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A Bayesian approach to quantum process tomography has yet to be fully developed due to the lack of appro-

priate probability distributions on the space of quantum channels. Here, by associating the Choi matrix form

of a completely positive, trace preserving (CPTP) map with a particular space of matrices with orthonormal

columns, called a Stiefel manifold, we present two parametric probability distributions on the space of CPTP

maps that enable Bayesian analysis of process tomography. The first is a probability distribution that has an

average Choi matrix as a sufficient statistic. The second is a distribution resulting from binomial likelihood data

that enables a simple connection to data gathered through process tomography experiments. To our knowledge

these are the first examples of continuous, non-unitary random CPTP maps, that capture meaningful prior infor-

mation for use in Bayesian estimation. We show how these distributions can be used for point estimation using

either maximum a posteriori estimates or expected a posteriori estimates, as well as full Bayesian tomography

resulting in posterior credibility intervals. This approach will enable the full power of Bayesian analysis in all

forms of quantum characterization, verification, and validation.

I. INTRODUCTION

In the quest to develop quantum technologies, precise char-

acterization of quantum systems is critical to understand-

ing and mitigating noise and imperfections. To date, nearly

all quantum characterization techniques such as randomized

benchmarking (RB) [1], quantum state and process tomogra-

phy (see e.g. Refs. [2–6]), gate-set tomography (GST) [5, 6],

or even more advanced techniques such as quantum noise

spectroscopy [7, 8] tend to primarily rely on a frequentist ap-

proach where a large number of experimental data-points are

taken in order to estimate the average of some parameter or

parameters of interest. As error-rates continue to march lower,

having precise knowledge of uncertainties in the estimated pa-

rameters is key to improving devices below the fault-tolerant

threshold needed for large-scale quantum computing.

To get a sense of the estimation accuracy and to reduce ex-

perimental costs, Bayesian-based approaches for RB [9, 10]

process tomography [11, 12], and noise spectroscopy [13]

have been proposed. Despite this intense interest, a fully

Bayesian approach to quantum process tomography with ana-

lytic prior and posterior distributions has yet to be developed,

with the current approaches relying on importance sampling

and simple proposal distributions [11].

A key requirement for Bayesian estimation is having a

probability distribution or distributions defined on the rele-

vant space of interest. Furthermore it is generally desired that

these distributions can be parameterized in some manner that

allows for the capture of meaningful prior information. Typi-

cally, this amounts to some form of location and scale param-

eters. As an example the normal distribution is defined on the

space of real numbers and is fully parameterized by a mean

and variance. In the context of quantum process tomography,

one particular sample space of interest is the space of com-

pletely positive and trace preserving (CPTP) maps (see e.g.
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[14]). Therefore, a probability distribution on the space of

CPTP maps, preferably with a simple parameterization, could

enable fully Bayesian quantum process tomography.

Perhaps the simplest and most familiar example of a ran-

dom quantum operation are Pauli error channels, commonly

used in quantum error correction simulations (see e.g. [15–

17]). On one hand, the average of these distributions is well

defined and simple to calculate, allowing them to be used in

the analysis of noisy quantum circuits. Their application in

Bayesian setting is limited, however. These distributions are

fundamentally discrete, and thus are not absolutely continu-

ous with respect to the entire space of CPTP maps and as

such will necessarily produce estimates that are Pauli channels

and cannot capture error effects such as coherent rotations and

non-unital errors that will show up in any non-idealized tomo-

graphic procedure. A slight generalization of this concept is

discrete mixtures over a finite set of CPTP maps [18], which

has the same issues as Pauli error channels in the Bayesian

context.

More exotic examples of probability distributions on the

space of CPTP maps come from the field of random matrix

theory. Projections of Haar-random unitaries from a unitary

group of higher dimension has been used to define a distri-

bution on the space of CPTP maps that is absolutely contin-

uous on the space of CPTP maps [19]. This essentially pro-

vides a uniform distribution of CPTP maps with a given Kraus

rank. Ref. [20] further provides a useful review on a number

of results on random CPTP maps derived from random uni-

tary operations, along with a number of theoretical results on

their composition and effect on quantum states. The downside

to these approaches is that there is no particularly useful pa-

rameterization in terms of a location and scale parameter. In

fact the average of these distributions is the maximally mixed

channel. This is not particularly useful as a prior for a high-

fidelity quantum channel, which is what one requires when

characterization quantum devices. That said, the distribution

of [19] has been used as a proposal distribution for process

tomography in [21] using similar importance sampling tech-
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niques as in [11]. The efficiency of this approach would be

greatly enhanced by a proposal distribution that can capture

meaningful prior information, such as the distributions intro-

duced below.

In contrast to the above approaches, here we demonstrate

two approaches to generating probability distributions rele-

vant to quantum process tomography. The first is a family of

probability distributions of random CPTP maps that are abso-

lutely continuous and completely characterized by their first

moment, in this case, an average Choi matrix. The second

is an alternative formulation where these distributions can be

characterized as maximum entropy distributions with a given

average value. Our approach makes use of the theory of expo-

nential families on the manifold of matrices with orthonormal

columns, known as Stiefel manifolds [22].

Our first approach is natural to consider in the context of

noisy quantum systems. On one hand, the evolution of an

open quantum system can often be treated as a noisy evolu-

tion, through the stochastic Liouville equation [23]. This type

of description applies to some of the most common types of

qubits and their predominant decoherence mechanisms (see

e.g. Refs. [24–31]). On the other hand, especially in the

context of quantum gates or circuits, we often speak of just

an average error channel (or simply “the” error channel) for

a given quantum operation, and do not consider it as either a

random variable or stochastic process. In this context, quan-

tum process tomography is essentially computing estimates of

the average quantum channel. This motivates the desire for a

parametric probability distribution for which the average map,

as estimated from tomography or simulation, is a sufficient

statistic. This approach provides such a parameterization.

The second approach is derived from the likelihood of a

process tomographic experiment using the same manifold of

matrices with orthonormal columns. This in turn allows for

construction of a second class of prior based on the conju-

gate prior for binomial data. In effect, this prior uses synthetic

“pseudo-experiments” to capture prior information about the

distribution of CPTP maps. Since this distribution is derived

from the likelihood of binomial data, it is also the posterior

distribution for binomial process tomographic data. Using a

sampling scheme adapted from [32], we show how these two

priors can be combined to perform Bayesian process tomog-

raphy for both point estimation and for generating full poste-

rior distributions. This allows one to efficiently include prior

information from techniques such as RB into process tomog-

raphy experiments.

In the following sections, we relate known properties of

CPTP maps to Stiefel manifolds and show how this represen-

tation is compatible with process tomography. Next we review

definitions from classical statistics and introduce the concept

of an exponential family of probability distributions, and de-

rive two families on the Stiefel manifold for the purposes of

Bayesian process tomography. Following this, we show how

these distributions can be used to generate Bayesian estimates

for process tomography, and compare the results to traditional

maximum likelihood methods.

II. CPTP MAPS AND STIEFEL MANIFOLDS

In quantum information, a quantum state can be represented

by a density operator ρ, where ρ ∈ CN×N is a positive semi-

definite, Hermitian matrix with Tr(ρ) = 1. Quantum opera-

tions are then completely positive, trace-preserving (CPTP)

maps [14]. In this work, we will make the additional as-

sumption that the quantum maps of interest map to density

operators of the same dimension as the input dimension, but

this can be generalized. CPTP maps can be represented by

the Choi matrix form Λ, which can be derived from a Li-

ouvillian superoperator L via a coordinate shuffling involu-

tion operation [19, 33]. The relevant properties of Λ that we

will consider here are 1) the CP property implies Λ is Her-

mitian and postive-semidefinite, and 2) the TP property im-

plies that TrB Λ = IN , where TrB denotes the partial trace

over the second subsystem when Λ is viewed as an opera-

tor in the tensor product space of two N × N spaces. Since

Λ is Hermitian and positive semidefinite, there exists a ma-

trix S such that Λ = S†S, i.e., a square root factorization.

Note that this factorization is not unique, indeed US for any

unitary U of appropriate dimension will result in an identical

Choi matrix as S. Furthermore, even the dimension of S is

not unique as the rank K of Λ (i.e., the Kraus rank) implies

that S can be expressed as a K × N2 complex matrix, but

there exist M ×N2-dimensional matrix factorizations for all

M ≥ K . Regardless of the specific choice of S, the coordi-

nates of Λ can be expressed as inner products of the columns

of S, through Λij = 〈Si, Sj〉 = S†
i Sj . Consider next the

NM × N complex matrix derived from an M × N square

root factorization S

ξ =











S1 SN+1 . . . SN(N−1)+1

S2 SN+2 . . . SN(N−1)+2

...
...

. . .
...

SN S2N . . . SN2











. (1)

First, note

TrB(Λ) = IN =⇒
N
∑

i=1

ΛkN+i,kN+i = 1 , (2)

for k = 0, . . . , N − 1. Thus,

||ξk+1||22 =

N
∑

i=1

S†
kN+iSkN+i = 1 , (3)

so the columns of ξ are unit vectors. Second,

TrB(Λ) = IN =⇒
N
∑

i=1

S†
jN+iSkN+i = 0,

for j, k = 0, . . . , N − 1 and j 6= k, so the columns of ξ are in

fact orthonormal with ξ†ξ = IN . The space of m × n (com-

plex) matrices (m ≥ n) with orthonormal columns is a Stiefel

manifold [22], and is denoted Vn(C
m). We will show be-

low how a certain probability distribution on Stiefel manifolds
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corresponds to a natural distribution of random CPTP maps,

and as such we restrict our attention to the Stiefel manifolds

VN (CkN ), where k = 1, . . . , N2 depending on the Kraus rank

of the random CPTP maps we are working with.

This is not the first time that a CPTP map has been associ-

ated with elements of a Stiefel manifold, it has been noted

elsewhere (see e.g., [19, 21, 34]) that column stacking the

Kraus operators in the Kraus form of a CPTP map can be as-

sociated with an equivalence class of unitary matrices with

the sameN columns (see [35] for a characterization of Stiefel

manifolds in terms of these equivalence classes). Using the

eigendecomposition of the Choi matrix, one can construct

Kraus operators [33] and these can in turn be column stacked

and identified with an element of a Stiefel manifold. Careful

index tracking reveals that the Stiefel representation ξ can be

mapped to stacked Kraus operators through a row permuta-

tion. These representations of CPTP maps are known collec-

tively as Stinespring representations [33, 36], and were used

in Ref. [19] as an alternative derivation for the generation of

their random CPTP map distribution.

A. The Born Rule and Stiefel Manifolds

For an orthogonal set of projective measurement operators

{Fi} and a density operator ρ, pi, the probability of record-

ing measurement outcome i is pi = Tr(Fiρ) = 〈〈Fi||ρ〉〉
where |·〉〉 denotes the column-stacking vectorization opera-

tor, and 〈〈·| its conjugate transpose. For a given quantum pro-

cess with Liouvillian L and initial density operator ρ we have

pi = 〈〈Fi|L|ρ〉〉 = Tr(|ρ〉〉〈〈Fi|L) = Tr((|Fi〉〉〈〈p|)†L|).
Next, let P be the coordinate shuffling involution that maps

Liouvillian superoperators to Choi matrices [19, 33], so that

Λ = P(L). Since P is both coordinate shuffling and an

involution (i.e., P(P(L)) = L) then P is a permutation

and thus a unitary “super-duper operator,” and as such pre-

serves inner products between the two spaces. This implies

that pi can be expressed as pi = Tr(P(|Fi〉〉〈〈ρ|)†P(L)) =
Tr(P(|Fi〉〉〈〈ρ|)†Λ).

Next, let S be a square root of Λ and ξ be a corresponding

Stiefel manifold representation with Kraus rank K . Then, for

an arbitrary matrix N2 ×N2 complex matrix Θ, we have

Tr
(

Θ†Λ(ξ)
)

= Tr
(

Θ†S†S
)

=

N2
∑

i,j=1

Θ∗
ijS

†
i Sj

= 〈〈S|
(

Θ† ⊗ IK
)

|S〉〉
= 〈〈ξ|

(

Θ† ⊗ IK
)

|ξ〉〉

(4)

and thus for a given Fi and ρ, we can express the output prob-

ability pi as

pi = 〈〈ξ|
(

P(|Fi〉〉〈〈ρ|)† ⊗ IK
)

|ξ〉〉 . (5)

Equation (4) can also be expressed in terms of the N2 KN -

dimensional columns of ξ by

〈〈ξ|(Θ† ⊗ IK)|ξ〉〉 =
N
∑

i,j=1

ξ†i (Θ
† ⊗ IK)[i,j]ξj (6)

where [i,j] indexes over KN × KN subblocks, and analo-

gously for Eq. (5).

At first glance, the expressions in Eqs. (4)-(6) may appear

cumbersome and complicated. In the following sections, we

will show that since the Stiefel manifold representation ξ nat-

urally encodes the constraints of a CPTP map, Eqs. (4)-(6) can

be used not only to define natural prior and posterior distribu-

tions on Stiefel manifolds, but are also essential to efficient

sampling routines of these distributions.

B. Basic Process Tomography

Process tomography refers to the estimation of a quantum

channel given a set of experimental setups and outcomes [3].

Here we will focus on a basic setup with error-free arbitrary

state preparation and measurement. This allows us to demon-

strate the ideas in future sections, but in principle these restric-

tions could be removed and the techniques adapted to more

advanced forms of process tomography such as [5, 6]. In an

ideal experiment with perfect state preparation and projective

measurements, a given measurement is a Bernoulli trial, and

repeating the experiment results in a binomial distribution. If

we performm different state preparation ρi and measurement

combinations Fi, accumulating xi counts in ni trials, the re-

sulting joint binomial probability distribution is

p(x1, . . . , xm|n1, . . . , nm,Λ) = (7)

m
∏

i=1

(

ni

xi

)

Tr(A†
iΛ)

xi(1 − Tr(A†
iΛ))

ni−xi ,

where Ai = P(|Fi〉〉〈〈ρi|). For notational convenience, we

will use bold-faced x and n to denote the m-dimensional

count and trial vector, respectively so that

p(x|n,Λ) , (x1, . . . , xm|n1, . . . , nm,Λ) . (8)

Given the data x, n, and experimental setupsAi, a common

method for producing an estimate Λ̂ of the unknown channel

Λ, is to perform a least squares fit of the system of equations

implied by 〈〈AI ||Λ〉〉 = xi/niwith appropriate constraints to

ensure that Λ is CPTP. Alternatively, maximum likelihood es-

timation of the Choi matrix in process tomography is formally

defined as

Λ̂MLE = argmax
Λ CPTP

p(x|n,Λ) (9)

whereΛ is drawn from the space of Choi matrices correspond-

ing to CPTP maps. Typically, maximum likelihood estimation

(MLE) is performed using the equivalent optimization of the
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log of the likelihood function Eq. (7) by

Λ̂MLE = argmax
Λ CPTP

m
∑

i=1

xi logTr(A
†
iΛ) (10)

+ (ni − xi) log(1− Tr(A†
iΛ))

+ terms constant in Λ.

More complex tomographic procedures, such as gate set to-

mography [5, 6], can use a similar objective function, ex-

cept it is jointly optimized over multiple CPTP maps and the

Tr(A†
iΛ) are replaced with higher order terms in the gates to

be estimated. The least squares technique described above

can also be cast in terms of maximum likelihood by using the

Gaussian approximation to the binomial distribution.

III. EXPONENTIAL FAMILIES OF CPTP MAPS

In classical statistics, one is often concerned with the es-

timation of some parameter ϑ given sample data {xi} us-

ing some family of parameterized probability distributions

p(x;ϑ). In particular, it is desirable to select statistical models

p(x;ϑ) where sample averages of some function T (x) contain

all of the information needed for the maximum likelihood es-

timation of ϑ that can be derived from a dataset {xi}. In this

context, T (x) is referred to as a sufficient statistic [37, 38].

A familiar example of this concept is the estimation of the

parameters of a normal random variable through the sample

averages of the mean and variance from data.

An alternative method for the selection of statistical models

uses the principle of maximum entropy [39], where the func-

tional form of the probability distribution is selected based

on maximizing the entropy functional E[log(p(x))] over the

space of all probability distributions that satisfy E[T (x)] = η
relative to some base measure, defining a distribution p(x; η).
Again, an example of this is the normal distribution, which

maximizes the entropy over all probability distributions (with

support on the entirety of Rn) with a given mean and variance,

relative to the Lebesgue measure on Rn.

More generally, it turns out that under a very broad set of

conditions, these two methods of defining probability distri-

butions lead to identical distributions. There exists a 1-1 dif-

ferentiable mapping between the parameters ϑ and η, and the

study of these dual coordinates is known as information ge-

ometry [40], which generalizes a wide range of properties

encountered in many familiar probability distributions. The

generalization of these concepts leads to the notion of expo-

nential families, which are parametric families of probability

distributions with the following form:

p(x;ϑ) = exp (〈ϑ, T (x)〉 − ψ(ϑ) + κ(x)) (11)

where ϑ are called the natural parameters that enforce the

above decoupling between x and the parameters, T (x) are the

sufficient statistics, ψ(ϑ) is the log-normalizer which forces

p(x;ϑ) to integrate to 1, and κ(x) is the carrier measure which

defines the support of p(x;ϑ) in the full space of x. It is easy

to check that maximum (log)-likelihood estimation of ϑ de-

pends only sample averages of T (x), as desired. A more com-

plicated argument using Lagrange multipliers can be used to

show that this distribution maximizes the entropy subject to

constraints on the sufficient statistics. Furthermore, exponen-

tial families are essentially the only distributions that satisfy

this property [37, 38]. As implied above, the normal distribu-

tion is an example of an exponential family (ϑ = ( µ
σ2 ,

−1
2σ2 )

⊤,

T (x) = (µ, µ2 + σ2)⊤, and ψ(ϑ) =
ϑ2
1

4ϑ2
+ 1

2 log(−π/ϑ2)),
and another particularly relevant example is the binomial dis-

tribution (ϑ = log(p/(1 − p)), T (x) = np, and ψ(ϑ) =
n log(1 + exp(ϑ))− log(n!)).

A. Choi Matrices as Sufficient Statistics

To define a probability distribution on the space of CPTP

maps for which the average Choi matrix is a sufficient statistic

(alternatively, one for which entropy is maximized given an

average Choi matrix), we arrive at an exponential family of

the form:

p(Λ;Θ) = exp
(

Tr(Θ†Λ)− ψ(Θ) + κ(Λ)
)

, (12)

where Θ denotes the (matrix) natural parameter to the corre-

sponding sufficient statistic T (Λ) = Λ. The capital Θ is used

by convention when the natural parameters are viewed as a

matrix, as opposed to θ for vector and scalar parameters.

As Choi matrices are positive semidefinite matrices, there

are some known exponential families parameterized by

semidefinite matrices such as the Wishart distribution [41, 42],

or matrix Bingham [43]. However, neither of these distribu-

tions respect the TP property of Choi matrices. Instead of

defining a distribution directly on the space of Choi matrices

with Kraus rank ≤ M , we consider instead using the statis-

tic defined by mapping random MN × N matrix elements

ξ with orthonormal columns to the Choi matrix defined by

the relationship in Eq. (1). With some abuse of notation, let

S(ξ) denote the N2 × N2 matrix defined by performing the

inverse of the column arrangement defined in Eq. (1), and let

Λ(ξ) = S(ξ)†S(ξ). Then, the exponential family we should

consider has the form:

pµ(ξ; Θ) = exp
(

Tr(Θ†Λ(ξ))− ψ(Θ) + κ(ξ)
)

= exp
(

〈〈ξ|(Θ† ⊗ IM )|ξ〉〉 − ψ(Θ) + κ(ξ)
)

.
(13)

where we have denoted this distribution by pµ since it is the

characterized by the average Choi matrix.

Eqs. (12) and (13) are superficially similar, but it is impor-

tant to understand that Eq. (13) is defined on a completely dif-

ferent space, and thus the respective normalizers ψ and car-

rier measures κ are different. From this point on, we will

be considering distributions defined on Stiefel manifolds, and

we will suppress the carrier measure terms, as it is understood

that the distributions are restricted to the Stiefel manifold of

the appropriate dimension. Since the mapping ξ → Λ(ξ) is

measurable, distributions defined on the Stiefel manifold gen-

erate well defined distributions on the space of Choi matrices.
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Furthermore, as the uniform distribution on the Stiefel man-

ifold generates the distribution defined in Ref. [19], we have

that the maximum entropy properties of the exponential fami-

lies on the Stiefel manifold are in fact maximizing the entropy

relative to the distribution from Ref. [19].

Using Eq. (6) and letting Ai,j denote (Θ† ⊗ IM )[i,j] the

(i, j)th MN ×MN subblock of Θ† ⊗ IM we have

Tr(Θ†Λ(ξ)) =

N
∑

i,j=1

ξ†iAi,jξj . (14)

On a (real-valued) Stiefel manifold, distributions of the form

p(ξ; {Ai,j}) = exp





N
∑

i,j=1

ξ†iAi,jξj − ψ({Ai,j})



 (15)

are generalizations of the frame-Bingham distributions [44,

45].

Here, we are concerned with a complex-valued manifold,

but this is easily extensible via the standard tricks for con-

verting a complex matrix to a real one via stacking (see [46]

for an example of this technique as applied to the traditional

Bingham distribution). Strictly speaking, the structure of Ai,j

is more constrained (i.e., each A is comprised of blocks of

scaled identity matrices) than the most general form of the

frame-Bingham distribution, so this is technically a sub-model

of the generalized frame-Bingham distribution.

The frame-Bingham distribution can be Gibbs sampled via

the techniques of [32] as per the discussion in [44, 45], and

the generalized case follows immediately from the scheme

described there. As far as inference procedures for the frame-

Bingham distribution, [45] introduces a procedure for approx-

imating the normalizer, but we conjecture that given the ad-

ditional structure imposed by Ai,j the estimation process is

replicated using the traditional Bingham distribution, proce-

dures for which can be found in [43]. Showing this explicitly

is an area of future research.

A closed-form mapping between Θ and Λ(ξ) is not known.

However, since this is a special case of a generalized frame-

Bingham distribution, which is ultimately derived from a nor-

mal distribution using vectorization arguments [45], we know

some properties of Θ. First, Θ is Hermitian and positive

semidefinite. Second, Θ and Λ(ξ) are jointly diagonalizable

(i.e., they have the same eigenvectors), so that the estima-

tion of Θ from E[Λ(ξ)] ultimately amounts to estimating the

eigenvalues of Θ which are then interpreted as concentration

parameters. Furthermore, we can assume that the minimum

eigenvalue of Θ is zero.

B. Binomial Induced Distribution

Another exponential family can be defined on the space of

CPTP maps using the tomographic experiments Ai. Since

the individual pi = Tr(A†
iΛ) can be expressed in terms of

Stiefel manifold elements ξ by pi = 〈〈ξ|(Ai ⊗ IM )|ξ〉〉, then

p(x|n,Λ) can be expressed in terms of Stiefel manifold ele-

ments to define p(x|n, ξ). In turn, given a set of counts x and

n, the likelihood of ξ given x and n can be used to define a

probability distribution on VN (CMN ) by

p(ξ|x,n) =
∏m

i=1

(

ni

xi

)

pxi

i (1− pi)
ni−xi

∫

VN (CMN )
p(ξ′|x,n)dξ′

= exp

(

m
∑

i=1

xi log(pi) + (ni − xi) log(1 − pi)

)

C(x,n)

(16)

where C includes both the normalization integral and the

terms independent of ξ from the binomial distributions.

When the preparation and measurement experiments are fixed,

Eq. (16) indicates that the p(ξ|x,n) is itself an exponential

family with parameters θ = x and ν = n − x and sufficient

statistics

T1(ξ) =







log(〈〈ξ|A1 ⊗ IM |ξ〉〉)
...

log(〈〈ξ|Am ⊗ IM |ξ〉〉)






(17)

and

T2(ξ) =







log(1− 〈〈ξ|A1 ⊗ IM |ξ〉〉)
...

log(1− 〈〈ξ|Am ⊗ IM |ξ〉〉)






. (18)

Next, substitute the above terms to define another parameter-

ized family on the Stiefel manifold by

pc(ξ; θ1, θ2) = exp(θ⊤1 T1(ξ)+θ
⊤
2 T2(ξ)−ψc(θ1, θ2)) , (19)

where ψc(θ1, θ2) = − exp(C(θ1, θ1 + θ2)). We have denoted

this distribution by pc since it defines the conjugate prior for

a binomial likelihood, as discussed in the next section.

IV. BAYESIAN PROCESS TOMOGRAPHY

As an alternative to the maximum likelihood approaches

discussed in Section II B, one can use Bayesian methods. Un-

like maximum likelihood estimation, which generates a point

estimate, Bayesian estimation produces a posterior distribu-

tion p(Λ|x,n) from a prior distribution p(Λ) and the experi-

mental results x (and parameter n) via Bayes’ Rule:

p(Λ|x,n) = p(x|Λ,n)p(Λ)
∫

p(x|Λ′,n)p(Λ′) dΛ′
, (20)

where Λ′ is a dummy variable of integration. This posterior

distribution can then be used to derive a number of point es-

timates as well as credibility intervals. Why one should pre-

fer Bayesian methods over frequentist (maximum likelihood)

methods is beyond the scope of this work, but in the case of

quantum state tomography there is argument that maximum

likelihood is flawed [47]. Furthermore, we will show that we
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have a prior that is uniform with a certain choice of parameter,

and thus the Bayesian estimates in this case are equivalent to

the frequentist approaches.

In order to perform Bayesian estimation, one needs proba-

bility distributions on the appropriate spaces to define priors.

To be effective, these priors need to effectively capture belief,

likely in terms of average quantities such as mean and vari-

ance. In this context, exponential families are natural choices

since they are completely characterized by average quantities.

Additionally, to actually perform the estimation, one needs a

closed form expression for the posterior or the ability to sam-

ple from it. The priors pµ and pc and the binomial measure-

ment model induce distributions that can be efficiently sam-

pled via an extension to the Gibbs sampling technique of [32],

as described in the appendix. Furthermore, this technique can

be adapted to additional families of priors and likelihood func-

tions.

A. Prior Selection

In the preceding section, we defined two probability distri-

butions on the space of CPTP maps using the Stiefel manifold

representation. To reiterate, the first distribution pµ(ξ; Θ) is

the maximum entropy distribution defined by an average Choi

matrix, whereas the second pc(ξ; θ1, θ2) defines the conjugate

prior for p(ξ|x,n). By this we mean

p(ξ|x,n, θ1, θ2) ,
p(x|n, ξ)p(ξ; θ1, θ2)

∫

VN (CMN )
p(x|ξ′,n)p(ξ′; θ1, θ2)

= p(ξ|x + θ1,n+ θ1 + θ2) ,

(21)

in other words, using pc as a prior maintains closure under the

binomial-induced likelihood function and the incorporation of

such a prior is equivalent to having performed a additional

experiments that generated a vector of θ1 successes in θ1 + θ2
trials and adding this to the original x and n.

Of course, these priors can be combined and since

both are exponential families ptot(ξ; Θ, θ1, θ2) =
pµ(ξ; Θ)pc(ξ; θ1, θ2) is also an exponential family. However,

since the prior pc manifests as additional data for the bino-

mially distributed tomography experiments, we will without

loss of generality primarily focus the analysis on pµ (i.e.,

the impact of the parameters θ1 and θ2 can be equivalently

analyzed in the context of posterior distributions).

Unlike pc, using pµ as a prior does not “fuse” cleanly with

the binomial experiment data. However, many quantum char-

acterization experiments do not report the exact measurement

counts used to produce the estimate of the CPTP map, and

thus the prior pµ is appropriate for process tomography when

only the map itself is given. In this case, the choice of Θ
for a given Λ is not known in closed form, but as discussed

in Section III A, Λ and Θ are jointly diagonalizable and thus

share the same eigenvectors. This leaves the identification of

N2 − 1 eigenvalues of Θ (since the smallest can be assumed

to be 0) which will be discussed in the context of a numerical

sampling scheme in the following section.

Another, perhaps more relevant instance when this prior is

appropriate is when only a process fidelity is given or implied

by an experiment, such as randomized benchmarking [1] or

one of its variants. In this case, the implied average (error)

map is a uniform depolarizing channel Λdp with process fi-

delity f close to one, i.e., for N = 2 the Choi matrix of Λdp

is

Λdp = f |I〉〉〈〈I|+ 1− f

3
(|X〉〉〈〈X |+ |Y 〉〉〈〈Y |+ |Z〉〉〈〈Z|) .

(22)

For a multi-qubit system, the eigenvectors of Λdp are the

(scaled) vectorized Pauli matrices and it has two unique eigen-

values, Nf and N
N2−1 (1 − f) (the latter with multiplicity

N2 − 1). Thus we have that Θ = α|IN 〉〉〈〈IN | for some

positive, one dimensional α. Also, note that in this case since

we are using E [Tr (|IN 〉〉〈〈IN |Λ)] as a sufficient statistic, we

are effectively defining the exponential family (i.e., maximum

entropy distribution) for which average process fidelity is a

sufficient statistic.

With regards to selecting a specific value of α, Fig. 1

shows distributions of the process infidelity 1−f of 1000 ran-

domly generated CPTP maps generated via Gibbs sampling of

pµ (ξ;α|I2〉〉〈〈I2|) for a number of different α. Process infi-

delity is shown for purposes of presentation on the logarithmic

scale. The data are displayed using violin plots, which show

both a kernel density estimate of probability distribution of the

data (reflected on both sides of the range bars) as well as the

range and mean [48].

0 1 10 102 103 104 105 106 107 108 109 1010
Prior Concentration α

10−9

10−7

10−5

10−3

10−1
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es
s 
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ity

Distribution of Process Infidelity
10000 Gibbs Samples per α

100.4α−1
Density Estimates

FIG. 1. Violin plots showing distributions of process infidelity 1− f
(M = 1000 samples) drawn from pµ(ξ;α|I2〉〉〈〈I2|) The horizontal

dashes indicate the means, and a regression fit for the means in the

range α ∈ [102, 108] is superimposed. This illustrates a practical

relationship between the concentration of the prior α and the average

process infidelity of resulting random CPTP maps that can be used

for setting informative priors, from e.g., RB. Furthermore, we con-

jecture that this trend persists beyond α = 108 if not for numerical

precision issues.

Note that the increase in α scales roughly linearly with the
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process infidelity in the log-log scale for a wide range of in-

fidelities. Furthermore, we suspect that this trend would con-

tinue for larger α if not for numerical issues, as 10−8 squared

is approximately machine precision for 64 bit floating point

numbers. Performing a regression on the transformed quan-

tities, we arrive at f ≈ 1 − 100.4α−1 which appears to be

accurate for α ≥ 100, corresponding to a fidelity of roughly

0.97. In other words, as the average of the distribution ap-

proaches the identity operation, the largest eigenvalue of the

parameter matrix Θ must outscale the others and approach in-

finity, representing infinite concentration at the identity map.

The properties of frame-Bingham distribution imply that

this eigenvalue scaling (and its impact on infidelity as a prior

for fixed dimension N ) holds for any target unitary operation

since the particular target unitary only changes the eigenvec-

tors of the Θ used, i.e., Θ = α|U〉〈U | for for an arbitrary

unitary operation U . Furthermore, in the more general case of

an average Choi matrix that does not correspond to a uniform

depolarizing channel but is still “nearly” a unitary operation,

the observed growth of the dominant eigenvector of Θ implies

that the additional contributions due to the smaller eigenvalues

is negligible. Thus, the single parameter priorΘ = α|U〉〉〈〈U |
will be a good choice for most practical applications.

B. Bayesian Point Estimation

The maximum likelihood approach to estimation produces

a so-called point estimate Λ̂MLE , whereas the Bayesian ap-

proach to estimation produces a probability distribution on Λ,

as discussed above. Again, we reiterate that the mapping from

ξ to Λ is measurable so pµ and pc induce well defined distribu-

tions on the space of Choi matrices and thus we will be some-

what loose in applying these distributions to both cases. In

the context of Bayesian estimation, two common approaches

to producing point estimates are the maximum a posteriori

(MAP) and expected a posteriori (EAP) estimators.

1. MAP Estimation Using Exponential Families

The MAP approach defines a point estimator

Λ̂MAP = argmax
Λ CPTP

p(Λ|x,n) = argmax
Λ CPTP

p(x|Λ,n)p(Λ),
(23)

since the normalizing term is constant in Λ once x and the

prior distribution have been fixed. Exponential family pri-

ors for MAP estimation have a special relationship with log-

likelihood procedures for maximum likelihood estimation.

Given an arbitrary exponential family prior for CPTP maps,

recall that the functional form of such distribution would be

pexp(ξ|ϑ) = exp(〈ϑ, T (ξ)〉 − ψ(ϑ)) (24)

where we have used ϑ to represent arbitrary natural parame-

ters corresponding to some arbitrary sufficient statistics T (ξ).
Furthermore, we have expressed the exponential family as a

distribution on the Stiefel manifold, but in principle exponen-

tial families defined for other representations of CPTP maps

would apply to the discussion below. Using pexp as a prior

results in a posterior distribution

p(ξ|x,n) ∝ p(x|ξ,n)pexp(ξ|ϑ) (25)

which is again an exponential family.

From a MAP estimation perspective,

Λ̂MAP = Λ

(

argmax
ξ

log (p(x|ξ,n)pexp(ξ|ϑ))
)

= Λ

(

argmax
ξ

log (p(x|ξ,n)) + 〈ϑ, T (ξ)〉
)

.

(26)

Thus, the use of an exponential family prior can be applied to a

log-likelihood based maximum likelihood estimation routine

by adding the term 〈(ϑ, T (ξ)〉. In particular, for our combined

prior ptot(ξ; Θ, θ1, θ2) we have

Λ̂MAP =Λ

(

argmax
ξ

log (p(x+ θ1|ξ,n+ θ1 + θ2))

+ Tr
(

Θ†Λ(ξ)
)

) (27)

where setting Θ = 0 defines the uniform distribution on the

Stiefel manifold, and the MAP estimate reduces to MLE esti-

mate.

Since the prior pc folds in the binomial data in the likeli-

hood this prior requires no changes to an existing maximum

likelihood estimator. Indeed, this is equivalent to using conju-

gate priors on each tomographic experiment individually. The

prior pµ incorporates a single term in the log-likelihood es-

timator that is straight-forward to implement but obviously

needs to be modified depending on the matrix representation

used for the CPTP maps. This applies to Liouvillian super-

operators through P(Θ) and for other linear transformations

in an analogous manner. We have made these modifications

to the gradient-based approach of [49] which affects both the

objective function, but also the rules for step size. Simulated

results are shown in Section IV B 3.

2. EAP Estimation

The EAP estimate Λ̂EAP is simply the mean of the poste-

rior distribution, which to under an arbitrary prior with param-

eter ϑ is expressed as

Λ̂EAP =

∫

VN (CMN )

Λ(ξ)p(ξ|x,n, ϑ) (28)

This also has the interpretation of minimizing the mean

squared error with respect to the posterior distribution. In

other words, EAP estimates minimize the expected value of

the loss function L(Λ̂,Λ) = ||Λ̂ − Λ||22. Other loss functions

(i.e., different Bayes risks) can be used in an analogous fash-

ion.
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From a practical perspective, since the normalization con-

stants in the posterior distribution for either prior pµ and pc
are intractable, this average is computed numerically using

the Gibbs sampling routine. A sufficient number of samples

from the posterior distribution {ξ(i)} ∼ p(ξ|x,n,Θ, θ1, θ2)
are used to produce to produce an accurate average Λ̂ =

1
|{ξ(i)}|

∑

i Λ(ξ
(i)). Sampling from the posterior is more com-

putationally intensive than the MLE or MAP approaches, and

in our experience can have slow convergence and the poten-

tial for highly correlated samples, both of which require addi-

tional samples to be produced to maintain an effective sample

size for an accurate estimate. That said, the production of

EAP estimates generate approximations of the full posterior

distribution allowing for the generation of credibility intervals

as well as posterior distributions of other statistics, such as

diamond norm (see Section IV C).

3. Simulation of Point Estimators

Simulated process tomography was performed using per-

fect state preparation and measurement for all combinations

of the states |0〉, |1〉, |+〉 and |−〉. Ideal state preparation and

measurement (SPAM) was used to clearly illustrate the impact

of the prior on the estimation process without confounding

factors. As maximum likelihood process tomography is a spe-

cial case of the Bayesian approach presented here, the pres-

ence of SPAM errors should impact this Bayesian approach in

much the same way as standard process tomography (see e.g.,

[5] for a brief discussion), but incorporation of prior informa-

tion from SPAM agnostic procedures (such as RB) should bias

the results towards the true fidelity. Incorporation of these pri-

ors into a self-consistent form of process tomography (such

as GST [5, 6]) would address any concerns with SPAM errors

and should be easily implemented for MAP estimates (see also

Section V for additional discussion), and we leave this for fu-

ture work. Each of the sixteen input/output combinations were

repeated n times varying over the set {10, 102, 103, 104, 105}.

Two sets of 100 ground truth CPTP maps were generated from

pµ(ξ;α|I〉〉〈〈I|) with α = 102 and 104, corresponding to av-

erage process fidelities of approximately 0.97 and 0.9997, re-

spectively. These two priors, as well as the uniform α = 0
prior were used to perform MAP and EAP estimation. For the

MAP estimates we used a slightly modified version of [49],

and note that the α = 0 prior corresponds to MLE. For the

EAP estimates, 1000 burned in Gibbs samples from the sam-

pler were used.

Figures 2 and 3 show the mean diamond norm error be-

tween the various point estimates and the two sets of ground

truth maps used above. This is analogous to the root-mean-

square error of the estimator. In accordance with general esti-

mation theory, the estimators tend to converge to the true value

as the number of measurements increases, and this this rate of

decrease is eventually roughly proportional to the square root

of the number of measurements. These figures also demon-

strate how the priors interact with the data, in that an informa-

tive prior can bias the estimate and result in a more accurate

estimate given fewer measurements (Fig. 3), but can also bias

the estimate in a negative manner when the true map is un-

likely given a highly concentrated prior (Fig. 2). Additionally,

it appears that the diffuse prior cases in Fig. 3 are suffering re-

duced effective sample size, since the EAP estimates diverge

slightly from the MAP estimates as the sample sizes increase.

This issue is is really only a problem in the automated analysis

here, for analysis of a single experiment, visual inspection of

the samples or other methods for estimating effective sample

size could be employed.
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FIG. 2. Comparison of mean diamond error to ground truth for dif-

ferent combinations of estimators (MLE, MAP, and EAP) and priors

(defined by parameter α|I〉〉〈〈I |). Ground truth gates were drawn

from the distribution pµ(ξ;α|I〉〉〈〈I |) with α = 100, which corre-

sponds to an average process fidelity of ≈ 0.97. The priors corre-

spond to average process fidelities of 0.25, ≈ 0.97 and ≈ 0.9997
for α = 0, 100, and 10000, respectively. The Bayesian estimates

with the correct (α = 100) prior produce slight improvements over

MLE but due to the relative weakness of the prior this advantage

is quickly erased with increasing n. The prior with α = 10000 is

highly concentrated and it requires considerable data to overcome

this mismatched prior, as the ground truth samples are highly un-

likely for this prior.

Figures 2 and 3 focused on the overall estimation error be-

tween the tomographic reconstruction and the true map. Since

the prior pµ is specified in terms of average process fidelity,

analyzing the behavior of the estimators with respect to pro-

cess fidelity offers an alternative view to the properties of the

estimators. Figures 4 and 5 show the mean process infidelity

of the estimators as a function of n. As we expect from the

Figs. 2 and 3 the process infidelities converge across all esti-

mators as n increases. These figures indicate that MAP and

MLE estimation will produce higher estimates of process fi-

delity than EAP estimation using the uniformly depolarizing

prior considered here. In particular, EAP estimates with a

properly matched prior produce the most accurate estimates

of process infidelity. This discrepancy between the estimated

infidelity despite the similarity in overall diamond error indi-

cates that the MAP (and MLE) approaches are heavily biased
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FIG. 3. Comparison of mean diamond error to ground truth for the

same combination of estimators and priors as Fig. 2. Here, how-

ever, ground truth gates were drawn from the prior pµ(ξ;α|I〉〉〈〈I |)
with α = 10000, which corresponds to an average process fidelity of

≈ 0.9997. Given the high concentration of the ground truth distribu-

tion the advantages of the matched prior are shown with substantial

improvement in estimation error for small n. We believe the diver-

gence in the EAP estimators for n = 105 is likely due to occasional

poor convergence in the underlying MCMC samples which can be

avoided via manual inspection (to continue to produce samples) but

is difficult to avoid in an automated fashion.

towards the dominant eigenvectors of the prior parameter as

compared with EAP estimation.

C. Posterior Distributions and Credibility Intervals

In addition to point estimation, the Gibbs sampling rou-

tine from the posterior distribution can be used for additional

Bayesian approaches such as the construction of credibility

intervals. As an example, Fig. 6 shows histograms of pos-

terior distributions for different combinations of prior and n,

along with the inner 95 percentile of the posterior distribution,

i.e., the 95% credibility interval. The two upper left panel

shows the uniform prior with ni = 100 measurements per

state preparation and measurement configuration, the upper

right the uniform prior with ni = 105, the lower left the prior

pµ(ξ; 10
4|I〉〉〈〈I|) with ni = 100, and the bottom left panel

the prior pµ(ξ; 10
4|I〉〉〈〈I|) and ni = 105.

Samples from the posterior distributions can also be used to

perform Bayesian analysis of arbitrary functions of the poste-

rior distribution of CPTP maps. As an example, Fig. 7 shows

posterior distributions of the diamond error (from the iden-

tity map) for the same data shown in Fig. 6. This shouldn’t

be confused with data shown in Figs. 2 and 3 which show

the diamond error between the point estimates and the true

gates across an ensemble of simulated tomography experi-

ments. The plots on the left illustrate the strength of the prior
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FIG. 4. Comparison of mean process infidelity to the identity

map for the same combinations of estimators and priors as Fig. 2,

as well as the sample average of the process infidelities of the

ground truth gates. Ground truth gates were drawn from the prior

pµ(ξ;α|I〉〉〈〈I |) with α = 100 corresponding to an average pro-

cess fidelity of ≈ 0.97. As expected, the MAP estimates are highly

biased with respect to the process infidelity, as compared with the

EAP estimates, and the EAP estimates with α = 100 produce the

closest posterior infidelities to the truth data. Note, however, that de-

spite large deviations in the process infidelity of the estimates, the

diamond errors between the estimates and true gates are similar (see

Fig. 2).

in terms of its concentration in diamond norm. The uniform

prior for the ni = 100 case is considerably less concentrated

than for the α = 104 prior. Additionally, since the true map

was drawn from the α = 104 prior, the true diamond error is in

the 95% posterior credibility interval for the bottom-left plot,

but not when the uniform prior is used. However, when ni is

large (corresponding to the right column) the posterior distri-

butions (and resulting credibility intervals) are much closer.

V. CONCLUSION

In this work we have used the theory of exponential families

of probability distributions using Stiefel manifolds as a sam-

ple space to induce distributions on the space of CPTP maps.

These distributions are used in Bayesian analysis of process

tomography as both prior and posterior distributions. From

the perspective of priors, one of these distributions is the max-

imum entropy distribution defined by an average Choi matrix,

whereas the other is equivalent to the conjugate prior for the

binomial distributions that underlie process tomography ex-

periments. We compared Bayesian MAP and EAP point esti-

mators and discussed some impacts of the priors on the esti-

mators. Additionally, we showed that the Gibbs sampling ap-

proach can be used to produce posterior credibility intervals

for parameters of interest.
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FIG. 5. Comparison of mean process infidelity to the identity

map for the same combinations of estimators and priors as Fig. 2,

as well as the sample average of the process infidelities of the

ground truth gates. Ground truth gates were drawn from the prior

pµ(ξ;α|I〉〉〈〈I |) with α = 10000 corresponding to an average pro-

cess fidelity of approximately 0.9997. The trends here are essentially

the same as Fig. 4, but even more pronounced.
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FIG. 6. Comparison of posterior distributions. Each subfigure cor-

responds to 10000 samples from the posterior distribution. Top row:

Uniform priors. Bottom row: prior pµ(ξ; 10
4|I〉〉〈〈I |). Left column

ni = 100 measurements per simulated experiment. Right column

ni = 105 measurements per simulated experiment. Black solid line

indicates the true process fidelity, the dashed black line the fidelity of

the MLE. Red dotted lines denote the inner 95% credibility interval

determined by the posterior samples.

The analysis and examples presented in this manuscript are

by no means exhaustive, the primary focus was on demon-

strating that the priors and sampling approaches work cor-
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FIG. 7. Comparison of posterior distributions of diamond error. Each

subfigure corresponds to 10000 samples from the posterior distribu-

tion (the same samples as Fig. 7). Top row: Uniform priors. Bottom

row: prior pµ(ξ; 10
4|I〉〉〈〈I |). Left column ni = 100 measurements

per simulated experiment. Right column ni = 105 measurements

per simulated experiment. Black solid line indicates the true pro-

cess fidelity, the dashed black line the fidelity of the MLE. Red dot-

ted lines denote the inner 95% credibility interval determined by the

posterior samples. These plots highlight the power of a posterior

distribution, as we can produce estimates and credibility intervals of

functions of the underlying quantum process that are otherwise ex-

perimentally inaccessible.

rectly, and that the results agree with the general theory of

Bayesian estimation in a classical context. In particular, for

the full Bayesian analysis, we only considered some basic pa-

rameters of CPTP maps, one could envision other parameters

of interest such as nonunitarity (i.e., translation of the cen-

ter of the Bloch sphere via the CPTP map). Another aspect of

Bayesian estimation which we have not touched are sequential

techniques. The distributions discussed here could be used as

proposal distributions for the techniques proposed in [11, 21].

As far as future extensions, we note that we have already

shown how the method of [32] can be extended to include

essentially arbitrary functions of a CPTP map (here we used

log). This observation allows for the definition and sampling

of a wide range of distributions on the space of CPTP maps.

For example, the addition of regularizers or penalty terms to

a maximum likelihood estimation process can often be inter-

preted in Bayesian context as the component due to a partic-

ular choice of (exponential family) prior in a MAP process

[50, 51]. Thus sparsity-enforcing regularization terms used

for process tomography (e.g., an ℓ1 penalizer as in [52]) can

be interpreted as MAP estimates using an exponential family.

Considering ||Λ||22 or ||Λ||1 as parameters in an exponential

family (perhaps expressed in a Pauli Basis) appear to be im-

plementable in the Gibbs sampling framework, and thus the

use of these sorts of regularization terms can be analyzed in

the fully Bayesian context. Many other natural quantities of

interest can be expressed as simple functions of Λ, and thus
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can be interpreted in the framework of exponential families

on Stiefel manifolds.

The other major extension that we see for these concepts

is to define joint distributions between CPTP maps. In one

sense, since exp and the Gibbs sampling framework naturally

factorizes, the algorithm can be extended to add another layer

of conditional sampling. However, for more complex tomo-

graphic procedures such as gate set tomography [5, 6], the

likelihood terms will be higher order polynomials in the ran-

dom gates and will likely require clever handling in the in-

ner loops of the sampling routine to remain computationally

tractable.

Aside from the applications of these distributions to pro-

cess tomography we note that these distributions could also

be applied to circuit simulation to study the effects of non-

Pauli errors in circuit simulation and threshold computations.

Related to this, we note that a future direction of research is

the distribution on quantum states induced by the application

of these random CPTP maps to a given input state. Further-

more, it should be possible to introduce correlations between

errors and use a similar Gibbs sampling approach to generate

random errors that are correlated in both time and space.
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Appendix A: Sampling Algorithm

The algorithm of [32] uses several stages of Markov Chain

Monte Carlo (MCMC) sampling to generate random samples

whose stationary distribution converges to the target distribu-

tion. As noted in the main text, the algorithm is designed for

real-valued Stiefel manifolds, so we use the procedure in [46]

to convert between VN (CMN ) to VN (R2MN ). The outermost

layer of sampling produces a new sample ξ′ from the current

sample ξ. Inside this layer, the next layer selects a column

r and then ξr is generated conditionally with the remaining

columns (denoted ξ−r). This process is repeated for a random

permutation of {1, . . . , N} so that all columns are sampled,

resulting in a new sample ξ′. To sample a column ξr condi-

tioned on ξ−r, let z = N †ξr , with N and orthonormal basis

for the null space of ξ−r. The final MCMC stage then samples

the coordinates zi in random order conditioned on the remain-

ing parameters, denoted z−i. These steps are summarized in

Algorithm 1, with the further detail and derivation of the un-

derlying distributions following.

From the above algorithm, one can see that the true dif-

ficulty lies in sampling τ ′ and s′, with the remainder of the

algorithm being an exercise in linear algebra. The conditional

posterior distribution of the column ξr (without loss of gener-

Algorithm 1 Sampling p(ξ′|ξ)
function OUTERMCMCSTEP(ξ,Θ, {Aj},x,n)

for r in randperm({1, . . . , N}) do

N ← I − ξrξ
†
r

z ← N †ξr
for i in randperm({1, . . . , 2MN − 1} do

τ ← z2i
s← sign(z)
q−i ← z2−i/(1− τ )
Sample τ ′ ∝ p(τ ′, 1|q−i, s−i) + p(t,−1|q−i, s−i)
Sample s′ ∝ p(τ ′, s′|q−i, s−i) + p(τ ′, s′|q−i, s−i)

z ←
√

1−τ ′√
1−τ

z

zi ←
√
τ ′s

end for

ξr ← N z
end for

return ξ
end function

ality we ignore θ1 and θ2) is given by

p(ξr|ξ−r,Θ,x,n) ∝ exp

(

ξ†r(Θ⊗ IM )[r,r]ξr

+ 2Re

(

∑

j 6=r

ξ†j (Θ⊗ IM )[j,r]ξr

)

+

m
∑

j=1

xj log

[

ξ†r(Aj ⊗ IM )[r,r]ξr

+2Re

(

∑

k 6=r

ξ†k(Aj⊗IM )[k,r]ξr

)

+
∑

k 6=r

ξ†k(Aj⊗IM )[k,k]ξk

]

+

m
∑

j=1

(nj − xj) log

[

1− ξ†r(Aj ⊗ IM )[r,r]ξr

−2Re

(

∑

k 6=r

ξ†k(Aj⊗IM )[k,r]ξr

)

−
∑

k 6=r

ξ†k(Aj⊗IM )[k,k]ξk

])

.

(A1)

Applying the substitution z = N †ξr and gathering like terms,

the conditional posterior distribution of an element zi given



13

the remaining elements z−i (and ξ−r, etc.,) is

p(zi|zi−1, . . . ) ∝ exp

(

bz2i +z
†
−iBzi+2Re(c†izi+c

†
−iz−i)

+
m
∑

j=1

xj log

[

b̃jz
2
i + z†−iB̃jz−i

+ 2Re((c̃j)
†
izi + (c̃j)

†
−iz−i) + d̃j

]

+

m
∑

j=1

(nj − xj) log

[

1− b̃jz
2
i − z†−iB̃jz−i

− 2Re((c̃j)
†
izi + (c̃j)

†
−iz−i)− d̃j)

])

,

(A2)

where the terms b, b̃j , and dj are scalars, c and c̃j are vectors,

and B and B̃j are matrices whose straightforward computa-

tion from N , Θ, Ai, and ξj we have omitted.

As in [32] we perform yet another coordinate transforma-

tion, letting τ = z2i , si = sign(zi), q−i = z2−i/(1− τ) where

the exponent here is elementwise, and s−i = sign(z−i), a vec-

tor of signs. Thus, zi =
√
τsi and z−i =

√
1− τ

√
q−i ◦ s−i

where
√· is elementwise and ◦ denotes elementwise multipli-

cation. Applying the chain rule as in [32, Sec. 3.1] yields an

expression for the joint distribution of τ and si as

p(τ, si|q−i, s−i, . . . ) ∝
p(zi =

√
τsi|z−i =

√
1− τq−i ◦ s−i, . . . )

× τ−
1
2 (1− τ)

(NM−4)
2 . (A3)

Sampling zi then amounts to sampling τ from

p(τ, si = 1|q−i, s−i) + p(τ, si = −1|q−i, s−i) (A4)

and then sampling si given the chosen τ . We found that the

distributions of interest here are often too strongly concen-

trated to use the rejection sampling approach in [32]. Instead,

we adopt the other suggestion in [32], using a grid-based sam-

pling of τ . The gist of the approach is to start with an ini-

tial sample of K evenly spaced τj from (0, 1), evaluate their

probabilities, and sample nearby points whose probabilities

are within some threshold of the maximum sampled prob-

ability. This process is repeated, retaining only the likely

samples until an effective sample size criteria is reached.

Here we used a standard criterion from the field of sequen-

tial Monte Carlo [53], and set the effective sample size to

Keff = (
∑

w2
j )

−1, where wj are the normalized weights

of the samples τ . Here, the adaptive sampling procedure was

terminated when Keff ≥ Kmin = K/10. This process is

described in Algorithm 2. Once the sampling of τ has been

completed, sampling of si is done using the distribution de-

fined by p(si|τ, )̇ for si ± 1. Cycling through Algorithm 1 for

all columns will then result in a new sample for ξ.

In the simple tomography experiments considered here, the

terms in Eq. (A4) due to the binomial distribution can be com-

puted rapidly for a set of candidate τj using the vectorization

Algorithm 2 Adaptive Grid Sampling of τ

Keff ← Kmin − 1
T ← linspace(0, 1, K)
∆← 1/K
for τj ∈ T do

pj ← p(τj , si = 1|q−i, s−i) + p(τj , si = −1|q−i, s−i)
wj ← pj/

∑
pj

end for

Keff = (
∑

p2j)
−1

while Keff < Kmin do

∆← ∆/K
T ′ ← {}
for τj ∈ T do

if wj > εmaxj wj then

T ′ = T ′∪linspace(τi − ∆

2
, τj +

∆

2
,K)

end if

end for

T ← T ′

for τj ∈ T do

pj ← p(τj , si = 1|q−i, s−i) + p(τj, si = −1|q−i, s−i)
wj ← pj/

∑
pj

end for

Keff = (
∑

p2j)
−1

end while

Sample τ from p(τj) = wj

and broadcasting capabilities of modern computer linear al-

gebra package. This is possible because the terms in Eq. A2

can be expressed in relatively simple terms once the portions

dependent on the other columns ξ−r are fixed. In a more com-

plex tomographic experiment such as gate set tomography, the

likelihood expressions of the resulting binomial distributions

will depend on several elements from Stiefel manifolds (one

for each gate), and while the joint family will still be an expo-

nential family, the expressions for the likelihood will likely be

more complicated and considerable thought will be required

to make sampling from the grid efficient.


