system size, thus continuing to provide a path



Ao | M1 A2 |(Ha)lexperiment]|(Hy)[theory]
0.858/0.958| 0.758 | —2.256 +0.179 —2.143
0.420/0.958| 0.758 | —1.568 + 0.165 —1.693
0.550/0.958| 0.758 | —1.708 +0.172 —1.925
1.140(0.958| 0.758 | —1.492 4+ 0.190 —1.921
1.260(0.958| 0.758 | —1.599 + 0.191 —1.708
0.858/0.190| 0.758 | —1.425 % 0.169 —1.707
0.858]0.410| 0.758 | —1.549 £0.172 —1.916
0.858|1.440| 0.758 | —2.064 + 0.187 —1.915
0.858|1.630| 0.758 | —1.646 + 0.188 —1.707
0.858/0.958 | —0.510| —2.066 = 0.179 —1.713
0.858]0.958|—0.120| —1.370 £ 0.182 —1.917
0.858]0.958| 1.600 | —1.524 +0.187 —1.918
0.858/0.958| 1.930 | —1.563 +0.194 —1.709

TABLE 1. Expectation value (Hi) for various sets of vari-
ational parameters. (H4)[experiment] denote the zero-noise
limit extrapolated values of (H4) obtained from our trapped-
ion quantum computer. (Hy)[theory] denote the correspond-
ing, theoretically predicted values. All energies are measured
in MeV. The top row shows the exact minimum configuration
and results. The next set of four rows show the cases where
we vary Ao. The following two sets of four rows show the cor-
responding configuration-results pair for varying A1 and A2,
respectively.
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FIG. 3. Expectation value (H4)(r = 0) as a function of a
parameter chosen from the set { Ao, A1, A2}. The plot symbols
denote the zero-noise-limit extrapolated from the experimen-
tal data, also given in Table E[, and the solid lines denote the
theoretical values.

towards scalable simulations.

IV. DISCUSSION

In this paper, we show the quantum computational re-
sults obtained from 5- and 7-qubit trapped-ion quantum
computers simulating a Deuteron. We improved on the
previous result for the three-qubit ansatz and extended
the ansatz size beyond the previous state of the art [3].
We construct physically optimized circuits specifically for
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FIG. 4. Aggregate results on the Deuteron simulation per-
formed across different quantum computing platforms. Open
symbols denote the experimental results. Star symbols denote
the exact UCCS results. The black solid line denotes the ex-
act deuteron ground-state energy. We note that the results
on other platform has been determined variationally on the
hardware.

trapped-ion architecture. A native and more efficient
implementation of the circuit for Richardson extrapola-
tion is also presented. Our four-qubit ansatz result of
FE, = —2.220+0.179MeV may be compared with the ex-
act Deuteron ground-state energy —2.224MeV.The wider
error bar for the four qubit result is not an effect of the
algorithmic approach we have taken here. Rather it is
the result of the two qubit gate error on the hardware.
We believe there are research pathways to bring this er-
ror down which will hopefully make the scalability of our
approach even more obvious.

Figure [4] shows the aggregate results, collected from
previous studies performed on different quantum com-
puting platforms on the same Deuteron system [3] and
our own results. For the three qubit ansatz, the error
margin of the binding energy computed on the IBM QX5
was 3%, while it is 0.7% on the ITonQ-UMD trapped ion
quantum computer at the optimal configuration for the
three qubit experiment. Because of the demanding size
of the circuit and the susceptibility of NISQ devices to
errors, we were unable to run the four-qubit experiments
on other quantum computing platforms. We find that,
based on Fig. [4 the simulation results converge to the
known ground state energy as a function of the ansatz
size. We also note that, as expected, the experimental
results start deviating more from the exact UCCS re-
sults, due to the accumulation of errors.

It is important to point out that single excitations are
in principle much easier to simulate, and therefore will
not themselves be a good measure of quantum advan-
tage going forward as quantum computers grow. More
complex EFTSs, such as for more massive Helium nuclei
(with more orbitals and more excitations) will stress fu-



ture quantum computer hardware more comprehensively.
We are currently studying the implementation of many
body EFT on NISQ devices. The present single body
problem lays the groundwork for future EFT simulations
on ion trap hardware. Thus, we believe that our EFT
simulation may be used as a practical benchmark for
quantum computers which characterizes the performance
of HQCC algorithms in the presence of noise, alongside
the known proposals [5 25]. We have already success-
fully implemented the simulation across different plat-
forms (superconducting and trapped-ion quantum com-
puters) and also within the same platform with different
configurations (5 and 7 qubit trapped-ion quantum com-
puters). Since our ansatz circuits require only nearest-
neighbor connectivity, our benchmark is expected to be
readily be implemented across any platform and serve as
a baseline, since more complex connectivity available on
a quantum computer can only help boost the quantum
computational power [26]. Our HQCC approach will also
help benchmark the interface between quantum and clas-
sical processors. In this paper, we have taken first steps
in this direction. We anticipate using the algorithm to

benchmark upcoming quantum information processors.
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