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The Vlasov-Maxwell system of equations, which describes classical plasma physics, is extremely
challenging to solve, even by numerical simulation on powerful computers. By linearizing and as-
suming a Maxwellian background distribution function, we convert the Vlasov-Maxwell system into
a Hamiltonian simulation problem. Then for the limiting case of electrostatic Landau damping, we
design and verify a quantum algorithm, appropriate for a future error-corrected universal quantum
computer. While the classical simulation has costs that scale as O(Nvt) for a velocity grid with
Nv grid points and simulation time t, our quantum algorithm scales as O(polylog(Nv)t/δ) where
δ is the measurement error, and weaker scalings have been dropped. Extensions, including elec-
tromagnetics and higher dimensions, are discussed. A quantum computer could efficiently handle
a high-resolution, six-dimensional phase space grid, but the 1/δ cost factor to extract an accurate
result remains a difficulty. This work provides insight into the possibility of someday achieving
efficient plasma simulation on a quantum computer.

I. INTRODUCTION

Quantum computers show enormous promise for solv-
ing classes of problems for which a quantum algorithm
can obtain an exponential speedup over the classical
counterpart. Naturally, this includes the simulation of
quantum systems [1, 2], but it also includes problems
that are not inherently quantum, such as integer factor-
ization [3] and solving linear systems [4, 5]. However, it
remains unclear how many classical computational tasks
requiring the largest supercomputers[6] could be sped up
using a future error-corrected quantum computer.

One such computationally extreme example is the ki-
netic plasma problem[7–9]. High-temperature plasmas
occur in a wide range of applications, including fusion,
space, solar, and astrophysical contexts. Such plasmas
are more complex than conventional fluids because near-
range forces are Debye shielded[10, 11]. This leads to dy-
namics far from thermal equilibrium, requiring the time
evolution of a smooth, six-dimensional distribution func-
tion f(x,v, t), describing the phase-space density of par-
ticles.

High-temperature plasmas are fundamentally de-
scribed by the Vlasov-Maxwell system of equations which
arise from Newton’s second law and Maxwell’s equations,
neglecting short-range Coulomb interactions. The Vlasov
equation[11, 12] is an excellent testbed for applying quan-
tum algorithms to classical computational mathematics
because it is a hyperbolic partial differential equation
describing a conservation law (conservation of particles)
that has features similar to equations in computational
fluid dynamics and other applications[13].

We study the Vlasov-Maxwell system and find that,
when linearized about a Maxwellian equilibrium, the
time evolution can be expressed in a unitary fashion.
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This is then mathematically equivalent to the evolution
of a quantum system. On a universal quantum com-
puter, the time evolution of arbitrary quantum systems is
achieved with Hamiltonian simulation algorithms. These
algorithms have undergone significant development in re-
cent years[14–16], culminating in the achievement of opti-
mal query complexity for sparse Hamiltonians [17]. That
may be enough for the simulation of physical quantum
systems, but for more general computations the efficient
handling of non-sparse Hamiltonians can be important.
On this front there has also been progress: a number
of algorithms which do not rely on sparsity have been
developed[18–20]. However, efficient simulation is not
possible for all non-sparse Hamiltonians[21].

The efficiency of a quantum algorithm that time-
evolves the linearized Vlasov-Maxwell system is unclear
since the associated Hamiltonian is not sparse. Addi-
tionally, encoding initial data into a quantum state and
extracting final data out can be expensive. To explore
these issues, we fully detail an algorithm for a simple
limiting form of the full system. This will correspond to
the electrostatic Landau damping problem, which is an
important kinetic problem in plasma physics. Although
the simulation of Landau damping is not computation-
ally demanding, we show that the quantum algorithm
scales differently than its classical counterpart. That
could translate into a large speedup in generalizations
of the algorithm, which are discussed. This work is in-
tended as a first step in exploring the potential of quan-
tum computation applied to plasma physics problems.

An outline of the paper follows. In Sec. II we analyze
the linearized Vlasov-Maxwell system. We then focus on
the electrostatic Landau damping problem. In Sec. III
we detail the Hamiltonian simulation algorithm used to
solve the Landau damping problem. In Sec. IV the re-
sults of numerical tests (using a classical computer) are
given, and in Sec. V we discuss initialization and mea-
surement. Sec. VI explores possible extensions of the
current algorithm, and finally we summarize our findings
in Sec. VII.
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II. THE VLASOV-MAXWELL SYSTEM

We begin with the non-relativistic Vlasov equation:

∂fs
∂t

+ v ·∇fs +
q

m
(E + v ×B) · ∂fs

∂v
= 0, (1)

where fs = fs(x,v, t) is the distribution function for
species s, i.e. electrons or a type of ions. We solve
for the behavior of small-amplitude waves by linearizing
Eq. (1) and assuming a Maxwellian background distri-
bution fM (v), at rest. The zeroth-order equation is sat-
isfied only if the background electric field E0 vanishes.
The first-order equation for electrons is

∂f1

∂t
+v·∇f1 =

e

m

(
−E1 · vfM + (v ×B0) · ∂f1

∂v

)
. (2)

Assuming stationary ions, the time evolution is gov-
erned by Eq. (2) and Maxwell’s Equations. To adapt
these to a quantum algorithm we apply a few transfor-
mations. We Fourier-transform in space, introducing the
wavevector k, and switch to these dimensionless vari-
ables:

k̂ = λDek, t̂ = ωpet,

v̂ =
v

λDeωpe
, f̂ =

(λDeωpe)
3

ne
f,

Ê =
eλDe
kBTe

E, B̂ =
eλDe
kBTe

cB,

where Te is the electron temperature, ωpe is the electron
plasma frequency, ne is the electron number density, and
λDe is the Debye length with ions neglected. Applying
these changes, Eq. (2) becomes

∂f̃

∂t
= −ik · vf̃ − Ẽ · vfM +

1

cn
(v ×B0) · ∂f̃

∂v
, (3)

where all quantities are now the dimensionless versions,
∼ identifies variables that are Fourier components for
wavevector k, the 1 subscripts have been dropped, and
cn := c

λDeωpe
is the speed of light expressed in units of

λDeωpe. Applying the same transformations to Maxwell’s
Equations gives

∂Ẽ

∂t
= icnk× B̃ +

∫
vf̃d3v, (4)

∂B̃

∂t
= −icnk× Ẽ. (5)

Equations (3), (4), and (5) are sufficient to time-evolve

the variables Ẽ, B̃, and f̃(v). To employ Hamiltonian
simulation algorithms, we also need the system’s time

evolution to be unitary. Consider the following change of
variables:1

f̃ ′(v) := i

√
ξ

fM (v)
f̃(v), (6)

and the real constant ξ will be chosen later. This turns
Eqs. (3) and (4) into

∂f̃ ′

∂t
= −ik · vf̃ ′ − iµẼ · v +

1

cn
(v ×B0) · ∂f̃

′

∂v
, (7)

∂Ẽ

∂t
= icnk× B̃− i

∫
vµf̃ ′

d3v

ξ
, (8)

where µ(v) :=
√
ξfM (v). The time evolution is uni-

tary if it can be written as d|x〉/dt = −iĤeff|x〉 where

Ĥeff = Ĥ†eff is the effective Hamiltonian of the system,
and |x〉 is a quantum state with the variables encoded as
amplitudes. Now, we consider the terms in Eqs. (5), (7),
and (8). First, the evolution within the velocity space is

generated by Ĥv with

Ĥv = k · v +
i

cn
(v ×B0) · ∂

∂v
. (9)

This is Hermitian since∫
g(v)Ĥvh(v)d3v =

∫
h(v)Ĥ∗vg(v)d3v (10)

for normalizable functions g(v) and h(v), using inte-
gration by parts. The behavior of the last term in
Eq. (9) is further explained by Eq. (50). Next, defining
k := (0, 0, k), the electromagnetic part of the evolution
can be expressed as

∂|EM〉
∂t

= −iĤl|EM〉 = −icnk

0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0


ExEyBx
By

 .
(11)

Clearly, Ĥl is a Hermitian matrix. Lastly, there is the
coupling between the velocity distribution and the elec-
tric field. Here the Hermitian restriction can be expressed
in terms of coupling constants Cp(v):

∂f̃ ′(v)

∂t
= −iCp(v)Ep,

∂Ep
∂t

= −iC∗p (v)f̃ ′(v), (12)

where Ep is the pth component of E. From Eq. (7) we
find Cp(v) = µvp while from Eq. (8) we get Cp(v) =

1 An arbitrary eiφ(v) factor can be included in Eq. (6) without
breaking the unitarity of the time evolution.
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µvpd
3v/ξ. Consequently we need to choose ξ = d3v.

In practice we will have a uniform, finite grid in velocity
space in which case ξ will be the volume of a single veloc-
ity grid cell. Now, we can formally consider the coupling
constants to be components of an operator Ĥc, which acts
on a space that is the direct sum of the spaces in which
f̃ ′(v) and E are specified. Then Equation (12) says that

Ĥc is Hermitian, so Ĥeff = Ĥv + Ĥl + Ĥc is Hermitian,
and thus the evolution generated by Ĥeff is unitary.

A. The Landau Damping Problem

Now that we have unitary time evolution, in princi-
ple Hamiltonian simulation can be applied to time-evolve
Eqs. (5), (7), and (8), but designing an efficient quantum
algorithm is still a challenging task. We will demonstrate
an algorithm for the electrostatic case with B0 = 0. This
still has the coupling term [Eq. (12)], which is tricky to
handle efficiently, and it captures the physics of Landau
damping[22]. In developing the quantum algorithm we
target and achieve costs scaling only logarithmically with
the grid size, in contrast to the usual linear scaling of
classical algorithms. Although a large grid will not be
necessary in our simulation of Landau damping, exten-
sions of the algorithm to handle problems that involve
very large grids are conceivable. These are discussed in
Sec. VI.

In the electrostatic case there is only an electric field
along k, i.e. only Ez is non-zero. Moreover, the electric
field evolution can be determined using only a 1D velocity
space: the velocity space, represented by a uniform 3D
grid indexed by j, can be reduced to 1D by introducing

F̃jz :=
∑
jx,jy

f̃j∆
2v, Gjz :=

∑
jx,jy

fM (vj)∆
2v, (13)

F̃ ′jz := i

√
∆v

Gjz
F̃jz , (14)

in terms of which Eqs. (3) and (4), now with B0 = 0,
become

∂F̃ ′j
∂t

= −ikvjF̃ ′j − iαjẼvj , (15)

∂Ẽ

∂t
= −i

∑
j

αjF̃
′
jvj , (16)

where αj :=
√

∆vGj , and all quantities that were previ-
ously vectors are now their z components, e.g. j := jz.
To apply Hamiltonian simulation, we encode the data as
the amplitudes of a quantum state, written in bra-ket
notation as

|x〉 = η

Nv−1∑
j=0

F̃ ′j |j〉+ Ẽ|Nv〉

 , (17)

where Nv is the total number of velocity grid cells, and

η :=
(
|Ẽ|2 +

∑Nv−1
j=0 |F̃ ′j |2

)−1/2

normalizes the state.

This state evolves via d|x〉/dt = −iĤ|x〉 with a Hamilto-
nian given by

Ĥ =

Nv−1∑
j=0

vj [k|j〉〈j|+ αj (|j〉〈Nv|+ |Nv〉〈j|)] . (18)

III. HAMILTONIAN SIMULATION

Efficient Hamiltonian simulation of Eq. (18) is some-
what difficult due to the matrix being non-sparse in the
sense often assumed for quantum algorithms. Specif-
ically, many Hamiltonian simulation techniques (e.g.
[15, 16, 23]) have costs that scale polynomially with the
maximum number of non-zero entries in any row. Our
Hamiltonian has Nv non-zero entries in one row due to
how the electric field couples with all velocities.

To avoid a poly(Nv) cost scaling, we apply the
Hamiltonian simulation technique developed by Low and
Chuang [17] (detailed further in [19, 24, 25]). This tech-
nique allows the Hamiltonian to be encoded in a general
way, which creates possibilities for efficiently handling
non-sparse cases. It also has optimal query complexity,
scaling linearly with time plus a term logarithmic in the
error. Still, we must show how the individual queries can
be performed efficiently. In what follows, we detail our
Hamiltonian simulation implementation and analyze its
efficiency.

Our algorithm operates on a quantum state with nv+7
qubits where nv := log2(Nv). We divide this into five
registers. Three of these, labeled by b, q, and r, are
single-qubit registers, a has four qubits, and v has nv
qubits. The main data are stored in the r and v registers
as

|x〉s = η

Nv−1∑
j=0

F̃ ′j |0〉r|j〉v + Ẽ|1〉r|0〉v

 , (19)

where s is used to denote the combined r and v reg-
isters. It is on this s register that the Hamiltonian
[Eq. (18)] acts, and the s state components with indices
in (Nv, 2Nv) are unused. The other registers have ancilla
qubits. They are initialized as |0〉, and at the end of the
algorithm if any of them are measured to be non-zero
then the algorithm has failed and must be rerun.

We describe the algorithm from the top down. Only
the query implementation U at the bottom is of our de-
sign. The higher operations are not specific to our Hamil-
tonian and are described in Low and Chuang [19], but we
include them for completeness. Hamiltonian simulation
is performed by the circuit

Ĉ := Hbq


x
L/2∏
z=1

Bb(θz)V
†Bb(φz)V Bb(ϑz)

Hbq, (20)
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where Hbq denotes a Hadamard gate, 1√
2

(
1 1
1 −1

)
, applied

to both the b and q qubits; Bb(Φ) is the phase shift gate,(
1 0
0 eiΦ

)
, applied to the b qubit; and V is the quantum

circuit depicted in Fig. 1. The x over the sum means
that it is expanded in right-to-left fashion, e.g. the z = 1
term is the first circuit operation. The angles used in the
phase shift gates are determined2 by the phase vector
~ϕ which is computed as explained in Low et al. [25]. ~ϕ
depends only on the simulation time and error threshold,
and its length L is proportional to the query complexity.
The determination of L is described later, leading to the
query complexity estimate of Eq. (36).

−π/2

nv+6

b H H

q, a, s W

Figure 1. Implementation of V . W is given by Fig. 2. The
notation of an angle φ next to a filled dot represents the phase
shift gate, i.e. the phase φ is applied controlled on that qubit.
Our diagrams were created using the Quantikz package[26].

π π

4

nv+1

q H H

a

U U†

s

Figure 2. Implementation of W . U := U†rowUcol where Urow

is given by Fig. 3 and Ucol is given by Fig. 4.

We define a query to be a single call to the operator U
or U†. The Hamiltonian is encoded in the top-left block
of U :

〈0|a〈j|sU |0〉a|k〉s = βĤjk := Ĥ ′jk. (21)

The constant factor β occurs because we are limited to
encoding matrix rows and columns with normalizations
at most one. β just amounts to a rescaling of the simula-
tion time, which is corrected for by simulating for a time
t′ := t/β. To implement U we use a strategy from Low
and Chuang [24] of breaking it into components Urow and
Ucol, each of which is a unitary state preparation opera-

2 θj+1 := π + ϕ2j+1, ϑj+1 := −ϕ2j , φj := −θj − ϑj

tor:

U := U†rowUcol,

Urow :=
∑
i,j

|χi,j〉as〈i|a〈j|s,

Ucol :=
∑
i,k

|ψi,k〉as〈i|a〈k|s.

(22)

The Hamiltonian that will be simulated is determined by
the prepared states:

Ĥ ′jk = 〈χ0,j |ψ0,k〉. (23)

There are still many possibilities for implementing the
state preparation operators. Our choices are shown in
Figs. 3 and 4. We introduce a rotation operator R(·),
taken to be in SU(2), defined by its action:

R(%)|0〉 → %|0〉+
√

1− |%|2|1〉 (24)

for some |%| ≤ 1. When % is an efficiently-computable
function of the qubits of a different register we call this
a variable rotation. We will only use values of % that are
purely real or imaginary. This corresponds to applying
e−iσ̂y arccos % or e−iσ̂x arccos Im(%)eiσ̂zπ/2, respectively. By
computing the rotation angles in temporary registers and
applying rotations controlled on the angle qubits, these
can be implemented efficiently. For our variable rota-
tions, the input register has nv qubits, and the angles can
be computed at a cost poly(nv) (assuming for simplicity
that they are computed to poly(nv) bits of precision), so
the variable rotations also cost poly(nv) = polylog(Nv).

nv

a0 R(bj) R(dj)

a1

a2

a3 R(c)

r

v H |j〉 |j〉

Figure 3. Implementation of Ûrow. The action of the rotation
gate R(·) is given in Eq. (24). Dashed boxes surround qubits
that are inputs to a variable rotation, which does not mod-
ify those input qubits. The ai qubits are ancillas; only the
behavior when they start as |0〉 is relevant.

The Hamiltonian implemented by U takes the form

Ĥ ′ =

Nv−1∑
j=0

[Ωj |j〉〈j|+ Υj (|j〉〈Nv|+ |Nv〉〈j|)] + D̂. (25)
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nv

a0

a1 R(c∗)

a2 R(b∗j ) R(d∗j )

a3

r

v H |j〉 |j〉

Figure 4. Implementation of Ûcol. The components are de-
scribed in Fig. 3.

Here D̂ :=
∑Nv−1
j=1 Ωj |j + Nv〉〈j + Nv| is unimportant

since it acts within the unused subspace of the state. We
obtain our desired Hamiltonian [Eq. (18)] provided

Ωj = c2d2
j = kβvj , (26)

Υj =
√

1− |c|2 djbj√
Nv

= βvjαj , (27)

where c, bj , and dj specify the rotations as depicted
in Figs. 3 and 4. Since we also have the restriction
|bj |, |dj | < 1, we choose

dj =

√
vj
vmax

, bj =

√
vjGj
gmax

, (28)

where vmax := maxj |vj | = (Nv − 1)∆v/2 and gmax :=
maxj |vjGj |. Substituting Eq. (28) into Eqs. (26) and
(27) gives an equation for c:

c2 = sign(k)
Γ

2

(√
1 +

4

Γ
− 1

)
, (29)

where Γ := (k2vmax)/(∆vNvgmax). The last unknown,
β, is given by β = c2/(kvmax).

Since we must simulate Ĥ ′ for a time t′ := t/β, the
simulation costs will scale with 1/β. Consequently, the
dependence of β on problem parameters, including k, Nv,
and ∆v, is important. One can show3 that

4Λ

5
≤ 1

β
≤ Λ, (30)

where

Λ := |k|vmax +
√

∆vNvvmaxgmax. (31)

3 using 1 ≤ (1 +
√

1/Γ)(
√

1 + 4/Γ− 1)Γ/2 ≤ 5/4 ∀Γ ≥ 0

Crucially, since ∆vNv = 2vmax +∆v, Λ does not increase
with decreasing ∆v. Therefore using an extremely high-
resolution grid does not increase the simulation query
complexity. Meanwhile, the space and gate complexity
will scale only logarithmically with the grid resolution
through the number of qubits nv.

Since ‖Ĥ ′‖ ≤ 1 is required by the Hamiltonian simu-

lation technique, the ideal 1/β would be ‖Ĥ‖. An upper

bound of ‖Ĥ‖, obtained by adding the norm of the diag-
onal part to the norm of the off-diagonal part, is

Λ′ := |k|vmax +

√∑
j

v2
jGj∆v. (32)

Note that this expression turns into the Λ expression if
we replace v2

jGj with vmaxgmax = vmax maxj |vjGj |. So
Λ > Λ′ but in most scenarios the difference is only a
factor of order one. The variable rotations used to im-
plement U move some of the input state out of the good
subspace, which leads to a smaller β. More general state
preparation techniques (e.g. [27, 28]) could improve (in-
crease) β, but for our purposes the simpler implementa-
tion choices are sufficient.

IV. NUMERICAL VALIDATION

For testing, a code that implements the Hamiltonian
simulation gates as linear algebra operations performed
on a classical computer has been developed. This is
compared to the result obtained by directly computing

e−iĤt|x〉s and to theoretical calculations. We test with
the following parameter choices:

k = 0.4, vmax = 4.5, Gj , F̃j(t0) =
1√
2π
e−

1
2v

2
j ,

t = 8π, Nv = 32, Ẽ(t0) =
i

k

∑
j

F̃j(t0)∆v,

where t0 = 0 denotes the initial time and the initial elec-
tric field is from Poisson’s equation in 1D. The evolution
of the electric field in this case is illustrated in Fig. 5.

The quantum algorithm simulates the entire time pe-
riod as one operation, accepting as parameters the total
time and a maximally-allowed error, with the error ε for
our circuit Ĉ defined to be

ε :=
∣∣∣(P̂gĈ − e−iĤt) |xg〉∣∣∣ , (33)

where P̂g is the projector onto the good subspace, specif-
ically the space with all ancillas being zero, and |xg〉 is

any input within the good subspace, i.e. P̂g|xg〉 = |xg〉.
For a given error tolerance ε the circuit can be designed
to guarantee ε ≤ ε, based on the error bounds of the
Hamiltonian simulation technique. We validate our im-
plementation by running with a range of error tolerances.
The results are displayed in Fig. 6.
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Im(Ẽ)

Re(Ẽ)

envel.

Figure 5. Electric field evolution in the test case. Ẽ is the
Fourier component of the electric field for wavenumber k. The
envelope (envel.) is a fitted exponential, which is accurate for

later times. The vanishing of the real component of Ẽ at all
times is due to our specific choice of F̃j(t0).

575 600 625

Cost (queries)

10−7

10−5

10−3

10−1
error bound

failure rate

actual error

Figure 6. Test of the simulation of the Hamiltonian in
Eq. (18). The error bound is given by Eq. (34), while the
actual error ε is computed using Eq. (33). The failure rate is

|(1− P̂g)Ĉ|xg〉|2 ≤ 2ε.

The query complexity of our algorithm is 2L where
L = 2(n − 1) and the positive integer n is chosen such
that the error bound[17],

b(n) := 32(t′/2)n/n!, (34)

is below the chosen tolerance ε. In our implementation
we invert b(n) ≤ ε numerically, but in the limit of t′ � 1
a simple approximation is also effective. Note that b(n) ≤
e−∆nb(n0) with n0 := et′/2 + C, ∆n := n− n0 ≥ 0, and
C ≥ 0. This suggests taking n = n0 + ln(1/ε). Plugging
in ε = 1 gives the bound C ≥ n−e(n!/32)1/n. The simple
choice of C = 1.5 satisfies this for all n. Then b(n) < ε
for any ε ≤ 1 provided that

n ≥ et′/2 + ln(1/ε) + 1.5, (35)

which leads to a query complexity Q with

Q ≤ 2et′ + 4 ln(1/ε) + 6. (36)

A somewhat stronger asymptotic bound, obtained by
Low and Chuang [19], is

Q = O (t′ + log(1/ε)/ log log(1/ε)) , (37)

but for t′ � 1 and reasonable values of ε, Eq. (36) is
fairly accurate, and the t′ term dominates. Our test case
has t′ ≈ 105.7. The main features, shown in Fig. 6,
of total query counts around 600 and error decreasing
by approximately a factor of e for every four additional
queries, are consistent with Eq. (36). All this does not
depend on our specific Hamiltonian. However, as shown
in Sec. III, the queries for our Hamiltonian can be im-
plemented efficiently on a quantum computer, i.e. with
costs scaling only as polylog(1/∆v), while classically they
cost O(1/∆v).

Having verified that the Hamiltonian simulation is ac-
curate, now we interpret the results. Physically, the sys-
tem has Langmuir oscillations that decay due to Landau
damping. As Fig. 5 shows, after a brief initial stage (i.e.
the first period or so) the electric field is well described
by a damped sinusoidal. Specifically, we can fit the func-
tion Ae−γt cos(ωt − ρ) to obtain parameters of interest,
namely the frequency ω and damping rate γ:

ω = 1.2851, γ = 0.0661. (38)

Simple theoretical estimates[11], translated into our di-
mensionless variables and with k = 0.4, give

ω ≈ 1 +
3

2
k2 = 1.24, γ ≈

√
π

8

ω

k3
e−

ω2

2k2 = 0.099. (39)

These estimates rely on k << 1, so they can only give
rough agreement. Precise values of γ and ω can be found
by numerical integration of the dispersion relation; in

our units: 1 + 1√
2πk2

∫∞
−∞

v exp(−v2/2)dv
v−(ω−iγ)/k = 0. This gives

ω = 1.28506 and γ = 0.06613, in agreement with the
fit results. These comparisons show that our algorithm
accurately reproduces Landau damping.

Note that this test case was chosen to be simple and
easy to compute. The number of operations is not large,
both for classical and quantum algorithms. Even the
classical code that simulates the quantum computation
completes in around a second. This is possible since we
used a low resolution velocity space, i.e. Nv = 32. The
classical costs would also be much higher for the multi-
dimensional generalizations discussed in Sec. VI.

V. INITIALIZATION AND MEASUREMENT

On a quantum computer, we would perform three
steps: state preparation, Hamiltonian simulation, and
measurement. State preparation costs depend on the
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prepared state, and in the worst case these costs scale
with the state space size, but many classical probability
distributions can be prepared efficiently[27, 28]. For sim-
ulating Landau damping we use an initially Maxwellian
F̃ , and the preparation can be done efficiently with Fig. 7.
That circuit succeeds with probability 〈|hj |2〉 where

hj := F̃ ′j/max
i
|F̃ ′i |. (40)

Inputting F̃ ′j ∝ F̃j/
√
Gj ∝ ev

2
j/4 one finds 1/〈|hj |2〉 =

O(vmax ) so Fig. 7, which has a gate complexity
poly(nv) = polylog(Nv), just needs to be repeated
O(vmax ) times4 before running the rest of the algorithm.
Note that this cost just adds to the overall algorithm
cost and does not scale with the simulation time. Con-
sequently, it does not change the algorithm’s asymptotic
complexity.

nv

|0〉r R(ηẼ)

|0〉v H |j〉

|0〉p R(hj) |0〉

Figure 7. Possible preparation circuit for the state in Eq. (19).
The rotation inputs hj are given in Eq. (40). The operation
is repeated until the measurement on the p register returns
|0〉.

Obtaining output from the algorithm is more difficult.
In general quantum state tomography can be applied to
learn the full state, but we do not want a scaling with
the state space size. If we just want the electric field,
that is a single amplitude, so the technique of amplitude
estimation[29] is appropriate. This can produce an esti-
mate p̃ of the probability p of measuring the state to be
within a specified subspace, with error bounded by

δ := |p̃− p| ≤ 2π

√
p(1− p)
M

+
π2

M2
, (41)

where M is the number iterations applied. Each iter-
ation involves running the original algorithm forwards
and backwards once, thus the full costs are multiplied by
2M . From Eq. (41), M = O(1/δ), a quadratic speedup
over direct sampling which would instead requireO(1/δ2)
repetitions to estimate the outcome probabilities with a
standard deviation of σ = Θ(δ).

If we want to efficiently estimate some probability to
a specified relative accuracy, we also need to ensure that
it is not too small, since the costs scale with the absolute

4 or O(
√
vmax ) rounds of amplitude amplification[29].

accuracy δ. For our initially Maxwellian F̃ , and with
sums over velocity space approximated by integrals, one
finds

η|Ẽ(t0)| ≈ 1√
1 + k2

≈ 0.928. (42)

Since this is not small, if we want to measure Ẽ to a
fixed accuracy δ′ relative to the sinusoidal envelope, the
measurement adds an O(1/δ′) cost factor provided the
simulation time t is chosen such that eγt = O(1), i.e. the
electric field is only moderately damped.

Both direct sampling and amplitude estimation will
only give information about magnitudes such as |Ẽ|. In
general one may want information about the phase of a
complex amplitude. This can be obtained by extending
the original algorithm as shown in Fig. 8. We introduce
another qubit, labeled by c, and a phase ζ. If the original
algorithm produced an amplitude ν for the |0〉m basis
state, the extended algorithm modifies this via

ν|0〉m −→
1

2

(
ν + eiζ

)
|0〉c|0〉m. (43)

ζ

nv+7

|0〉c H H

|0〉m A

Figure 8. Algorithm extension for obtaining complex phase
information. Gate A is the original algorithm, including state
preparation but not measurement. The final state amplitude
for all qubits equal to zero is modified by the phase ζ as given
in Eq. (43).

Then the usual measurement process, e.g. amplitude
estimation, can be applied to estimate

∣∣ν + eiζ
∣∣. By re-

peating this for ζ = {0,±2π/3}, we can determine the
location of ν within the complex plane, rather than just
its magnitude. Explicitly, if we write the new measured
magnitudes as

d0 :=
1

2
|ν + 1| , d± :=

1

2

∣∣∣ν + e±2πi/3
∣∣∣ , (44)

we can solve to obtain

ν =
2

3
(2d2

0 − d2
+ − d2

−)− 2i√
3

(d2
+ − d2

−). (45)

If each of the squared magnitudes is measured to an ac-
curacy δ, the same δ as in Eq. (41), then we obtain an
estimate ν̃ of ν which obeys the bound |ν̃ − ν| ≤ 8δ/3.
Thus we can learn the value of ν within the complex
plane to within a distance δ at a cost O(1/δ). This can
be applied to any chosen basis state, not just |0〉m, by
specifying the target state when performing amplitude
estimation. For instance we could use this technique to
obtain the sign of Im(Ẽ).
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Now that all components of the algorithm have been
discussed, we can determine its computational complex-
ity, assuming the output is the final electric field. In prin-
ciple the scaling with respect to any algorithm parameter
can be considered, but some parameters are more rele-
vant than others. When k & 1 the electric field is rapidly
damped away, so we assume k = O(1). Next, since the

velocity components beyond vmax decay as e−v
2
max /2, a

large vmax is generally unnecessary. In contrast, a large
Nv is needed to resolve the fine velocity-space oscillations
that develop due to the −ikvjF̃ ′j term in Eq. 15. There-
fore, we treat vmax as a constant and give the scaling
with respect to Nv, the simulation time t, and the error
tolerances ε and δ. Taking ε = δ, the asymptotic gate
complexity is

O
(

polylog(Nv)

δ

(
t+

log(1/δ)

log log(1/δ)

))
. (46)

If we assume that t > log(1/δ), which is true for large
enough t and reasonable values of δ, this simplifies to
O(polylog(Nv)t/δ).

The final electric field is just a simple example of an
output for the algorithm. Given that Ẽ oscillates in time,
a more appropriate output may be

Ẽrms :=

√√√√M−1∑
i=0

|Ẽ(ti)|2
M

, (47)

where the times ti are distributed over some time range
of interest. In fact, this can be obtained by a simple ex-
tension of the original algorithm. Suppose each ti can
be efficiently computed from its index i, and the times
can be represented with integers t̃i := 2mti/tmax − 1
where tmax := maxi ti. We can add an index reg-
ister i in a uniform superposition of the indices and
a time register t, with m qubits, in which the ti are
computed. Then, controlled on each time qubit, the
original algorithm is run for the time interval specified
by that bit. The query bound of Eq. (36) changes to
Q ≤ 2et′max + m(4 ln(1/(mε)) + 6). After the Hamilto-
nian simulation, the state normalization within the sub-
space spanned by {|i〉i|ti〉t|Nv〉s}∀i and all ancilla qubits

|0〉 will be ηẼrms (to within error ε). Amplitude estima-
tion can be applied to determine this normalization with
a better scaling than direct sampling. Thus we can get
Ẽrms with the same dominant cost scaling as the original
algorithm, i.e. O(polylog(Nv)tmax/δ).

VI. GENERALIZATIONS

In Sec. II we initially worked in 3D velocity space, with
a uniform B0 and general field perturbations E1 and B1.
In principle that problem can still be solved efficiently
on a quantum computer using Hamiltonian simulation.
A difficulty is that the dropped terms are large: cn � 1

for non-relativistic plasmas and ‖ ∂∂v‖ = O(1/∆v). Con-
sequently, the spectral norm of the Hamiltonian would
be dramatically increased by including these terms, and
Hamiltonian simulation costs scale with that norm. How-
ever, there is a potential solution: we can break the
Hamiltonian into the new large piece A and the old small
piece B and apply the Hamiltonian simulation technique
of Low and Wiebe [30]. In that paper, the interaction
picture is applied along with time-dependent Hamilto-
nian simulation to allow separate handling of the two
components. We would take A to be the Hamiltonian in
d|x〉/dt = −iA|x〉 where the variables are encoded in |x〉
and are evolving via

∂B̃

∂t
= −icnk× Ẽ,

∂Ẽ

∂t
= icnk× B̃, (48)

∂f̃ ′

∂t
=

1

cn
(v ×B0) · ∂f̃

′

∂v
, (49)

while B would be the Hamiltonian for the other terms of
Eqs. (7) and (8).

As is, our algorithm handles evolution by B in the 1D
case. The extension of the velocity space to 3D is simple:
the 1D velocity index is replaced by a flattened 3D ve-
locity index. The matrix would have O(1/∆3v) non-zero
entries in one row/column, but the coupling constants

of Eq. (12) scale as
√

∆3v so we still have ‖B‖ = O(1).
Then we can obtain similar efficiency, i.e. linear in time,
logarithmic in error and grid resolution, provided that
we can efficiently implement eiAτ where τ = O(1), corre-
sponding to the time evolution by the added terms alone.

The EM evolution of a single Fourier mode is given by
Eq. (11). This is trivial to solve; the pairs {Ey, Bx} and
{Ex, By} each undergo rotations about the x-axis in their
Bloch spaces. Therefore rotation gates can be applied to
perform this evolution, circumventing the usual scaling
with spectral norm. We still need a way to efficiently
perform the evolution of Eq. (9) (which commutes with
the EM evolution). We can reexpress this using

i

cn
(v ×B0) · ∂

∂v
=

1

cn
B0 · L̂v, (50)

where L̂v := v
i ×

∂
∂v is the velocity space analog of the an-

gular momentum operator. Thus the evolution caused by
this term is simply the rotation of velocity space around
B0, i.e. it generates cyclotron motion. Once again we
can hope to implement this efficiently in a direct way,
avoiding spectral norm scaling. For instance, if we work
on a cylindrical velocity grid, symmetric about the B0

axis and with velocity cells spaced uniformly in φ, then
certain discrete time steps just correspond to addition
of a binary constant to the qubits associated with the φ
index. We leave the details for potential future work.

In general the distribution function is 6D. Our algo-
rithm applies to a single spatial Fourier mode k, but it
can easily be extended to many modes. For applying the
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algorithm to a superposition of modes, the only adjust-
ment is that all quantities which depend on k need to be
computed in superposition using operations controlled on
the new k register(s). In principle this can still be done
efficiently, but we will not work this out here. Addition-
ally, if the initial variables are specified as functions of
position, we could use the quantum Fourier transform[31]
to efficiently convert this to a Fourier space representa-
tion before running the algorithm. Another consideration
is the magnitude of k. If we do not assume |k| . 1 then
the simulation costs go up since the Hamiltonian spec-
tral norm scales linearly with |k|. Physically, |k| . 1 is
justified in that this is enough to resolve λDe. Moreover,
when |k| & 1 the electrostatic waves are rapidly damped
away, as suggested by Eq. (39). Then even with many
modes, having |k| . 1 ∀k is reasonable.

Another significant restriction made in Sec. II was
the assumption of a Maxwellian background distribu-
tion. This makes the system unconditionally stable. The
alternative, where some growing wave modes exist, vi-
olates unitarity since then a state that holds the per-
turbed quantities must grow exponentially if it contains
a growing mode component. Such cases cannot be han-
dled directly with Hamiltonian simulation. A completely
different algorithm, possibly utilizing a quantum linear
systems algorithm, would be required, and it is unclear
whether it would scale well. This is a topic of future
work. Still, our algorithm could be applied to other sta-
ble background distributions. The background distribu-
tion enters Eqs. (5), (7), and (8) only through its velocity

derivative. In our dimensionless variables, ∂fM∂v = −vfM .
For a more general background distribution f0 we can
make the replacement fM → g0 where

∂f0(v)

∂v
= −vg0(v). (51)

By redoing the steps up through Eq. (12) one finds that
the new Hamiltonian is Hermitian provided g0(v) ≥
0 ∀v. For background distributions that satisfy this
restriction, Hamiltonian simulation can still be applied.
Furthermore, in the electrostatic case and with B0 = 0
the background distribution enters only through ∂f0

∂vz
.

Here the appropriate replacement is

Gjz −→
−1

∂vz

∑
jx,jy

f0(vj)∆
2v, (52)

and the unitarity restriction is Gjz ≥ 0 ∀jz. Our algo-
rithm can be easily applied to such distributions; only
the specific values of bj and β would be altered.

Thus far we have solved for the motion of electrons,
with ions assumed stationary. If we remove this restric-
tion, each species obeys its own version of Eq. (1) and
they are coupled through the fields. Keeping the same
dimensionless variables, Eq. (3) for each species is

∂f̃s
∂t

= −ik · vf̃s + rs

(
Ẽ · vfM −

1

cn
(v ×B0) · ∂f̃s

∂v

)
,

(53)

where rs := meqs
mse

. If we absorb the rs factor into the
background distribution and magnetic field, we recover
the original mathematical form, and the prior manipu-
lations are still applicable, including the discussed ex-
tensions. The rescaling factors µ(v) become species de-
pendent through the rs factor. One may be concerned
about the sign change for positive species, given the im-
portance of signs for unitarity, but since there is a corre-
sponding sign change in Eq. (4), there are no new issues

here. The generators of the evolution of each f̃s, includ-
ing the couplings with Ẽ, are anti-Hermitian, therefore
the combined evolution of all species and fields is uni-
tary. Additionally, the terms in the evolution, and thus
the matrix entries, for other species are relatively small
since rs � 1 for ions. Consequently the Hamiltonian
spectral norm, along with the space and time complex-
ity of the algorithm, would be nearly unchanged by the
inclusion of multiple species.

VII. SUMMARY

In high-temperature plasma physics, evolution of the
particle distribution function is governed by the Vlasov-
Maxwell system of equations, but simulating this classi-
cally with the full 6D phase space is extremely expensive.
For instance, if the phase space grid requires 1000 cells
in each dimension, just storing f(x,v, t) is beyond ex-
ascale capability[32]. However, on a quantum computer,
the distribution function can be encoded as the ampli-
tudes of a quantum state, requiring exponentially fewer
qubits than classical bits. Moreover, we have shown that
the linearized Vlasov-Maxwell system of equations (with
f0 = fM ) produces a unitary evolution of the field vari-
ables and a rescaled version of the distribution function.
Thus Hamiltonian simulation algorithms can be applied
to perform this classical physics simulation.

For one limiting form of the full system we demon-
strated in detail how the Hamiltonian simulation can be
performed efficiently, such that the quantum algorithm
gets an exponential speedup in space and time complex-
ity over the classical simulation with respect to the veloc-
ity grid size. To obtain this efficiency we used a recently
developed Hamiltonian simulation technique, and the ef-
ficient handling of the more general problem appears to
require even more sophisticated Hamiltonian simulation
techniques. An additional challenge is the extraction of
an output. For measuring a value encoded in a single
quantum amplitude to within absolute error δ, O(1/δ) it-
erations of the original algorithm are required. This can
significantly diminish the quantum speedup, depending
on the desired accuracy.
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